Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.788
Filtrar
1.
BMC Med Genomics ; 17(1): 135, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773466

RESUMO

BACKGROUND: Thoracic aortic aneurysm/dissection (TAAD) and patent ductus arteriosus (PDA) are serious autosomal-dominant diseases affecting the cardiovascular system. They are mainly caused by variants in the MYH11 gene, which encodes the heavy chain of myosin 11. The aim of this study was to evaluate the genotype-phenotype correlation of MYH11 from a distinctive perspective based on a pair of monozygotic twins. METHODS: The detailed phenotypic characteristics of the monozygotic twins from the early fetal stage to the infancy stage were traced and compared with each other and with those of previously documented cases. Whole-exome and Sanger sequencing techniques were used to identify and validate the candidate variants, facilitating the analysis of the genotype-phenotype correlation of MYH11. RESULTS: The monozygotic twins were premature and presented with PDA, pulmonary hypoplasia, and pulmonary hypertension. The proband developed heart and brain abnormalities during the fetal stage and died at 18 days after birth, whereas his sibling was discharged after being cured and developed normally post follow-up. A novel variant c.766 A > G p. (Ile256Val) in MYH11 (NM_002474.2) was identified in the monozygotic twins and classified as a likely pathogenic variant according to the American College of Medical Genetics/Association for Molecular Pathology guidelines. Reviewing the reported cases (n = 102) showed that the penetrance of MYH11 was 82.35%, and the most common feature was TAAD (41.18%), followed by PDA (22.55%), compound TAAD and PDA (9.80%), and other vascular abnormalities (8.82%). The constituent ratios of null variants among the cases with TAAD (8.60%), PDA (43.8%), or compound TAAD and PDA (28.6%) were significantly different (P = 0.01). Further pairwise comparison of the ratios among these groups showed that there were significant differences between the TAAD and PDA groups (P = 0.006). CONCLUSION: This study expands the mutational spectrum of MYH11 and provides new insights into the genotype-phenotype correlation of MYH11 based on the monozygotic twins with variable clinical features and outcomes, indicating that cryptic modifiers and complex mechanisms beside the genetic variants may be involved in the condition.


Assuntos
Estudos de Associação Genética , Cadeias Pesadas de Miosina , Gêmeos Monozigóticos , Humanos , Gêmeos Monozigóticos/genética , Cadeias Pesadas de Miosina/genética , Masculino , Recém-Nascido , Fenótipo , Miosinas Cardíacas/genética , Aneurisma da Aorta Torácica/genética , Permeabilidade do Canal Arterial/genética , Feminino , Mutação , Dissecção Aórtica/genética
2.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698330

RESUMO

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Assuntos
Neoplasias do Endométrio , Glicogênio Sintase Quinase 3 beta , Cadeias Pesadas de Miosina , beta Catenina , Humanos , Feminino , Neoplasias do Endométrio/tratamento farmacológico , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Animais , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Linhagem Celular Tumoral , beta Catenina/metabolismo , beta Catenina/genética , Camundongos , Proliferação de Células/efeitos dos fármacos , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Prognóstico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Pessoa de Meia-Idade , Naftoquinonas/farmacologia
3.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690930

RESUMO

Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.


Assuntos
Diferenciação Celular , Fator de Crescimento Insulin-Like I , Contração Muscular , Fibras Musculares Esqueléticas , Fenótipo , Humanos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Células Cultivadas , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Glucose/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia
4.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690726

RESUMO

Proline substitutions within the coiled-coil rod region of the ß-myosin gene (MYH7) are the predominant mutations causing Laing distal myopathy (MPD1), an autosomal dominant disorder characterized by progressive weakness of distal/proximal muscles. We report that the MDP1 mutation R1500P, studied in what we believe to be the first mouse model for the disease, adversely affected myosin motor activity despite being in the structural rod domain that directs thick filament assembly. Contractility experiments carried out on isolated mutant muscles, myofibrils, and myofibers identified muscle fatigue and weakness phenotypes, an increased rate of actin-myosin detachment, and a conformational shift of the myosin heads toward the more reactive disordered relaxed (DRX) state, causing hypercontractility and greater ATP consumption. Similarly, molecular analysis of muscle biopsies from patients with MPD1 revealed a significant increase in sarcomeric DRX content, as observed in a subset of myosin motor domain mutations causing hypertrophic cardiomyopathy. Finally, oral administration of MYK-581, a small molecule that decreases the population of heads in the DRX configuration, significantly improved the limited running capacity of the R1500P-transgenic mice and corrected the increased DRX state of the myofibrils from patients. These studies provide evidence of the molecular pathogenesis of proline rod mutations and lay the groundwork for the therapeutic advancement of myosin modulators.


Assuntos
Substituição de Aminoácidos , Miopatias Distais , Prolina , Animais , Camundongos , Humanos , Prolina/genética , Prolina/metabolismo , Miopatias Distais/genética , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Mutação de Sentido Incorreto , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/química , Feminino , Masculino , Camundongos Transgênicos , Contração Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia
5.
J Clin Invest ; 134(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38690729

RESUMO

The myosin inhibitor mavacamten has transformed the management of obstructive hypertrophic cardiomyopathy (HCM) by targeting myosin ATPase activity to mitigate cardiac hypercontractility. This therapeutic mechanism has proven effective for patients with HCM independent of having a primary gene mutation in myosin. In this issue of the JCI, Buvoli et al. report that muscle hypercontractility is a mechanism of pathogenesis underlying muscle dysfunction in Laing distal myopathy, a disorder characterized by mutations altering the rod domain of ß myosin heavy chain. The authors performed detailed physiological, molecular, and biomechanical analyses and demonstrated that myosin ATPase inhibition can correct a large extent of muscle abnormalities. The findings offer a therapeutic avenue for Laing distal myopathy and potentially other myopathies. This Commentary underscores the importance of reevaluating myosin activity's role across myopathies in general for the potential development of targeted myosin inhibitors to treat skeletal muscle disorders.


Assuntos
Benzilaminas , Músculo Esquelético , Uracila/análogos & derivados , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miopatias Distais/genética , Miopatias Distais/tratamento farmacológico , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Animais , Mutação , Miosinas/metabolismo , Miosinas/genética
6.
PLoS One ; 19(5): e0301690, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38701072

RESUMO

Myogenesis is regulated mainly by transcription factors known as Myogenic Regulatory Factors (MRFs), and the transcription is affected by epigenetic modifications. However, the epigenetic regulation of myogenesis is poorly understood. Here, we focused on the epigenomic modification enzyme, PHF2, which demethylates histone 3 lysine 9 dimethyl (H3K9me2) during myogenesis. Phf2 mRNA was expressed during myogenesis, and PHF2 was localized in the nuclei of myoblasts and myotubes. We generated Phf2 knockout C2C12 myoblasts using the CRISPR/Cas9 system and analyzed global transcriptional changes via RNA-sequencing. Phf2 knockout (KO) cells 2 d post differentiation were subjected to RNA sequencing. Gene ontology (GO) analysis revealed that Phf2 KO impaired the expression of the genes related to skeletal muscle fiber formation and muscle cell development. The expression levels of sarcomeric genes such as Myhs and Mybpc2 were severely reduced in Phf2 KO cells at 7 d post differentiation, and H3K9me2 modification of Mybpc2, Mef2c and Myh7 was increased in Phf2 KO cells at 4 d post differentiation. These findings suggest that PHF2 regulates sarcomeric gene expression via epigenetic modification.


Assuntos
Desenvolvimento Muscular , Sarcômeros , Animais , Camundongos , Diferenciação Celular/genética , Linhagem Celular , Epigênese Genética , Técnicas de Inativação de Genes , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Mioblastos/metabolismo , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Sarcômeros/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Transcrição Gênica
7.
Mol Genet Genomics ; 299(1): 44, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625590

RESUMO

Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.


Assuntos
Anormalidades Múltiplas , Colo , Duodeno , Doenças Fetais , Obstrução Intestinal , Pseudo-Obstrução Intestinal , Bexiga Urinária , Adulto , Humanos , Masculino , Colo/anormalidades , Duodeno/anormalidades , Pseudo-Obstrução Intestinal/genética , Cadeias Pesadas de Miosina/genética , Estudos Retrospectivos , Bexiga Urinária/anormalidades , Feminino
8.
J Agric Food Chem ; 72(19): 11094-11110, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661523

RESUMO

Research on adipogenesis will help to improve the meat quality of livestock. Long noncoding RNAs (lncRNAs) are involved in mammalian adipogenesis as epigenetic modulators. In this study, we analyzed lncRNA expression during bovine adipogenesis and detected 195 differentially expressed lncRNAs, including lncRNA BlncAD1, which was significantly upregulated in mature bovine adipocytes. Gain- and loss-of-function experiments confirmed that BlncAD1 promoted the proliferation, apoptosis, and differentiation of bovine preadipocytes. RNA pull-down revealed that the nonmuscle myosin 10 (MYH10) is a potential binding protein of BlncAD1. Then, we elucidated that loss of BlncAD1 caused increased ubiquitination of MYH10, which confirmed that BlncAD1 regulates adipogenesis by enhancing the stability of the MYH10 protein. Western blotting was used to demonstrate that BlncAD1 activated the PI3K/Akt signaling pathway. Bioinformatic analysis and dual-luciferase reporter assays indicated that BlncAD1 competitively absorbed miR-27a-5p. The overexpression and interference of miR-27a-5p in bovine preadipocytes displayed that miR-27a-5p inhibited proliferation, apoptosis, and differentiation. Further results suggested that miR-27a-5p targeted the CDK6 gene and that BlncAD1 controlled the proliferation of bovine preadipocytes by modulating the miR-27a-5p/CDK6 axis. This study revealed the complex mechanisms of BlncAD1 underlying bovine adipogenesis for the first time, which would provide useful information for genetics and breeding improvement of Chinese beef cattle.


Assuntos
Adipócitos , Adipogenia , Quinase 6 Dependente de Ciclina , MicroRNAs , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , RNA Longo não Codificante , Transdução de Sinais , Animais , Bovinos/genética , Bovinos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Adipogenia/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Adipócitos/metabolismo , Adipócitos/citologia , Quinase 6 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/metabolismo , Diferenciação Celular , Proliferação de Células , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Apoptose
9.
J Cell Physiol ; 239(5): e31226, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38591363

RESUMO

Understanding how skeletal muscle fiber proportions are regulated is essential for understanding muscle function and improving the quality of mutton. While circular RNA (circRNA) has a critical function in myofiber type transformation, the specific mechanisms are not yet fully understood. Prior evidence indicates that circular ubiquitin-specific peptidase 13 (circUSP13) can promote myoblast differentiation by acting as a ceRNA, but its potential role in myofiber switching is still unknown. Herein, we found that circUSP13 enhanced slow myosin heavy chain (MyHC-slow) and suppressed MyHC-fast expression in goat primary myoblasts (GPMs). Meanwhile, circUSP13 evidently enhanced the remodeling of the mitochondrial network while inhibiting the autophagy of GPMs. We obtained fast-dominated myofibers, via treatment with rotenone, and further demonstrated the positive role of circUSP13 in the fast-to-slow transition. Mechanistically, activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway significantly impaired the slow-to-fast shift in fully differentiated myotubes, which was restored by circUSP13 or IGF1 overexpression. In conclusion, circUSP13 promoted the fast-to-slow myofiber type transition through MAPK/ERK signaling in goat skeletal muscle. These findings provide novel insights into the role of circUSP13 in myofiber type transition and contribute to a better understanding of the genetic mechanisms underlying meat quality.


Assuntos
Cabras , Sistema de Sinalização das MAP Quinases , Cadeias Pesadas de Miosina , Animais , Sistema de Sinalização das MAP Quinases/fisiologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Diferenciação Celular , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Rápida/metabolismo , Músculo Esquelético/metabolismo , Autofagia/fisiologia , Mioblastos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Células Cultivadas , Fibras Musculares Esqueléticas/metabolismo , Desenvolvimento Muscular/genética
10.
Proc Natl Acad Sci U S A ; 121(19): e2318413121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683993

RESUMO

Determining the pathogenicity of hypertrophic cardiomyopathy-associated mutations in the ß-myosin heavy chain (MYH7) can be challenging due to its variable penetrance and clinical severity. This study investigates the early pathogenic effects of the incomplete-penetrant MYH7 G256E mutation on myosin function that may trigger pathogenic adaptations and hypertrophy. We hypothesized that the G256E mutation would alter myosin biomechanical function, leading to changes in cellular functions. We developed a collaborative pipeline to characterize myosin function across protein, myofibril, cell, and tissue levels to determine the multiscale effects on structure-function of the contractile apparatus and its implications for gene regulation and metabolic state. The G256E mutation disrupts the transducer region of the S1 head and reduces the fraction of myosin in the folded-back state by 33%, resulting in more myosin heads available for contraction. Myofibrils from gene-edited MYH7WT/G256E human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) exhibited greater and faster tension development. This hypercontractile phenotype persisted in single-cell hiPSC-CMs and engineered heart tissues. We demonstrated consistent hypercontractile myosin function as a primary consequence of the MYH7 G256E mutation across scales, highlighting the pathogenicity of this gene variant. Single-cell transcriptomic and metabolic profiling demonstrated upregulated mitochondrial genes and increased mitochondrial respiration, indicating early bioenergetic alterations. This work highlights the benefit of our multiscale platform to systematically evaluate the pathogenicity of gene variants at the protein and contractile organelle level and their early consequences on cellular and tissue function. We believe this platform can help elucidate the genotype-phenotype relationships underlying other genetic cardiovascular diseases.


Assuntos
Miosinas Cardíacas , Cardiomiopatia Hipertrófica , Células-Tronco Pluripotentes Induzidas , Contração Miocárdica , Miócitos Cardíacos , Cadeias Pesadas de Miosina , Humanos , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Contração Miocárdica/genética , Mutação , Mitocôndrias/metabolismo , Mitocôndrias/genética , Miofibrilas/metabolismo , Respiração Celular/genética
11.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673941

RESUMO

Abdominal aortic aneurysm (AAA) is a serious vascular disease which is associated with vascular remodeling. CD38 is a main NAD+-consuming enzyme in mammals, and our previous results showed that CD38 plays the important roles in many cardiovascular diseases. However, the role of CD38 in AAA has not been explored. Here, we report that smooth-muscle-cell-specific deletion of CD38 (CD38SKO) significantly reduced the morbidity of AngII-induced AAA in CD38SKOApoe-/- mice, which was accompanied with a increases in the aortic diameter, medial thickness, collagen deposition, and elastin degradation of aortas. In addition, CD38SKO significantly suppressed the AngII-induced decreases in α-SMA, SM22α, and MYH11 expression; the increase in Vimentin expression in VSMCs; and the increase in VCAM-1 expression in smooth muscle cells and macrophage infiltration. Furthermore, we demonstrated that the role of CD38SKO in attenuating AAA was associated with the activation of sirtuin signaling pathways. Therefore, we concluded that CD38 plays a pivotal role in AngII-induced AAA through promoting vascular remodeling, suggesting that CD38 may serve as a potential therapeutic target for the prevention of AAA.


Assuntos
ADP-Ribosil Ciclase 1 , Angiotensina II , Aneurisma da Aorta Abdominal , Camundongos Knockout , Miócitos de Músculo Liso , Remodelação Vascular , Animais , Masculino , Camundongos , ADP-Ribosil Ciclase 1/metabolismo , ADP-Ribosil Ciclase 1/genética , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/patologia , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Transdução de Sinais , Remodelação Vascular/genética
12.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673886

RESUMO

Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.


Assuntos
Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , MicroRNAs , Cadeias Pesadas de Miosina , Neoplasias da Próstata , Humanos , Transição Epitelial-Mesenquimal/genética , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Linhagem Celular Tumoral , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Movimento Celular/genética , Proliferação de Células/genética
13.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38674131

RESUMO

This review deals with the developmental origins of extraocular, jaw and laryngeal muscles, the expression, regulation and functional significance of sarcomeric myosin heavy chains (MyHCs) that they express and changes in MyHC expression during phylogeny. Myogenic progenitors from the mesoderm in the prechordal plate and branchial arches specify craniofacial muscle allotypes with different repertoires for MyHC expression. To cope with very complex eye movements, extraocular muscles (EOMs) express 11 MyHCs, ranging from the superfast extraocular MyHC to the slowest, non-muscle MyHC IIB (nmMyH IIB). They have distinct global and orbital layers, singly- and multiply-innervated fibres, longitudinal MyHC variations, and palisade endings that mediate axon reflexes. Jaw-closing muscles express the high-force masticatory MyHC and cardiac or limb MyHCs depending on the appropriateness for the acquisition and mastication of food. Laryngeal muscles express extraocular and limb muscle MyHCs but shift toward expressing slower MyHCs in large animals. During postnatal development, MyHC expression of craniofacial muscles is subject to neural and hormonal modulation. The primary and secondary myotubes of developing EOMs are postulated to induce, via different retrogradely transported neurotrophins, the rich diversity of neural impulse patterns that regulate the specific MyHCs that they express. Thyroid hormone shifts MyHC 2A toward 2B in jaw muscles, laryngeal muscles and possibly extraocular muscles. This review highlights the fact that the pattern of myosin expression in mammalian craniofacial muscles is principally influenced by the complex interplay of cell lineages, neural impulse patterns, thyroid and other hormones, functional demands and body mass. In these respects, craniofacial muscles are similar to limb muscles, but they differ radically in the types of cell lineage and the nature of their functional demands.


Assuntos
Músculos Faciais , Regulação da Expressão Gênica no Desenvolvimento , Cadeias Pesadas de Miosina , Animais , Humanos , Músculos Faciais/inervação , Músculos Faciais/fisiologia , Desenvolvimento Muscular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Músculos Oculomotores/metabolismo , Músculos Oculomotores/inervação , Filogenia
14.
Genes (Basel) ; 15(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540440

RESUMO

BACKGROUND: Left ventricular hypertrophy (LVH) is a well-recognized cardiac dysfunction in infants of mothers with gestational diabetes mellitus (GDM). Left ventricular noncompaction (LVNC) is a cardiomyopathy that is morphologically characterized by numerous prominent trabeculations and deep intertrabecular recesses on cardiovascular imaging. However, there have been no case reports on neonates of mothers with GDM showing LVH and LVNC. CASE PRESENTATION: A patient, with LVH of a mother with GDM, was delivered at 36 weeks of gestation. Prominent trabeculations in the LV, suggesting LVNC, instead of LVH, were apparent 1 week after birth. A heterozygous deletion variant in the MYH7 gene (NM_000257.4: c.1090T>C, p.Phe364Leu) was discovered through genetic testing using a cardiomyopathy-associated gene panel in the patient and his father and the older brother who had LVNC. The patient is now 5 years old and does not have major cardiac events, although LVNC persisted. This is the first case of LVH secondary to a mother with GDM and LVNC with a novel variant in the MYH7 gene. CONCLUSION: Genetic testing should be conducted to obtain an accurate outcome and medical care in a patient with LVH and subsequently prominent hypertrabeculation in the LV.


Assuntos
Cardiomiopatias , Diabetes Gestacional , Cardiopatias Congênitas , Masculino , Lactente , Recém-Nascido , Feminino , Gravidez , Humanos , Pré-Escolar , Diabetes Gestacional/genética , Mães , Hipertrofia Ventricular Esquerda/genética , Cardiopatias Congênitas/genética , Cardiomiopatias/genética , Cadeias Pesadas de Miosina/genética , Miosinas Cardíacas/genética
15.
Int J Biol Macromol ; 266(Pt 2): 131049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522687

RESUMO

Long non-coding RNAs (lncRNAs) play an essential role in vertebrate myogenesis and muscle diseases. However, the dynamic expression patterns, biological functions, and mechanisms of lncRNAs in skeletal muscle development and regeneration remain largely unknown. In this study, a novel lncRNA (named lncMGR) was differentially expressed during breast muscle development in fast- and slow-growing chickens. Functionally, lncMGR promoted myoblast differentiation, inhibited myoblast proliferation in vitro, and promoted myofiber hypertrophy and injury repair in vivo. Mechanistically, lncMGR increased the mRNA and protein expression of skeletal muscle myosin heavy chain 1 A (MYH1A) via both transcriptional and post-transcriptional regulation. Nuclear lncMGR recruited cyclin-dependent kinase 9 (CDK9) to the core transcriptional activation region of the MYH1A gene to activate MYH1A transcription. Cytoplasmic lncMGR served as a competitive endogenous RNA (ceRNA) to competitively absorb miR-2131-5p away from MYH1A and subsequently protected the MYH1A from miR-2131-5p-mediated degradation. Besides miR-2131-5p, cytoplasmic lncMGR could also sponge miR-143-3p to reconcile the antagonist between the miR-2131-5p/MYH1A-mediated inhibition effects and miR-143-3p-mediated promotion effects on myoblast proliferation, thereby inhibiting myoblast proliferation. Collectively, lncMGR could recruit CDK9 and sponge multiple miRNAs to regulate skeletal muscle development and regeneration, and could be a therapeutic target for muscle diseases.


Assuntos
Galinhas , MicroRNAs , Desenvolvimento Muscular , RNA Longo não Codificante , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Quinase 9 Dependente de Ciclina/metabolismo , Quinase 9 Dependente de Ciclina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Mioblastos/citologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Regeneração/genética , RNA Longo não Codificante/genética
16.
Front Biosci (Schol Ed) ; 16(1): 1, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38538344

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy is the most frequent autosomal dominant disease, yet due to genetic heterogeneity, incomplete penetrance, and phenotype variability, the prognosis of the disease course in pathogenic variant carriers remains an issue. Identifying common patterns among the effects of different genetic variants is important. METHODS: We investigated the cause of familial hypertrophic cardiomyopathy (HCM) in a family with two patients suffering from a particularly severe disease. Searching for the genetic variants in HCM genes was performed using different sequencing methods. RESULTS: A new missense variant, p.Leu714Arg, was identified in exon 19 of the beta-myosin heavy chain gene (MYH7). The mutation was found in a region that encodes the 'converter domain' in the globular myosin head. This domain is essential for the conformational change of myosin during ATP cleavage and contraction cycle. Most reports on different mutations in this region describe severe phenotypic consequences. The two patients with the p.Leu714Arg mutation had heart failure early in life and died from HCM complications. CONCLUSIONS: This case presents a new likely pathogenic variant in MYH7 and supports the hypothesis that myosin converter mutations constitute a subclass of HCM mutations with a poor prognosis for the patient.


Assuntos
Cardiomiopatia Hipertrófica Familiar , Cardiomiopatia Hipertrófica , Humanos , Miosinas Cardíacas/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica Familiar/diagnóstico por imagem , Cardiomiopatia Hipertrófica Familiar/genética , Mutação , Mutação de Sentido Incorreto/genética , Cadeias Pesadas de Miosina/genética , Fenótipo
17.
Genes Chromosomes Cancer ; 63(3): e23227, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38517106

RESUMO

AIMS: Kinase fusion-positive soft tissue tumors represent an emerging, molecularly defined group of mesenchymal tumors with a wide morphologic spectrum and diverse activating kinases. Here, we present two cases of soft tissue tumors with novel LTK fusions. METHODS AND RESULTS: Both cases presented as acral skin nodules (big toe and middle finger) in pediatric patients (17-year-old girl and 2-year-old boy). The tumors measured 2 and 3 cm in greatest dimension. Histologically, both cases exhibited bland-looking spindle cells infiltrating adipose tissue and accompanied by collagenous stroma. One case additionally displayed perivascular hyalinization and band-like stromal collagen. Both cases exhibited focal S100 staining, and one case had patchy coexpression of CD34. Targeted RNA-seq revealed the presence of novel in-frame MYH9::LTK and MYH10::LTK fusions, resulting in upregulation of LTK expression. Of interest, DNA methylation-based unsupervised clustering analysis in one case showed that the tumor clustered with dermatofibrosarcoma protuberans (DFSP). One tumor was excised with amputation with no local recurrence or distant metastasis at 18-month follow-up. The other case was initially marginally excised with local recurrence after one year, followed by wide local excision, with no evidence of disease at 10 years of follow-up. CONCLUSIONS: This is the first reported case series of soft tissue tumors harboring LTK fusion, expanding the molecular landscape of soft tissue tumors driven by activating kinase fusions. Furthermore, studies involving a larger number of cases and integrated genomic analyses will be warranted to fully elucidate the pathogenesis and classification of these tumors.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Proteínas de Fusão Oncogênica , Neoplasias Cutâneas , Neoplasias de Tecidos Moles , Adolescente , Criança , Feminino , Humanos , Masculino , Antígenos CD34/metabolismo , Biomarcadores Tumorais/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/genética , Neoplasias de Tecido Conjuntivo e de Tecidos Moles/patologia , Receptores Proteína Tirosina Quinases , Neoplasias Cutâneas/patologia , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Proteínas de Fusão Oncogênica/genética , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética
18.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469783

RESUMO

BACKGROUND: The rapid development of automatic blood cell analyzers has greatly optimized complete blood count results. However, erroneous results relevant to automatic blood cell analyzers still exist. Pseudothrombocytopenia can be observed in both cases of anticoagulant-induced platelet aggregation, and the presence of large and giant platelets. METHODS: A rare case of a MYH9-related disorder, in which marked underestimation of platelet count was led by large and giant platelets using the impedance count by an automated hematology analyzer. Moreover, lancet-shaped and Dohle body-like cytoplasmic inclusions were detected in almost all white blood cells of the patient. RESULTS: The platelet count was done by an optical platelet counter or a fluorescence platelet counter, and peripheral blood smear was evaluated. In addition, the diagnosis of MYH9-related disorder was established by the molecular findings. CONCLUSIONS: Identification of the peripheral blood smear and familial history will eliminate the need for further laboratory testing and bone marrow examination.


Assuntos
Perda Auditiva Neurossensorial , Trombocitopenia , Trombocitopenia/congênito , Humanos , Contagem de Plaquetas/métodos , Trombocitopenia/diagnóstico , Trombocitopenia/genética , Plaquetas , Perda Auditiva Neurossensorial/diagnóstico , Cadeias Pesadas de Miosina/genética
20.
Genes Genet Syst ; 992024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417894

RESUMO

Homeostasis is essential for muscle repair and regeneration after skeletal muscle exercise. This study investigated the role of methyltransferase-like 21C (METTL21C) in skeletal muscle of mice after exercise and the potential mechanism. First, muscle samples were collected at 2, 4 and 6 weeks after exercise, and liver glycogen, muscle glycogen, blood lactic acid and triglyceride were assessed. Moreover, the expression levels of autophagy markers and METTL21C in skeletal muscle were analyzed. The results showed that the expression levels of METTL21C and MYH7 in the gastrocnemius muscle of mice in the exercise group were significantly higher after exercise than those in the control group, which suggested that long-term exercise promoted the formation of slow-twitch muscle fibers in mouse skeletal muscle. Likewise, the autophagy capacity was enhanced with the prolongation of exercise in muscles. The findings were confirmed in mouse C2C12 cells. We discovered that knockdown of Mettl21c reduced the expression of MYH7 and the autophagy level in mouse myoblasts. These findings indicate that METTL21C promotes skeletal muscle homeostasis after exercise by enhancing autophagy, and also contributes to myogenic differentiation and the formation of slow muscle fibers.


Assuntos
Autofagia , Metiltransferases , Fibras Musculares de Contração Lenta , Cadeias Pesadas de Miosina , Condicionamento Físico Animal , Animais , Camundongos , Metiltransferases/metabolismo , Metiltransferases/genética , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Fibras Musculares de Contração Lenta/metabolismo , Masculino , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Linhagem Celular , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA