Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.063
Filtrar
1.
Nanoscale ; 16(19): 9348-9360, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38651870

RESUMO

Understanding nanoparticle-cell interaction is essential for advancing research in nanomedicine and nanotoxicology. Apart from the transcytotic pathway mediated by cellular recognition and energetics, nanoparticles (including nanomedicines) may harness the paracellular route for their transport by inducing endothelial leakiness at cadherin junctions. This phenomenon, termed as NanoEL, is correlated with the physicochemical properties of the nanoparticles in close association with cellular signalling, membrane mechanics, as well as cytoskeletal remodelling. However, nanoparticles in biological systems are transformed by the ubiquitous protein corona and yet the potential effect of the protein corona on NanoEL remains unclear. Using confocal fluorescence microscopy, biolayer interferometry, transwell, toxicity, and molecular inhibition assays, complemented by molecular docking, here we reveal the minimal to significant effects of the anionic human serum albumin and fibrinogen, the charge neutral immunoglobulin G as well as the cationic lysozyme on negating gold nanoparticle-induced endothelial leakiness in vitro and in vivo. This study suggests that nanoparticle-cadherin interaction and hence the extent of NanoEL may be partially controlled by pre-exposing the nanoparticles to plasma proteins of specific charge and topology to facilitate their biomedical applications.


Assuntos
Caderinas , Fibrinogênio , Ouro , Nanopartículas Metálicas , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Humanos , Caderinas/metabolismo , Caderinas/química , Ouro/química , Nanopartículas Metálicas/química , Fibrinogênio/química , Fibrinogênio/metabolismo , Animais , Células Endoteliais da Veia Umbilical Humana , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Muramidase/química , Muramidase/metabolismo , Simulação de Acoplamento Molecular , Camundongos
2.
Nat Commun ; 15(1): 1595, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383683

RESUMO

Tip-links in the inner ear convey force from sound and trigger mechanotransduction. Here, we present evidence that tip-links (collectively as heterotetrameric complexes of cadherins) function as force filters during mechanotransduction. Our force-clamp experiments reveal that the tip-link complexes show slip-ideal-slip bond dynamics. At low forces, the lifetime of the tip-link complex drops monotonically, indicating slip-bond dynamics. The ideal bond, rare in nature, is seen in an intermediate force regime where the survival of the complex remains constant over a wide range. At large forces, tip-links follow a slip bond and dissociate entirely to cut-off force transmission. In contrast, the individual tip-links (heterodimers) display slip-catch-slip bonds to the applied forces. While with a phenotypic mutant, we showed the importance of the slip-catch-slip bonds in uninterrupted hearing, our coarse-grained Langevin dynamics simulations demonstrated that the slip-ideal-slip bonds emerge as a collective feature from the slip-catch-slip bonds of individual tip-links.


Assuntos
Orelha Interna , Mecanotransdução Celular , Fenômenos Mecânicos , Audição , Caderinas/química
3.
Structure ; 32(4): 476-491.e5, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38307021

RESUMO

Planar cell polarity (PCP), essential to multicellular developmental processes, arises when cells polarize and align across tissues. Central to PCP is CELSR1, an atypical cadherin featuring a long ectodomain with nine extracellular cadherin (EC) repeats, a membrane adjacent domain (MAD10), and several characteristic adhesion GPCR domains. Cell-based aggregation assays have demonstrated CELSR1's homophilic adhesive nature, but mechanistic details are missing. Here, we investigate the possible adhesive properties and structures of CELSR1 EC repeats. Our bead aggregation assays do not support strong adhesion by EC repeats alone. Consistently, EC1-4 only dimerizes at high concentration in solution. Crystal structures of human CELSR1 EC1-4 and EC4-7 reveal typical folds and a non-canonical linker between EC5 and EC6. Simulations and experiments using EC4-7 indicate flexibility at EC5-6, and solution experiments show EC7-MAD10-mediated dimerization. Our results suggest weak homophilic adhesion by CELSR1 cadherin repeats and provide mechanistic insights into the structural determinants of CELSR1 function.


Assuntos
Polaridade Celular , Humanos , Caderinas/química , Caderinas/metabolismo , Dimerização
4.
STAR Protoc ; 4(4): 102626, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37792537

RESUMO

Adherens junctions (AJs) are multi-protein adhesion structures that couple contractile actomyosin networks of epithelial cells within a tissue. Here, we present an epithelial cell spreading assay on E-cadherin-coated glass or polydimethylsiloxane (PDMS) substrates for detailed microscopy-based analysis of cadherin adhesions. We describe steps for preparation of glass coverslips and PDMS gels, E-cadherin coating, and epithelial cell spreading. Epithelial cells can be seeded on E-cadherin-coated surfaces, thereby mimicking AJ formation in X-Y dimension, making it suitable for microscopy analysis. For complete details on the use and execution of this protocol, please refer to Noordstra et al. (2023).1.


Assuntos
Caderinas , Microscopia , Caderinas/química , Caderinas/metabolismo , Células Epiteliais , Junções Aderentes/metabolismo , Dimetilpolisiloxanos
5.
Bioconjug Chem ; 34(12): 2275-2292, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37882455

RESUMO

Oriented and covalent immobilization of proteins on magnetic nanoparticles (MNPs) is particularly challenging as it requires both the functionality of the protein and the colloidal stability of the MNPs to be preserved. Here, we describe a simple, straightforward, and efficient strategy for MNP functionalization with proteins using metal affinity binding. Our method involves a single-step process where MNPs are functionalized using a preformed, ready-to-use nitrilotriacetic acid-divalent metal cation (NTA-M2+) complex and polyethylene glycol (PEG) molecules. As a proof-of-concept, we demonstrate the oriented immobilization of a recombinant cadherin fragment engineered with a hexahistidine tag (6His-tag) onto the MNPs. Our developed methodology is simple and direct, enabling the oriented bioconjugation of His-tagged cadherins to MNPs while preserving protein functionality and the colloidal stability of the MNPs, and could be extended to other proteins expressing a polyhistidine tag. When compared to the traditional method where NTA is first conjugated to the MNPs and afterward free metal ions are added to form the complex, this novel strategy results in a higher functionalization efficiency while avoiding MNP aggregation. Additionally, our method allows for covalent bonding of the cadherin fragments to the MNP surface while preserving functionality, making it highly versatile. Finally, our strategy not only ensures the correct orientation of the protein fragments on the MNPs but also allows for the precise control of their density. This feature enables the selective targeting of E-cadherin-expressing cells only when MNPs are decorated with a high density of cadherin fragments.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Indicadores e Reagentes , Quelantes , Ácido Nitrilotriacético/química , Caderinas/química , Metais
6.
Biophys J ; 122(15): 3069-3077, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37345249

RESUMO

Cadherin intermolecular interactions are critical for cell-cell adhesion and play essential roles in tissue formation and the maintenance of tissue structures. In this study, we focus on E-cadherin, a classical cadherin that connects epithelial cells, to understand how they interact in cis and trans conformations when attached to the same cell or opposing cells. We employ coevolutionary sequence analysis and molecular dynamics simulations to confirm previously known interaction sites as well as to identify new interaction sites. The sequence coevolutionary results yield a surprising result indicating that there are no strongly favored intermolecular interaction sites, which is unusual and suggests that many interaction sites may be possible, with none being strongly preferred over others. By using molecular dynamics, we test the persistence of these interactions and how they facilitate adhesion. We build several types of cadherin assemblages, with different numbers and combinations of cis and trans interfaces to understand how these conformations act to facilitate adhesion. Our results suggest that, in addition to the established interaction sites on the EC1 and EC2 domains, an additional plausible cis interface at the EC3-EC5 domain exists. Furthermore, we identify specific mutations at cis/trans binding sites that impair adhesion within E-cadherin assemblages.


Assuntos
Caderinas , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Mutação , Ligação Proteica , Animais , Camundongos
7.
Mol Biol Evol ; 40(4)2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36911992

RESUMO

The sensory epithelium of the inner ear, found in all extant lineages of vertebrates, has been subjected to over 500 million years of evolution, resulting in the complex inner ear of modern vertebrates. Inner-ear adaptations are as diverse as the species in which they are found, and such unique anatomical variations have been well studied. However, the evolutionary details of the molecular machinery that is required for hearing are less well known. Two molecules that are essential for hearing in vertebrates are cadherin-23 and protocadherin-15, proteins whose interaction with one another acts as the focal point of force transmission when converting sound waves into electrical signals that the brain can interpret. This "tip-link" interaction exists in every lineage of vertebrates, but little is known about the structure or mechanical properties of these proteins in most non-mammalian lineages. Here, we use various techniques to characterize the evolution of this protein interaction. Results show how evolutionary sequence changes in this complex affect its biophysical properties both in simulations and experiments, with variations in interaction strength and dynamics among extant vertebrate lineages. Evolutionary simulations also characterize how the biophysical properties of the complex in turn constrain its evolution and provide a possible explanation for the increase in deafness-causing mutants observed in cadherin-23 relative to protocadherin-15. Together, these results suggest a general picture of tip-link evolution in which selection acted to modify the tip-link interface, although subsequent neutral evolution combined with varying degrees of purifying selection drove additional diversification in modern tetrapods.


Assuntos
Orelha Interna , Protocaderinas , Animais , Orelha Interna/metabolismo , Audição , Caderinas/genética , Caderinas/química , Caderinas/metabolismo
8.
Chemistry ; 29(39): e202203904, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-36917492

RESUMO

Cell adhesion molecules are crucial for a variety of biological processes, including wound healing, barrier formation and tissue homeostasis. One of them is E-cadherin which is generally found at adherent junctions between epithelial cells. To identify this molecule on the surface of cells, E-cadherin mimetic peptides with a critical amino acid sequence of HAV (histidine-alanine-valine) were synthesized and attached to solid-supported membranes covering colloidal probes. Two different functionalization strategies were established, one based on the complexation of DOGS-NTA(Ni) with a polyhistidine-tagged HAV-peptide and the other one relying on the formation of a HAV-lipopeptide using in situ maleimide-thiol coupling. Binding studies were performed to verify the ability of the peptides to attach to the membrane surface. Compared to the non-covalent attachment via the His-tag, we achieved a higher yield by lipopeptide formation. Colloidal probes functionalized with HAV-peptides were employed to measure the presence of E-cadherins on living cells either using video particle tracking or force spectroscopy. Here, human HaCaT cells were examined confirming the specific interaction of the HAV-peptide with the E-cadherin of the cells. Statistical methods were also used to determine the number of single-bond ruptures and the force of a single bond. These findings may be essential for the development of novel biosynthetic materials given their potential to become increasingly relevant in medical applications.


Assuntos
Caderinas , Células Epiteliais , Humanos , Caderinas/química , Caderinas/metabolismo , Linhagem Celular , Sequência de Aminoácidos , Lipopeptídeos/metabolismo
9.
Nat Commun ; 14(1): 891, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797229

RESUMO

The atypical cadherins Fat and Dachsous are key regulators of cell growth and animal development. In contrast to classical cadherins, which form homophilic interactions to segregate cells, Fat and Dachsous cadherins form heterophilic interactions to induce cell polarity within tissues. Here, we determine the co-crystal structure of the human homologs Fat4 and Dachsous1 (Dchs1) to establish the molecular basis for Fat-Dachsous interactions. The binding domains of Fat4 and Dchs1 form an extended interface along extracellular cadherin (EC) domains 1-4 of each protein. Biophysical measurements indicate that Fat4-Dchs1 affinity is among the highest reported for cadherin superfamily members, which is attributed to an extensive network of salt bridges not present in structurally similar protocadherin homodimers. Furthermore, modeling suggests that unusual extracellular phosphorylation modifications directly modulate Fat-Dachsous binding by introducing charged contacts across the interface. Collectively, our analyses reveal how the molecular architecture of Fat4-Dchs1 enables them to form long-range, high-affinity interactions to maintain planar cell polarity.


Assuntos
Caderinas , Polaridade Celular , Proteínas Supressoras de Tumor , Humanos , Caderinas/química , Proteínas Supressoras de Tumor/química , Proteínas Relacionadas a Caderinas/química
10.
J Mol Biol ; 435(5): 167969, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682678

RESUMO

Classical cadherins are transmembrane proteins whose extracellular domains link neighboring cells, and whose intracellular domains connect to the actin cytoskeleton via ß-catenin and α-catenin. The cadherin-catenin complex transmits forces that drive tissue morphogenesis and wound healing. In addition, tension-dependent changes in αE-catenin conformation enables it to recruit the actin-binding protein vinculin to cell-cell junctions, which contributes to junctional strengthening. How and whether multiple cadherin-complexes cooperate to reinforce cell-cell junctions in response to load remains poorly understood. Here, we used single-molecule optical trap measurements to examine how multiple cadherin-catenin complexes interact with F-actin under load, and how this interaction is influenced by the presence of vinculin. We show that force oriented toward the (-) end of the actin filament results in mean lifetimes 3-fold longer than when force was applied towards the barbed (+) end. We also measured force-dependent actin binding by a quaternary complex comprising the cadherin-catenin complex and the vinculin head region, which cannot itself bind actin. Binding lifetimes of this quaternary complex increased as additional complexes bound F-actin, but only when load was oriented toward the (-) end. In contrast, the cadherin-catenin complex alone did not show this form of cooperativity. These findings reveal multi-level, force-dependent regulation that enhances the strength of the association of multiple cadherin/catenin complexes with F-actin, conferring positive feedback that may strengthen the junction and polarize F-actin to facilitate the emergence of higher-order cytoskeletal organization.


Assuntos
Citoesqueleto de Actina , Actinas , Vinculina , alfa Catenina , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , alfa Catenina/química , alfa Catenina/metabolismo , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Ligação Proteica , Vinculina/química , Regulação Alostérica
11.
Nature ; 614(7946): 144-152, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509107

RESUMO

Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system1-4. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions. The identity of the intracellular domain of the synthetic cell adhesion molecules specifies interface morphology and mechanics, whereas diverse homotypic or heterotypic extracellular interaction domains independently specify the connectivity between cells. This toolkit of orthogonal adhesion molecules enables the rationally programmed assembly of multicellular architectures, as well as systematic remodelling of native tissues. The modularity of synthetic cell adhesion molecules provides fundamental insights into how distinct classes of cell-cell interfaces may have evolved. Overall, these tools offer powerful abilities for cell and tissue engineering and for systematically studying multicellular organization.


Assuntos
Moléculas de Adesão Celular , Comunicação Celular , Biologia Sintética , Caderinas/química , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Integrinas/química , Biologia Sintética/métodos , Domínios Proteicos , Sítios de Ligação , Engenharia Celular
12.
Anticancer Res ; 43(1): 441-447, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36585192

RESUMO

AIM: To explore the clinical value of magnetic resonance imaging (MRI) combined with serum prostate specific antigen (PSA), epithelial cadherin (sE-cadherin) and early prostate cancer antigen-2 (EPCA-2) in prostate cancer (PC) diagnosis. PATIENTS AND METHODS: Fifty patients with PC and 50 with benign prostatic hyperplasia (BPH) confirmed by pathology from January 2020 to July 2021 were studied retrospectively. All patients underwent MRI and measurement of the serum levels of PSA, EPCA-2, and sE-cadherin. The diagnostic accuracy and efficacy of these methods was compared between the groups. RESULTS: In MRI diagnosis of PC, lesions were mainly located in the peripheral zone; T2-weighted imaging of this zone showed low signal intensity, with different degrees of prostate enlargement. BPH had a clear boundary, complete capsule and central zone hyperplasia and uneven signal nodules. PC and BPH had different degrees of prostate enlargement. Serum levels of PSA, sE-cadherin and EPCA-2 in the cancer group were significantly higher than those in the BPH group (p<0.05). The diagnostic concordance of combined assessment of MRI, PSA, sE-cadherin, and EPCA-2 in differentiating PC from BPH was 93%, which was significantly higher than these approaches used alone (84%, 79%, 81% and 82%, respectively; p<0.05). The area under the receiver operating characteristics curve for the combined approach in PC diagnosis was 0.900, which was significantly higher than those for the individual methods (0.840, 0.730, 0.760 and 0.810, respectively; Z=2.343, p=0.004). CONCLUSION: MRI combined with PSA, sE-cadherin and EPCA-2 can improve the sensitivity and accuracy of PC diagnosis and has potential as a guiding scheme for early diagnosis of PC.


Assuntos
Imageamento por Ressonância Magnética , Hiperplasia Prostática , Neoplasias da Próstata , Humanos , Masculino , Caderinas/sangue , Caderinas/química , Imageamento por Ressonância Magnética/métodos , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/química , Hiperplasia Prostática/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/diagnóstico por imagem , Estudos Retrospectivos , Antígenos de Neoplasias/sangue , Antígenos de Neoplasias/química
13.
J Mol Biol ; 435(1): 167819, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36089055

RESUMO

Cancer has been the leading cause of death due mainly to tumor metastasis. The tumor microenvironment plays a key role in tumor metastasis. As the main stromal cells in tumor microenvironment originated from activated fibroblast, cancer-associated fibroblasts (CAFs) play a major role in promoting tumor metastasis. A promising therapeutic avenue is reprogramming of CAFs into tumor-restraining quiescence state. In this study, we observed that CAF-like active pancreatic stellate cells (PSCs) interact with each other via N-cadherin, a force-sensitive transmembrane receptor. Since N-cadherin ligation mediated mechanotransduction has been reported to restrict integrin mediated signalling, we thus hypothesized that the reprogramming of activated PSCs by mechanical modulation of N-cadherin ligation might be possible. To test this hypothesis, we grafted N-cadherin ligand (HAVDI peptide) onto soft polyethylene glycol hydrogel substrate prior to cell adhesion to mimic cell-cell interaction via N-cadherin ligation. We found that the activated PSCs could be reprogrammed to their original quiescent state when transferred onto the substrate with immobilized HAVDI peptide. These results reveal a key role of mechanosensing by intercellular transmembrane receptor in reprogramming of activated PSCs, and provide a potential way for designing novel therapeutic strategies for cancer treatment.


Assuntos
Caderinas , Reprogramação Celular , Mecanotransdução Celular , Neoplasias , Células Estreladas do Pâncreas , Humanos , Caderinas/química , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/patologia , Células Estreladas do Pâncreas/química , Células Estreladas do Pâncreas/citologia , Peptídeos/metabolismo , Microambiente Tumoral
14.
Appl Biochem Biotechnol ; 195(4): 2709-2718, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36074237

RESUMO

Antibodies are a useful tool for assistance to map the binding epitopes in Bacillus thuringiensis Cry toxins and their receptors, and even determine how receptors promote toxicity. In this work, a monoclonal antibody (mAb-1D2) was produced by the hybridoma cell line raised against Cry2Aa toxins, with a half inhibition concentration (IC50) of 9.16 µg/mL. The affinity constant of two recombinant toxin-binding fragments derived from Helicoverpa armigera and Plutella xylostella cadherin-like protein (HaCad-TBR or PxCad-TBR) to Cry2Aa toxin was measured to be 1.21 µM and 1.24 µM, respectively. Competitive ELISA showed that mAb-1D2 competed with HaCad-TBR or PxCad-TBR binding to Cry2Aa. Meanwhile, the toxicity of the Cry2Aa toxin to the H. armigera and P. xylostella larvae were greatly reduced when the toxin was mixed with mAb-1D2, which indicated that cadherin may play an important functional role in the toxicity of Cry2Aa. After transforming mAb-1D2 to a single-chain variable fragment (scFv), the hot spot residues of Cry2Aa with 1D2-scFv, PxCad-TBR, and HaCad-TBR were analyzed by molecular docking. It was demonstrated that the hot spot residues of Cry2Aa involving with 1D2-scFv interaction were mainly in Domain II, and some residues in Domain I. Moreover, mAb-1D2 and the two cadherin fragments shared the common hot spot residues on Cry2Aa, which could explain mAb-1D2 inhibited Cry2Aa binding with cadherin fragments. This monoclonal antibody could be a useful tool for identifying the binding epitopes between Cry2Aa and cadherin, and even assist to analyze the roles of cadherin in Cry2Aa toxicity.


Assuntos
Bacillus thuringiensis , Mariposas , Animais , Bacillus thuringiensis/metabolismo , Endotoxinas/toxicidade , Endotoxinas/metabolismo , Caderinas/química , Caderinas/metabolismo , Anticorpos Monoclonais , Epitopos/análise , Epitopos/química , Epitopos/metabolismo , Simulação de Acoplamento Molecular , Toxinas de Bacillus thuringiensis/metabolismo , Larva , Proteínas Hemolisinas/toxicidade , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Proteínas de Bactérias/química
15.
Proc Natl Acad Sci U S A ; 119(32): e2204473119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921442

RESUMO

E-cadherin (Ecad) is an essential cell-cell adhesion protein with tumor suppression properties. The adhesive state of Ecad can be modified by the monoclonal antibody 19A11, which has potential applications in reducing cancer metastasis. Using X-ray crystallography, we determine the structure of 19A11 Fab bound to Ecad and show that the antibody binds to the first extracellular domain of Ecad near its primary adhesive motif: the strand-swap dimer interface. Molecular dynamics simulations and single-molecule atomic force microscopy demonstrate that 19A11 interacts with Ecad in two distinct modes: one that strengthens the strand-swap dimer and one that does not alter adhesion. We show that adhesion is strengthened by the formation of a salt bridge between 19A11 and Ecad, which in turn stabilizes the swapped ß-strand and its complementary binding pocket. Our results identify mechanistic principles for engineering antibodies to enhance Ecad adhesion.


Assuntos
Anticorpos Monoclonais , Caderinas , Adesão Celular , Anticorpos Monoclonais/química , Caderinas/química , Caderinas/imunologia , Cristalografia por Raios X , Humanos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Domínios Proteicos
16.
Proc Natl Acad Sci U S A ; 119(30): e2208067119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35867820

RESUMO

Classical cadherins play key roles in cell-cell adhesion. The adhesion process is thought to comprise mainly two steps: X-dimer and strand-swap (SS-) dimer formation of the extracellular domains (ectodomains) of cadherins. The dimerization mechanism of this two-step process has been investigated for type I cadherins, including E-cadherin, of classical cadherins, whereas other binding states also have been proposed, raising the possibility of additional binding processes required for the cadherin dimerization. However, technical limitations in observing single-molecule structures and their dynamics have precluded the investigation of the dynamic binding process of cadherin. Here, we used high-speed atomic force microscopy (HS-AFM) to observe full-length ectodomains of E-cadherin in solution and identified multiple dimeric structures that had not been reported previously. HS-AFM revealed that almost half of the cadherin dimers showed S- (or reverse S-) shaped conformations, which had more dynamic properties than the SS- and X-like dimers. The combined HS-AFM, mutational, and molecular modeling analyses showed that the S-shaped dimer was formed by membrane-distal ectodomains, while the binding interface was different from that of SS- and X-dimers. Furthermore, the formation of the SS-dimer from the S-shaped and X-like dimers was directly visualized, suggesting the processes of SS-dimer formation from S-shaped and X-dimers during cadherin dimerization.


Assuntos
Caderinas , Microscopia de Força Atômica , Multimerização Proteica , Animais , Caderinas/química , Adesão Celular , Humanos , Camundongos , Microscopia de Força Atômica/métodos
17.
Proc Natl Acad Sci U S A ; 119(28): e2200183119, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35771944

RESUMO

The term "molecular ZIP (or area) codes" refers to an originally hypothetical system of cell adhesion molecules that would control cell trafficking in the body. Subsequent discovery of the integrins, cadherins, and other cell adhesion molecules confirmed this hypothesis. The recognition system encompassing integrins and their ligands came particularly close to fulfilling the original ZIP code hypothesis, as multiple integrins with closely related specificities mediate cell adhesion by binding to an RGD or related sequence in various extracellular matrix proteins. Diseased tissues have their own molecular addresses that, although not necessarily involved in cell trafficking, can be made use of in targeted drug delivery. This article discusses the molecular basis of ZIP codes and the extensive effort under way to harness them for drug delivery purposes.


Assuntos
Moléculas de Adesão Celular , Sistemas de Liberação de Medicamentos , Integrinas , Animais , Caderinas/química , Caderinas/genética , Caderinas/metabolismo , Adesão Celular , Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Humanos , Integrinas/química , Integrinas/genética , Integrinas/metabolismo , Ligantes , Oligopeptídeos/química , Oligopeptídeos/metabolismo
18.
Bioorg Med Chem ; 68: 116850, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35714536

RESUMO

Endothelial cells play a central role in the vascular system, where their function is tightly regulated by both cell-extracellular matrix (e.g., via integrins) and cell-cell interactions (e.g., via cadherins). In this study, we incorporated cholesterol-modified integrin and N-cadherin peptide binding ligands in fluid supported lipid bilayers. Human umbilical vein endothelial cell adhesion, spreading and vinculin localization in these cells were dependent on ligand density. One composition led to observe a higher extent of cell spreading, where cells exhibited extensive lamellipodia formation and a qualitatively more distinct N-cadherin localization at the cell periphery, which is indicative of N-cadherin clustering and a mimic of cell-cell contact formation. The results can be used to reconstitute the endothelial-pericyte interface on biomedical devices and materials.


Assuntos
Integrinas , Bicamadas Lipídicas , Caderinas/química , Caderinas/metabolismo , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Ligantes
19.
Am J Surg Pathol ; 46(3): 383-391, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653059

RESUMO

Invasive lobular carcinoma (ILC) of the breast is characterized by the discohesive growth of tumor cells, which is mainly associated with the complete loss of E-cadherin (E-cad) expression. However, some aberrant expression patterns of E-cad protein that are inconsistent with their morphologies have been reported in ILC. We report herein ILC cases expressing a new type of abnormal E-cad protein that lacks the N-terminal domain, but conserves the C-terminal domain on the cell membrane. Immunohistochemical staining of 299 ILC cases using specific antibodies against the N-terminal or C-terminal region of E-cad revealed that 227 (76%) cases showed loss of the membranous expression of both terminuses (N-/C-) and 72 (24%) cases showed expression of only the C-terminus (N-/C+). In all cases, the expression of p120-catenin and ß-catenin coincided with the expression of the C-terminus of E-cad. Clinicopathologic analysis revealed that N-/C+ expression in ILC cells was significantly associated with the histologic subtype (especially mixed-type ILC with another histologic type) and immunohistochemical molecular subtype (especially the triple-negative subtype), but not with prognostic factors (pT or pN). In addition, 12 of 15 cases (80%) with aberrant cytoplasmic localization of the N-terminal of E-cad showed diffuse membranous expression of the C-terminal domain. Additional immunohistochemistry using an antibody recognizing the extracellular juxtamembrane region showed that 28 (39%) of the N-/C+ cases had lost membranous expression, suggesting diversity in the deletion pattern of the N-terminal region. Our findings provide a novel mechanism for the loss of E-cad function because of N-terminal-deficient E-cad protein in ILC.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Carcinoma Lobular/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/química , Biomarcadores Tumorais/química , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/metabolismo , Caderinas/química , Carcinoma Lobular/diagnóstico , Carcinoma Lobular/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Invasividade Neoplásica
20.
PLoS One ; 16(12): e0260593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34937057

RESUMO

Cadherins control intercellular adhesion in most metazoans. In vertebrates, intercellular adhesion differs considerably between cadherins of type-I and type-II, predominantly due to their different extracellular regions. Yet, intercellular adhesion critically depends on actomyosin contractility, in which the role of the cadherin extracellular region is unclear. Here, we dissect the roles of the Extracellular Cadherin (EC) Ig-like domains by expressing chimeric E-cadherin with E-cadherin and cadherin-7 Ig-like domains in cells naturally devoid of cadherins. Using cell-cell separation, cortical tension measurement, tissue stretching and migration assays, we show that distinct EC repeats in the extracellular region of cadherins differentially modulate epithelial sheet integrity, cell-cell separation forces, and cell cortical tension with the Cdc42 pathway, which further differentially regulate epithelial tensile strength, ductility, and ultimately collective migration. Interestingly, dissipative processes rather than static adhesion energy mostly dominate cell-cell separation forces. We provide a framework for the emergence of epithelial phenotypes from cell mechanical properties dependent on EC outside-in signaling.


Assuntos
Antígenos CD/química , Antígenos CD/metabolismo , Caderinas/química , Caderinas/metabolismo , Epitélio/metabolismo , Animais , Cálcio/metabolismo , Células HEK293 , Humanos , Fenômenos Mecânicos , Camundongos , Modelos Moleculares , Fenótipo , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA