Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.948
Filtrar
1.
Sci Adv ; 10(42): eadi6927, 2024 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-39413182

RESUMO

Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the left ventricular wall, diastolic dysfunction, and fibrosis, and is associated with mutations in genes encoding sarcomere proteins. While in vitro studies have used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study HCM, these models have not examined the multicellular interactions involved in fibrosis. Using engineered cardiac microtissues (CMTs) composed of HCM-causing MYH7-variant hiPSC-CMs and wild-type fibroblasts, we observed cell-cell cross-talk leading to increased collagen deposition, tissue stiffening, and decreased contractility dependent on fibroblast proliferation. hiPSC-CM conditioned media and single-nucleus RNA sequencing data suggested that fibroblast proliferation is mediated by paracrine signals from MYH7-variant cardiomyocytes. Furthermore, inhibiting epidermal growth factor receptor tyrosine kinase with erlotinib hydrochloride attenuated stromal activation. Last, HCM-causing MYBPC3-variant CMTs also demonstrated increased stromal activation and reduced contractility, but with distinct characteristics. Together, these findings establish a paracrine-mediated cross-talk potentially responsible for fibrotic changes observed in HCM.


Assuntos
Cardiomiopatia Hipertrófica , Receptores ErbB , Células-Tronco Pluripotentes Induzidas , Mutação , Miócitos Cardíacos , Comunicação Parácrina , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fibroblastos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Fibrose , Células Estromais/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Proliferação de Células , Miosinas Cardíacas
2.
Cell Mol Life Sci ; 81(1): 430, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39387926

RESUMO

Stress granules (SGs) are non-membranous organelles composed of mRNA and proteins that assemble in the cytosol when the cell is under stress. Although the composition of mammalian SGs is both cell-type and stress-dependent, they consistently contain core components, such as Ras GTPase activating protein SH3 domain binding protein 1 (G3BP1). Upon stress, living cells rapidly assemble micrometric SGs, sometimes within a few minutes, suggesting that SG components may be actively transported by the microtubule and/or actin cytoskeleton. Indeed, SG assembly has been shown to depend on the microtubule cytoskeleton and the associated motor proteins. However, the role of the actin cytoskeleton and associated myosin motor proteins remains controversial. Here, we identified G3BP1 as a novel binding protein of unconventional myosin-5a (Myo5a). G3BP1 uses its C-terminal RNA-binding domain to interact with the middle portion of Myo5a tail domain (Myo5a-MTD). Suppressing Myo5a function in mammalian cells, either by overexpressing Myo5a-MTD, eliminating Myo5a gene expression, or treatment with myosin-5 inhibitor, inhibits the arsenite-induced formation of both small and large SGs. This is different from the effect of microtubule disruption, which abolishes the formation of large SGs but enhances the formation of small SGs under stress conditions. We therefore propose that, under stress conditions, Myo5a facilitates the formation of SGs at an earlier stage than the microtubule-dependent process.


Assuntos
DNA Helicases , Miosina Tipo V , Proteínas de Ligação a Poli-ADP-Ribose , RNA Helicases , Proteínas com Motivo de Reconhecimento de RNA , Grânulos de Estresse , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/genética , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/genética , Humanos , DNA Helicases/metabolismo , DNA Helicases/genética , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Grânulos de Estresse/metabolismo , Ligação Proteica , Células HeLa , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Microtúbulos/metabolismo , Células HEK293 , Animais , Arsenitos/farmacologia , Grânulos Citoplasmáticos/metabolismo
4.
Int J Mol Sci ; 25(19)2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39408647

RESUMO

The liver plays an important role in regulating lipid metabolism in animals. This study investigated the function and mechanism of lncLLM in liver lipid metabolism in hens at the peak of egg production. The effect of lncLLM on intracellular lipid content in LMH cells was evaluated by qPCR, Oil Red O staining, and detection of triglyceride (TG) and cholesterol (TC) content. The interaction between lncLLM and MYH9 was confirmed by RNA purification chromatin fractionation (CHIRP) and RNA immunoprecipitation (RIP) analysis. The results showed that lncLLM increased the intracellular content of TG and TC and promoted the expression of genes related to lipid synthesis. It was further found that lncLLM had a negative regulatory effect on the expression level of MYH9 protein in LMH cells. The intracellular TG and TC content of MYH9 knockdown cells increased, and the expression of genes related to lipid decomposition was significantly reduced. In addition, this study confirmed that the role of lncLLM is at least partly through mediating the ubiquitination of MYH9 protein to accelerate the degradation of MYH9 protein. This discovery provides a new molecular target for improving egg-laying performance in hens and treating fatty liver disease in humans.


Assuntos
Galinhas , Metabolismo dos Lipídeos , Cadeias Pesadas de Miosina , RNA Longo não Codificante , Ubiquitinação , Animais , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Triglicerídeos/metabolismo , Colesterol/metabolismo , Linhagem Celular , Fígado/metabolismo
5.
Invest Ophthalmol Vis Sci ; 65(11): 41, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39330989

RESUMO

Purpose: Little is known about the effect of ciliary neurotrophic factor (CNTF) on extraocular muscles, but microarray studies suggested CNTF might play a role in the development and/or maintenance of strabismus. The effect of short-term treatment of adult rabbit extraocular muscle with injected CNTF was examined for its ability to alter muscle characteristics. Methods: Eight adult New Zealand white rabbits received an injection into one superior rectus muscle of 2 µg/100 µL CNTF on 3 consecutive days. One week after the first injection, the rabbits were euthanized, and the treated and contralateral superior rectus muscles were assessed for force generation capacity and contraction characteristics using an in vitro stimulation protocol and compared to naïve control superior rectus muscles. All muscles were analyzed to determine mean cross-sectional areas and expression of slow twitch myosin heavy chain isoform. Results: Short-term treatment of rabbit superior rectus muscles with CNTF resulted in a significant decrease in muscle force generation, but only at the higher stimulation frequencies. Significantly decreased myofiber cross-sectional areas of the treated muscles correlated with the decreased generated force. In addition, there were significant changes to contractile properties of the treated muscles, as well as a decrease in the number of myofibers expressing slow twitch myosin heavy chain. Conclusions: We show that short-term treatment of a single rabbit superior rectus muscle results in decreased myofiber size, decreased force, and altered contractile characteristics. Further studies are needed to determine if it can play a role in improving alignment in animal models of strabismus.


Assuntos
Fator Neurotrófico Ciliar , Contração Muscular , Músculos Oculomotores , Animais , Coelhos , Fator Neurotrófico Ciliar/farmacologia , Músculos Oculomotores/efeitos dos fármacos , Contração Muscular/fisiologia , Contração Muscular/efeitos dos fármacos , Modelos Animais de Doenças , Cadeias Pesadas de Miosina/metabolismo , Estrabismo/fisiopatologia , Estrabismo/tratamento farmacológico , Injeções Intramusculares
6.
Int J Mol Sci ; 25(18)2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39337344

RESUMO

Extremely low-frequency electromagnetic fields (ELF-EMFs) are ubiquitous in industrialized environments due to the continuous use of electrical devices. Our previous studies demonstrated that ELF-EMFs affect muscle cells by modulating oxidative stress and enhancing myogenesis. This pilot study investigated these effects on the skeletal muscles of sedentary adult mice, assessing physiological responses to ELF-EMF exposure and potential modulation by antioxidant supplementation. Male C57BL/6 mice were exposed to ELF-EMFs (0.1 or 1.0 mT) for 1 h/day for up to 5 weeks and fed a standard diet without or with N-acetyl-cysteine (NAC). The results showed transient increases in muscle strength (after 2 weeks of exposure at 1.0 mT), potentially linked to muscle fiber recruitment and activation, revealed by higher PAX7 and myosin heavy chain (MyH) expression levels. After ELF-EMF exposure, oxidative status assessment revealed transient increases in the expression levels of SOD1 and catalase enzymes, in total antioxidant capacity, and in protein carbonyl levels, markers of oxidative damage. These effects were partially reduced by NAC. In conclusion, ELF-EMF exposure affects skeletal muscle physiology and NAC supplementation partially mitigates these effects, highlighting the complex interactions between ELF-EMFs and antioxidant pathways in vivo. Further investigations on ELF-EMFs as a therapeutic modality for muscle health are necessary.


Assuntos
Campos Eletromagnéticos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Estresse Oxidativo , Superóxido Dismutase-1 , Animais , Campos Eletromagnéticos/efeitos adversos , Camundongos , Masculino , Projetos Piloto , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Superóxido Dismutase-1/metabolismo , Acetilcisteína/farmacologia , Cadeias Pesadas de Miosina/metabolismo , Antioxidantes/metabolismo , Fator de Transcrição PAX7/metabolismo , Comportamento Sedentário , Força Muscular/efeitos da radiação , Catalase/metabolismo
7.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39273383

RESUMO

Non-muscle myosin IIA (NM IIA) is a motor protein that belongs to the myosin II family. The myosin heavy chain 9 (MYH9) gene encodes the heavy chain of NM IIA. NM IIA is a hexamer and contains three pairs of peptides, which include the dimer of heavy chains, essential light chains, and regulatory light chains. NM IIA is a part of the actomyosin complex that generates mechanical force and tension to carry out essential cellular functions, including adhesion, cytokinesis, migration, and the maintenance of cell shape and polarity. These functions are regulated via light and heavy chain phosphorylation at different amino acid residues. Apart from physiological functions, NM IIA is also linked to the development of cancer and genetic and neurological disorders. MYH9 gene mutations result in the development of several autosomal dominant disorders, such as May-Hegglin anomaly (MHA) and Epstein syndrome (EPS). Multiple studies have reported NM IIA as a tumor suppressor in melanoma and head and neck squamous cell carcinoma; however, studies also indicate that NM IIA is a critical player in promoting tumorigenesis, chemoradiotherapy resistance, and stemness. The ROCK-NM IIA pathway regulates cellular movement and shape via the control of cytoskeletal dynamics. In addition, the ROCK-NM IIA pathway is dysregulated in various solid tumors and leukemia. Currently, there are very few compounds targeting NM IIA, and most of these compounds are still being studied in preclinical models. This review provides comprehensive evidence highlighting the dual role of NM IIA in multiple cancer types and summarizes the signaling networks involved in tumorigenesis. Furthermore, we also discuss the role of NM IIA as a potential therapeutic target with a focus on the ROCK-NM IIA pathway.


Assuntos
Neoplasias , Miosina não Muscular Tipo IIA , Humanos , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIA/genética , Animais , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/genética
8.
Signal Transduct Target Ther ; 9(1): 249, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300073

RESUMO

Lenvatinib is a targeted drug used for first-line treatment of hepatocellular carcinoma (HCC). A deeper insight into the resistance mechanism of HCC against lenvatinib is urgently needed. In this study, we aimed to dissect the underlying mechanism of lenvatinib resistance (LR) and provide effective treatment strategies. We established an HCC model of acquired LR. Cell counting, migration, self-renewal ability, chemoresistance and expression of stemness genes were used to detect the stemness of HCC cells. Molecular and biochemical strategies such as RNA-sequencing, immunoprecipitation, mass spectrometry and ubiquitination assays were used to explore the underlying mechanisms. Patient-derived HCC models and HCC samples from patients were used to demonstrate clinical significance. We identified that increased cancer stemness driven by the hypoxia-inducible factor-1α (HIF-1α) pathway activation is responsible for acquired LR in HCC. Phosphorylated non-muscle myosin heavy chain 9 (MYH9) at Ser1943, p-MYH9 (Ser1943), could recruit ubiquitin-specific protease 22 (USP22) to deubiquitinate and stabilize HIF-1α in lenvatinib-resistant HCC. Clinically, p-MYH9 (Ser1943) expression was upregulated in HCC samples, which predicted poor prognosis and LR. A casein kinase-2 (CK2) inhibitor and a USP22 inhibitor effectively reversed LR in vivo and in vitro. Therefore, the p-MYH9 (Ser1943)/USP22/HIF-1α axis is critical for LR and cancer stemness. For the diagnosis and treatment of LR in HCC, p-MYH9 (Ser1943), USP22, and HIF-1α might be valuable as novel biomarkers and targets.


Assuntos
Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Hepáticas , Células-Tronco Neoplásicas , Compostos de Fenilureia , Quinolinas , Ubiquitina Tiolesterase , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Humanos , Quinolinas/farmacologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Compostos de Fenilureia/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Camundongos , Linhagem Celular Tumoral , Animais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Masculino
9.
BMC Med Genomics ; 17(1): 225, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39237976

RESUMO

BACKGROUND: Pathogenic variants of MYH7, which encodes the beta-myosin heavy chain protein, are major causes of dilated and hypertrophic cardiomyopathy. METHODS: In this study, we used whole-genome sequencing data to identify MYH7 variants in 397 patients with various cardiomyopathy subtypes who were participating in the National Project of Bio Big Data pilot study in Korea. We also performed in silico analyses to predict the pathogenicity of the novel variants, comparing them to known pathogenic missense variants. RESULTS: We identified 27 MYH7 variants in 41 unrelated patients with cardiomyopathy, consisting of 20 previously known pathogenic/likely pathogenic variants, 2 variants of uncertain significance, and 5 novel variants. Notably, the pathogenic variants predominantly clustered within the myosin motor domain of MYH7. We confirmed that the novel identified variants could be pathogenic, as indicated by high prediction scores in the in silico analyses, including SIFT, Mutation Assessor, PROVEAN, PolyPhen-2, CADD, REVEL, MetaLR, MetaRNN, and MetaSVM. Furthermore, we assessed their damaging effects on protein dynamics and stability using DynaMut2 and Missense3D tools. CONCLUSIONS: Overall, our study identified the distribution of MYH7 variants among patients with cardiomyopathy in Korea, offering new insights for improved diagnosis by enriching the data on the pathogenicity of novel variants using in silico tools and evaluating the function and structural stability of the MYH7 protein.


Assuntos
Miosinas Cardíacas , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/química , Miosinas Cardíacas/genética , República da Coreia , Feminino , Masculino , Pessoa de Meia-Idade , Cardiomiopatias/genética , Simulação por Computador , Adulto , Mutação de Sentido Incorreto , Idoso
10.
Sci Rep ; 14(1): 21154, 2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256490

RESUMO

Skeletal muscle is a highly heterogeneous tissue, and its contractile proteins are composed of different isoforms, forming various types of muscle fiber, each of which has its own metabolic characteristics. It has been demonstrated that endurance exercise induces the transition of muscle fibers from fast-twitch to slow-twitch muscle fiber type. Herein, we discover a novel epigenetic mechanism for muscle contractile property tightly coupled to its metabolic capacity during muscle fiber type transition with exercise training. Our results show that an 8-week endurance exercise induces histone methylation remodeling of PGC-1α and myosin heavy chain (MHC) isoforms in the rat gastrocnemius muscle, accompanied by increased mitochondrial biogenesis and an elevated ratio of slow-twitch to fast-twitch fibers. Furthermore, to verify the roles of reactive oxygen species (ROS) and AMPK in exercise-regulated epigenetic modifications and muscle fiber type transitions, mouse C2C12 myotubes were used. It was shown that rotenone activates ROS/AMPK pathway and histone methylation enzymes, which then promote mitochondrial biogenesis and MHC slow isoform expression. Mitoquinone (MitoQ) partially blocking rotenone-treated model confirms the role of ROS in coupling mitochondrial biogenesis with muscle fiber type. In conclusion, endurance exercise couples mitochondrial biogenesis with MHC slow isoform by remodeling histone methylation, which in turn promotes the transition of fast-twitch to slow-twitch muscle fibers. The ROS/AMPK pathway may be involved in the regulation of histone methylation enzymes by endurance exercise.


Assuntos
Histonas , Cadeias Pesadas de Miosina , Biogênese de Organelas , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Condicionamento Físico Animal , Espécies Reativas de Oxigênio , Animais , Histonas/metabolismo , Camundongos , Ratos , Espécies Reativas de Oxigênio/metabolismo , Masculino , Cadeias Pesadas de Miosina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Metilação , Fibras Musculares Esqueléticas/metabolismo , Epigênese Genética , Fibras Musculares de Contração Lenta/metabolismo , Resistência Física/fisiologia , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Linhagem Celular , Proteínas Quinases Ativadas por AMP/metabolismo
11.
Am J Hum Genet ; 111(10): 2219-2231, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226896

RESUMO

Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.


Assuntos
Valva Aórtica , Doença da Válvula Aórtica Bicúspide , Sequenciamento do Exoma , Doenças das Valvas Cardíacas , Linhagem , Humanos , Doença da Válvula Aórtica Bicúspide/genética , Doença da Válvula Aórtica Bicúspide/patologia , Valva Aórtica/anormalidades , Valva Aórtica/patologia , Doenças das Valvas Cardíacas/genética , Masculino , Feminino , Predisposição Genética para Doença , Idade de Início , Fenótipo , Exoma/genética , Adulto , Cadeias Pesadas de Miosina/genética , Fibrilina-2/genética , Miosinas Cardíacas/genética
12.
J Cell Mol Med ; 28(18): e70102, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39294858

RESUMO

Colorectal cancer (CRC) exhibits considerable heterogeneity on tumour location. However, there is still a lack of comprehensive annotation regarding the characteristics and differences between the left-sided (L-CRC) and right-sided (R-CRC) CRC. Here, we performed single-cell RNA sequencing (scRNA-seq) on immune and stromal cells from 12 L-CRC and 10 R-CRC patients. We found that L-CRC exhibited stronger tumour invasion and poor prognosis compared with R-CRC. In addition, functional enrichment analysis of a normal cohort showed that fibroblasts of left colon are associated with tumour-related pathways. This suggested that the heterogeneity observed in both L-CRC and R-CRC may be influenced by the specific location within the colon itself. Further, we identified a potentially novel MYH11+ cancer-associated fibroblast (CAF) subset predominantly enriched in L-CRC. Moreover, we found that MYH11+ CAFs may promote tumour migration via interacting with macrophages, and was associated with poor prognosis in CRC. In summary, our study revealed the crucial role of MYH11+ CAFs in predicting a poor prognosis, thereby contributing valuable insights to the exploration of heterogeneity in L-CRC and R-CRC.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Cadeias Pesadas de Miosina , Análise de Célula Única , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Movimento Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Heterogeneidade Genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Prognóstico , Análise de Sequência de RNA , Análise de Célula Única/métodos
13.
J Cell Sci ; 137(18)2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39319625

RESUMO

Cingulin (CGN) tethers nonmuscle myosin 2B (NM2B; heavy chain encoded by MYH10) to tight junctions (TJs) to modulate junctional and apical cortex mechanics. Here, we studied the role of the CGN-nonmuscle myosin 2 (NM2) interaction in epithelial morphogenesis and nanoscale organization of CGN by expressing wild-type and mutant CGN constructs in CGN-knockout Madin-Darby canine kidney (MDCK) epithelial cells. We show that the NM2-binding region of CGN is required to promote normal cyst morphogenesis of MDCK cells grown in three dimensions and to maintain the C-terminus of CGN in a distal position with respect to the ZO-2 (or TJP2)-containing TJ submembrane region, whereas the N-terminus of CGN is localized more proximal to the TJ membrane. We also show that the CGN mutant protein that causes deafness in human and mouse models is localized at TJs but does not bind to NM2B, resulting in decreased TJ membrane tortuosity. These results indicate that the interaction between CGN and NM2B regulates epithelial tissue morphogenesis and nanoscale organization of CGN and suggest that CGN regulates the auditory function of hair cells by organizing the actomyosin cytoskeleton to modulate the mechanics of the apical and junctional cortex.


Assuntos
Morfogênese , Miosina não Muscular Tipo IIB , Cães , Animais , Células Madin Darby de Rim Canino , Miosina não Muscular Tipo IIB/metabolismo , Miosina não Muscular Tipo IIB/genética , Junções Íntimas/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Humanos , Células Epiteliais/metabolismo , Ligação Proteica , Epitélio/metabolismo , Epitélio/crescimento & desenvolvimento , Camundongos
14.
Tokai J Exp Clin Med ; 49(3): 133-136, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39182182

RESUMO

Abnormalities in MYO5B, which encodes an unconventional myosin Vb, not only cause microvillus inclusion disease but also cholestatic liver disease, including benign recurrent intrahepatic cholestasis (BRIC). However, MYO5B-related cholestasis has not yet been reported in Japan. In this study, we present the case of a female patient in her thirties, who had developed jaundice, without diarrhea, in the first year after birth. The jaundice spontaneously subsided and occasionally recurred. Whole-exome sequencing identified two pathogenic variants in MYO5B: a nonsense mutation (c. G1124A: p. W375X) and a missense mutation (c.C2470T: p.R824C). Therefore, the patient was diagnosed with MYO5B-associated BRIC. This is the first reported case of cholestasis with a defined MYO5B defect in Japan.


Assuntos
Colestase Intra-Hepática , Códon sem Sentido , Sequenciamento do Exoma , Mutação de Sentido Incorreto , Miosina Tipo V , Recidiva , Humanos , Miosina Tipo V/genética , Miosina Tipo V/deficiência , Feminino , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/etiologia , Adulto , Cadeias Pesadas de Miosina/genética , Japão , Icterícia/etiologia
15.
PLoS Pathog ; 20(8): e1012504, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39213446

RESUMO

Oropouche fever, a debilitating illness common in South America, is caused by Oropouche virus (OROV), an arbovirus. OROV belongs to the Peribunyaviridae family, a large group of RNA viruses. Little is known about the biology of Peribunyaviridae in host cells, especially assembly and egress processes. Our research reveals that the small GTPase Rab27a mediates intracellular transport of OROV induced compartments and viral release from infected cells. We show that Rab27a interacts with OROV glycoproteins and colocalizes with OROV during late phases of the infection cycle. Moreover, Rab27a activity is required for OROV trafficking to the cell periphery and efficient release of infectious particles. Consistently, depleting Rab27a's downstream effector, Myosin Va, or inhibiting actin polymerization also hinders OROV compartments targeting to the cell periphery and infectious viral particle egress. These data indicate that OROV hijacks Rab27a activity for intracellular transport and cell externalization. Understanding these crucial mechanisms of OROV's replication cycle may offer potential targets for therapeutic interventions and aid in controlling the spread of Oropouche fever.


Assuntos
Cadeias Pesadas de Miosina , Miosina Tipo V , Liberação de Vírus , Proteínas rab27 de Ligação ao GTP , Proteínas rab27 de Ligação ao GTP/metabolismo , Humanos , Liberação de Vírus/fisiologia , Miosina Tipo V/metabolismo , Miosina Tipo V/genética , Cadeias Pesadas de Miosina/metabolismo , Infecções por Bunyaviridae/metabolismo , Infecções por Bunyaviridae/virologia , Orthobunyavirus/metabolismo , Orthobunyavirus/fisiologia , Replicação Viral/fisiologia , Animais , Interações Hospedeiro-Patógeno
16.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39125717

RESUMO

Acute myeloid leukemia (AML) is the most prevalent type of hematopoietic malignancy. Despite recent therapeutic advancements, the high relapse rate associated with extramedullary involvement remains a challenging issue. Moreover, therapeutic targets that regulate the extramedullary infiltration of AML cells are still not fully elucidated. The Aryl Hydrocarbon Receptor (AHR) is known to influence the progression and migration of solid tumors; however, its role in AML is largely unknown. This study explored the roles of AHR in the invasion and migration of AML cells. We found that suppressed expression of AHR target genes correlated with an elevated relapse rate in AML. Treatment with an AHR agonist on patient-derived AML cells significantly decreased genes associated with leukocyte trans-endothelial migration, cell adhesion, and regulation of the actin cytoskeleton. These results were further confirmed in THP-1 and U937 AML cell lines using AHR agonists (TCDD and FICZ) and inhibitors (SR1 and CH-223191). Treatment with AHR agonists significantly reduced Matrigel invasion, while inhibitors enhanced it, regardless of the Matrigel's stiffness. AHR agonists significantly reduced the migration rate and chemokinesis of both cell lines, but AHR inhibitors enhanced them. Finally, we found that the activity of AHR and the expression of NMIIA are negatively correlated. These findings suggest that AHR activity regulates the invasiveness and motility of AML cells, making AHR a potential therapeutic target for preventing extramedullary infiltration in AML.


Assuntos
Movimento Celular , Leucemia Mieloide Aguda , Cadeias Pesadas de Miosina , Invasividade Neoplásica , Receptores de Hidrocarboneto Arílico , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Receptores de Hidrocarboneto Arílico/agonistas , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIA/metabolismo , Miosina não Muscular Tipo IIA/genética , Linhagem Celular Tumoral , Feminino , Masculino , Regulação Leucêmica da Expressão Gênica , Pessoa de Meia-Idade , Idoso , Células THP-1 , Células U937 , Adulto , Fatores de Transcrição Hélice-Alça-Hélice Básicos
17.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39125703

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic disease characterized by unexplained left ventricular hypertrophy (LVH), diastolic dysfunction, and increased sudden-death risk. Early detection of the phenotypic expression of the disease in genetic carriers without LVH (Gen+/Phen-) is crucial for emerging therapies. This clinical study aims to identify echocardiographic predictors of phenotypic development in Gen+/Phen-. Sixteen Gen+/Phen- (one subject with troponin T, six with myosin heavy chain-7, and nine with myosin-binding protein C3 mutations), represented the study population. At first and last visit we performed comprehensive 2D speckle-tracking strain echocardiography. During a follow-up of 8 ± 5 years, five carriers developed LVH (LVH+). At baseline, these patients were older than those who did not develop LVH (LVH-) (30 ± 8 vs. 15 ± 8 years, p = 0.005). LVH+ had reduced peak global strain rate during the isovolumic relaxation period (SRIVR) (0.28 ± 0.05 vs. 0.40 ± 0.11 1/s, p = 0.048) and lower global longitudinal strain (GLS) (-19.8 ± 0.4 vs. -22.3 ± 1.1%; p < 0.0001) than LVH- at baseline. SRIVR and GLS were not correlated with age (overall, p > 0.08). This is the first HCM study investigating subjects before they manifest clinically significant or relevant disease burden or symptomatology, comparing at baseline HCM Gen+/Phen- subjects who will develop LVH with those who will not. Furthermore, we identified highly sensitive, easily obtainable, age- and load-independent echocardiographic predictors of phenotype development in HCM gene carriers who may undergo early preventive treatment.


Assuntos
Cardiomiopatia Hipertrófica , Ecocardiografia , Hipertrofia Ventricular Esquerda , Mutação , Humanos , Masculino , Feminino , Ecocardiografia/métodos , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/etiologia , Adulto , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Pessoa de Meia-Idade , Adolescente , Cadeias Pesadas de Miosina/genética , Troponina T/genética , Heterozigoto , Proteínas de Transporte/genética , Adulto Jovem , Fenótipo , Miosinas Cardíacas/genética
18.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39125885

RESUMO

Nonsyndromic sporadic thoracic aortic aneurysm (nssTAA) is characterized by diverse genetic variants that may vary in different populations. Our aim was to identify clinically relevant variants in genes implicated in hereditary aneurysms in Russian patients with nssTAA. Forty-one patients with nssTAA without dissection were analyzed. Using massive parallel sequencing, we searched for variants in exons of 53 known disease-causing genes. Patients were found to have no (likely) pathogenic variants in the genes of hereditary TAA. Six variants of uncertain significance (VUSs) were identified in four (9.8%) patients. Three VUSs [FBN1 c.7841C>T (p.Ala2614Val), COL3A1 c.2498A>T (p.Lys833Ile), and MYH11 c.4993C>T (p.Arg1665Cys)] are located in genes with "definitive" disease association (ClinGen). The remaining variants are in "potentially diagnostic" genes or genes with experimental evidence of disease association [NOTCH1 c.964G>A (p.Val322Met), COL4A5 c.953C>G (p.Pro318Arg), and PLOD3 c.833G>A (p.Gly278Asp)]. Russian patients with nssTAA without dissection examined in this study have ≥1 VUSs in six known genes of hereditary TAA (FBN1, COL3A1, MYH11, NOTCH1, COL4A5, or PLOD3). Experimental studies expanded genetic testing, and clinical examination of patients and first/second-degree relatives may shift VUSs to the pathogenic (benign) category or to a new class of rare "predisposing" low-penetrance variants causing the pathology if combined with other risk factors.


Assuntos
Aneurisma da Aorta Torácica , Predisposição Genética para Doença , Humanos , Feminino , Masculino , Federação Russa/epidemiologia , Aneurisma da Aorta Torácica/genética , Pessoa de Meia-Idade , Adulto , Cadeias Pesadas de Miosina/genética , Fibrilina-1/genética , Colágeno Tipo III/genética , Idoso , Miosinas Cardíacas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Mutação , Variação Genética , Adipocinas
19.
Exp Physiol ; 109(10): 1739-1754, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180757

RESUMO

We examined how resistance exercise (RE), cycling exercise and disuse atrophy affect myosin heavy chain (MyHC) protein fragmentation. The 1boutRE study involved younger men (n = 8; 5 ± 2 years of RE experience) performing a lower body RE bout with vastus lateralis (VL) biopsies being obtained prior to and acutely following exercise. With the 10weekRT study, VL biopsies were obtained in 36 younger adults before and 24 h after their first/naïve RE bout. Participants also engaged in 10 weeks of resistance training and donated VL biopsies before and 24 h after their last RE bout. VL biopsies were also examined in an acute cycling study (n = 7) and a study involving 2 weeks of leg immobilization (n = 20). In the 1boutRE study, fragmentation of all MyHC isoforms (MyHCTotal) increased 3 h post-RE (∼200%, P = 0.018) and returned to pre-exercise levels by 6 h post-RE. Interestingly, a greater magnitude increase in MyHC type IIa versus I isoform fragmentation occurred 3 h post-RE (8.6 ± 6.3-fold vs. 2.1 ± 0.7-fold, P = 0.018). In 10weekRT participants, the first/naïve and last RE bouts increased MyHCTotal fragmentation 24 h post-RE (+65% and +36%, P < 0.001); however, the last RE bout response was attenuated compared to the first bout (P = 0.045). Although cycling exercise did not alter MyHCTotal fragmentation, ∼8% VL atrophy with 2 weeks of leg immobilization increased MyHCTotal fragmentation (∼108%, P < 0.001). Mechanistic C2C12 myotube experiments indicated that MyHCTotal fragmentation is likely due to calpain proteases. In summary, RE and disuse atrophy increase MyHC protein fragmentation. Research into how ageing and disease-associated muscle atrophy affect these outcomes is needed. HIGHLIGHTS: What is the central question of this study? How different exercise stressors and disuse affect skeletal muscle myosin heavy chain fragmentation. What is the main finding and its importance? This investigation is the first to demonstrate that resistance exercise and disuse atrophy lead to skeletal muscle myosin heavy chain protein fragmentation in humans. Mechanistic in vitro experiments provide additional evidence that MyHC fragmentation occurs through calpain proteases.


Assuntos
Músculo Esquelético , Transtornos Musculares Atróficos , Cadeias Pesadas de Miosina , Proteólise , Treinamento Resistido , Humanos , Treinamento Resistido/métodos , Cadeias Pesadas de Miosina/metabolismo , Masculino , Transtornos Musculares Atróficos/metabolismo , Adulto , Músculo Esquelético/metabolismo , Adulto Jovem , Biomarcadores/metabolismo , Exercício Físico/fisiologia , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Isoformas de Proteínas/metabolismo , Atrofia Muscular/metabolismo
20.
Cell Commun Signal ; 22(1): 417, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39192336

RESUMO

Non-muscle myosin heavy chain IIA (MYH9), a member of the non-muscle myosin II (NM II) family, is widely expressed in cells. The interaction of MYH9 with actin in the cytoplasm can hydrolyze ATP, completing the conversion of chemical energy to mechanical motion. MYH9 participates in various cellular processes, such as cell adhesion, migration, movement, and even signal transduction. Mutations in MYH9 are often associated with autosomal dominant platelet disorders and kidney diseases. Over the past decade, tumor-related research has gradually revealed a close relationship between MYH9 and the occurrence and development of tumors. This article provides a review of the research progress on the role of MYH9 in cancer regulation. We also discussed the anti-cancer effects of MYH9 under special circumstances, as well as its regulation of T cell function. In addition, given the importance of MYH9 as a key hub in oncogenic signal transduction, we summarize the current therapeutic strategies targeting MYH9 as well as the ongoing challenges.


Assuntos
Cadeias Pesadas de Miosina , Neoplasias , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Animais , Transdução de Sinais , Proteínas Motores Moleculares/metabolismo , Proteínas Motores Moleculares/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA