Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Comp Neurol ; 529(9): 2227-2242, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33319419

RESUMO

Taste buds, the receptor organs for taste, contain 50-100 taste bud cells. Although these cells undergo continuous turnover, the structural and functional integrity of taste buds is maintained. The molecular mechanisms by which synaptic connectivity between taste buds and afferent fibers is formed and maintained remain ambiguous. In the present study, we examined the localization of N-cadherin in the taste buds of the mouse circumvallate papillae because N-cadherin, one of the classical cadherins, is important for the formation and maintenance of synapses. At the light microscopic level, N-cadherin was predominantly detected in type II cells and nerve fibers in the connective tissues in and around the vallate papillae. At the ultrastructural level, N-cadherin immunoreactivity appears along the cell membrane and in the intracellular vesicles of type II cells. N-cadherin immunoreactivity also is evident in the membranes of afferent terminals at the contact sites to N-cadherin-positive type II cells. At channel type synapses between type II cells and nerve fibers, N-cadherin is present surrounding, but not within, the presumed neurotransmitter release zone, identified by large mitochondria apposed to the taste cells. The present results suggest that N-cadherin is important for the formation or maintenance of type II cell afferent synapses in taste buds.


Assuntos
Caderinas/análise , Caderinas/ultraestrutura , Papilas Gustativas/química , Papilas Gustativas/ultraestrutura , Animais , Caderinas/biossíntese , Membrana Celular/química , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Papilas Gustativas/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(49): 31157-31165, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229577

RESUMO

We combine proximity labeling and single molecule binding assays to discover transmembrane protein interactions in cells. We first screen for candidate binding partners by tagging the extracellular and cytoplasmic regions of a "bait" protein with BioID biotin ligase and identify proximal proteins that are biotin tagged on both their extracellular and intracellular regions. We then test direct binding interactions between proximal proteins and the bait, using single molecule atomic force microscope binding assays. Using this approach, we identify binding partners for the extracellular region of E-cadherin, an essential cell-cell adhesion protein. We show that the desmosomal proteins desmoglein-2 and desmocollin-3, the focal adhesion protein integrin-α2ß1, the receptor tyrosine kinase ligand ephrin-B1, and the classical cadherin P-cadherin, all directly interact with E-cadherin ectodomains. Our data shows that combining extracellular and cytoplasmic proximal tagging with a biophysical binding assay increases the precision with which transmembrane ectodomain interactors can be identified.


Assuntos
Caderinas/genética , Efrina-B1/genética , Ligação Proteica/genética , Mapas de Interação de Proteínas/genética , Caderinas/ultraestrutura , Adesão Celular/genética , Citoplasma/genética , Citoplasma/ultraestrutura , Desmocolinas , Desmogleína 2/genética , Desmogleína 2/ultraestrutura , Desmoplaquinas/genética , Desmoplaquinas/ultraestrutura , Desmossomos/genética , Desmossomos/ultraestrutura , Efrina-B1/ultraestrutura , Humanos , Integrinas/genética , Integrinas/ultraestrutura , Microscopia de Força Atômica , Domínios Proteicos/genética , Imagem Individual de Molécula
3.
Mol Cell Biochem ; 471(1-2): 113-127, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32519230

RESUMO

N-cadherin is a transmembrane glycoprotein expressed by mesenchymal origin cells and is located at the adherens junctions. It regulates also cell motility and contributes to cell signaling. In previous studies, we identified that its anomalous expression in bladder carcinoma was a tumor progression marker. A pharmacological approach to inhibit N-cadherin expression or to block its function could be relevant to prevent disease progression and metastasis development. The morphological exploration of T24 invasive bladder cancer cells by atomic force microscopy (AFM) revealed a spindle-like shape with fibrous structures. By engaging force spectroscopy with AFM tip functionalized with anti-E or anti-N-cadherin antibodies, results showed that T24 cells expressed only N-cadherin as also demonstrated by Western blotting and confocal microscopy. For the first time, we demonstrated by RTqPCR and Western blotting analyses that the peroxisome proliferator-activated receptor ß/δ (PPARß/δ) agonist GW501516 significantly decreased N-cadherin expression in T24 cells. Moreover, high non-cytotoxic doses of GW501516 inhibited confluent T24 cell wound healing closure. By using AFM, a more sensitive nanoanalytical method, we showed that the treatment modified the cellular morphology and diminished N-cadherin cell surface coverage through the decreasing of these adhesion molecule-mediated interaction forces. We observed a greater decrease of N-cadherin upon GW501516 exposure with AFM than that detected with molecular biology techniques. AFM was a complementary tool to biochemical techniques to perform measurements on living cells at the nanometer resolution level. Taken together, our data suggest that GW501516 could be an interesting therapeutic strategy to avoid bladder cancer cell spreading through N-cadherin decrease.


Assuntos
Antígenos CD/metabolismo , Caderinas/metabolismo , Transição Epitelial-Mesenquimal , Microscopia de Força Atômica/métodos , PPAR delta/agonistas , PPAR beta/agonistas , Tiazóis/farmacologia , Neoplasias da Bexiga Urinária/metabolismo , Antígenos CD/ultraestrutura , Caderinas/ultraestrutura , Linhagem Celular Tumoral , Movimento Celular , Humanos , Transdução de Sinais , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/ultraestrutura
4.
Nature ; 569(7755): 280-283, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30971825

RESUMO

Neurite self-recognition and avoidance are fundamental properties of all nervous systems1. These processes facilitate dendritic arborization2,3, prevent formation of autapses4 and allow free interaction among non-self neurons1,2,4,5. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, ß- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities1,2,4-13. Avoidance is observed between neurons that express identical protocadherin repertoires2,5, and single-isoform differences are sufficient to prevent self-recognition10. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers10,14-20. Although these interactions have previously been characterized in isolation15,17-20, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains11.


Assuntos
Caderinas/metabolismo , Caderinas/ultraestrutura , Microscopia Crioeletrônica , Neurônios/química , Neurônios/metabolismo , Animais , Caderinas/química , Caderinas/genética , Cristalografia por Raios X , Lipossomos/química , Lipossomos/metabolismo , Camundongos , Modelos Moleculares , Neurônios/ultraestrutura , Domínios Proteicos , Multimerização Proteica , Protocaderinas
5.
Elife ; 72018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30070639

RESUMO

Hearing and balance involve the transduction of mechanical stimuli into electrical signals by deflection of bundles of stereocilia linked together by protocadherin 15 (PCDH15) and cadherin 23 'tip links'. PCDH15 transduces tip link tension into opening of a mechano-electrical transduction (MET) ion channel. PCDH15 also interacts with LHFPL5, a candidate subunit of the MET channel. Here we illuminate the PCDH15-LHFPL5 structure, showing how the complex is composed of PCDH15 and LHFPL5 subunit pairs related by a 2-fold axis. The extracellular cadherin domains define a mobile tether coupled to a rigid, 2-fold symmetric 'collar' proximal to the membrane bilayer. LHFPL5 forms extensive interactions with the PCDH15 transmembrane helices and stabilizes the overall PCDH15-LHFPL5 assembly. Our studies illuminate the architecture of the PCDH15-LHFPL5 complex, localize mutations associated with deafness, and shed new light on how forces in the PCDH15 tether may be transduced into the stereocilia membrane.


Assuntos
Caderinas/química , Caderinas/metabolismo , Proteínas de Membrana/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Estereocílios/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Relacionadas a Caderinas , Caderinas/ultraestrutura , Células HEK293 , Humanos , Imageamento Tridimensional , Proteínas de Membrana/química , Proteínas de Membrana/ultraestrutura , Camundongos , Modelos Moleculares , Multimerização Proteica , Precursores de Proteínas/ultraestrutura , Células Sf9
6.
Semin Cell Dev Biol ; 73: 95-106, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28919310

RESUMO

During development cranial neural crest cells (NCCs) display a striking transition from collective to single-cell migration, but the mechanisms enabling individual NCCs to separate from the neural crest tissue are still incompletely understood. In this study we have employed atomic force microscopy (AFM) to investigate potential adhesive and mechanical changes associated with the dissociation of individual cells from cohesive Xenopus NCC explants at early stages of migration. AFM-based single-cell force spectroscopy (SCFS) revealed a uniform distribution of cell-cell adhesion forces within NCC explants, including semi-detached leader cells in the process of delaminating from the explant edge. This suggested that dissociation from the cell sheet may not require prior weakening of cell-cell contacts. However, mapping NCC sheet elasticity by AFM microbead indentation demonstrated strongly reduced cell stiffness in semi-detached leader cells compared to neighbouring cells in the NCC sheet periphery. Reduced leader cell stiffness coincided with enhanced cell spreading and high substrate traction, indicating a possible mechano-regulation of leader cell delamination. In support, AFM elasticity measurements of individual NCCs in optical side view mode demonstrated that reducing cell tension by inhibiting actomyosin contractility induces rapid spreading, possibly maximizing cell-substrate interactions as a result. Depletion of cadherin-11, a classical cadherin with an essential role in NCC migration and substrate adhesion, prevented the tension reduction necessary for NCC spreading, both in individual cells and at the edge of explanted sheets. In contrast, overexpression of cadherin-11 accelerated spreading of both individual cells and delaminating leader cells. As cadherin-11 expression increases strongly during NCC migration, this suggests an important role of cadherin-11 in regulating NCC elasticity and spreading at later stages of NCC migration. We therefore propose a model in which high tension at the NCC sheet periphery prevents premature NCC spreading and delamination during early stages of migration, while a cadherin-11-dependent local decrease in cell tension promotes leader cell spreading and delamination at later stages of migration.


Assuntos
Caderinas/metabolismo , Adesão Celular , Movimento Celular , Microscopia de Força Atômica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/ultraestrutura , Caderinas/ultraestrutura , Tamanho Celular , Humanos , Células-Tronco Neurais/metabolismo
7.
Nature ; 533(7602): 260-264, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27120157

RESUMO

In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our results reveal the mechanism for the regulation of mitotic APC/C by phosphorylation and provide a rationale for the development of selective inhibitors of this state.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Mitose , Fosfoproteínas/metabolismo , Motivos de Aminoácidos , Ciclossomo-Complexo Promotor de Anáfase/química , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Antígenos CD , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Apoenzimas/metabolismo , Sítios de Ligação , Caderinas/química , Caderinas/metabolismo , Caderinas/ultraestrutura , Proteínas Cdc20/antagonistas & inibidores , Proteínas Cdc20/química , Proteínas Cdc20/metabolismo , Proteínas Cdc20/ultraestrutura , Microscopia Crioeletrônica , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Ativação Enzimática , Humanos , Modelos Moleculares , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Fosforilação , Ligação Proteica , Conformação Proteica , Tosilarginina Metil Éster/farmacologia
8.
Nature ; 522(7557): 450-454, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26083744

RESUMO

The anaphase-promoting complex (APC/C) is a multimeric RING E3 ubiquitin ligase that controls chromosome segregation and mitotic exit. Its regulation by coactivator subunits, phosphorylation, the mitotic checkpoint complex and interphase early mitotic inhibitor 1 (Emi1) ensures the correct order and timing of distinct cell-cycle transitions. Here we use cryo-electron microscopy to determine atomic structures of APC/C-coactivator complexes with either Emi1 or a UbcH10-ubiquitin conjugate. These structures define the architecture of all APC/C subunits, the position of the catalytic module and explain how Emi1 mediates inhibition of the two E2s UbcH10 and Ube2S. Definition of Cdh1 interactions with the APC/C indicates how they are antagonized by Cdh1 phosphorylation. The structure of the APC/C with UbcH10-ubiquitin reveals insights into the initiating ubiquitination reaction. Our results provide a quantitative framework for the design of future experiments to investigate APC/C functions in vivo.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Ubiquitinação , Ciclossomo-Complexo Promotor de Anáfase/química , Antígenos CD , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc1 do Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Subunidade Apc10 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc10 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc10 do Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/química , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc8 do Ciclossomo-Complexo Promotor de Anáfase/ultraestrutura , Caderinas/química , Caderinas/metabolismo , Caderinas/ultraestrutura , Domínio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestrutura , Microscopia Crioeletrônica , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Proteínas F-Box/química , Proteínas F-Box/metabolismo , Proteínas F-Box/ultraestrutura , Humanos , Lisina/metabolismo , Modelos Moleculares , Fosforilação , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Ubiquitina/química , Ubiquitina/metabolismo , Ubiquitina/ultraestrutura , Enzimas de Conjugação de Ubiquitina/química , Enzimas de Conjugação de Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/ultraestrutura
9.
Methods ; 88: 11-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25839410

RESUMO

Structured illumination microscopy (SIM) allows imaging of fluorescently labelled biological samples with a spatial resolution improved by a factor of approximately two compared to traditional optical microscopy techniques. The cost of this resolution improvement is the need to capture a number of raw images of the sample to reconstruct a single SIM image, increasing sample light exposure and limiting the ability of the technique to capture dynamic processes. In this paper we describe image acquisition and reconstruction techniques that allow fast super-resolution imaging within optically thick specimens. By exploiting overlaps between SIM information passbands we are able to generate optically sectioned, super-resolution images from an image sequence acquired in a single focal plane. We consider how single plane super-resolution images may be obtained using 2D and 3D SIM illumination patterns, and compare the resulting images to those obtained using conventional 2D SIM reconstruction methods. By combining a single plane reconstruction algorithm with hardware for high-speed switching between illumination patterns and rapid acquisition of fluorescence images, we demonstrate high speed super-resolution imaging inside biological organisms.


Assuntos
Algoritmos , Aumento da Imagem , Processamento de Imagem Assistida por Computador , Microscopia de Fluorescência/métodos , Animais , Caderinas/ultraestrutura , Drosophila/ultraestrutura , Proteínas de Drosophila/ultraestrutura , Embrião não Mamífero/ultraestrutura , Epiderme/ultraestrutura , Limite de Detecção , Tubulina (Proteína)/ultraestrutura
10.
Science ; 340(6137): 1185-9, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23744939

RESUMO

Epithelia are robust tissues that support the structure of embryos and organs and serve as effective barriers against pathogens. Epithelia also chemically separate different physiological environments. These vital functions require tight association between cells through the assembly of junctions that mechanically stabilize the tissue. Remarkably, epithelia are also dynamic and can display a fluid behavior. Cells continuously die or divide, thereby allowing functional tissue homeostasis. Epithelial cells can change shape or intercalate as tissues deform during morphogenesis. We review the mechanical basis of tissue robustness and fluidity, with an emphasis on the pivotal role of junction dynamics. Tissue fluidity emerges from local active stresses acting at cell interfaces and allows the maintenance of epithelial organization during morphogenesis and tissue renewal.


Assuntos
Epitélio/crescimento & desenvolvimento , Homeostase , Morfogênese , Animais , Caderinas/química , Caderinas/ultraestrutura , Divisão Celular , Embrião de Galinha , Drosophila/citologia , Drosophila/embriologia , Células Epiteliais/citologia , Junções Intercelulares , Modelos Biológicos , Tubo Neural/crescimento & desenvolvimento
11.
Tissue Cell ; 45(3): 159-74, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23305652

RESUMO

Despite its wide use in toxicology, a detailed characterization of RTL-W1 cell line lagged behind leaving ambiguities about its cell origin. We aimed to better characterize the line regarding cell phenotype and tumorigenic state. We studied RTL-W1 cells in monolayers and in (4-22-week-old) aggregates considering: (a) morphology (light and electron microscopy); (b) immunophenotype using AE1/AE3, vimentin, Cam5.2, CK7 and CK19 and e-cadherin antibodies and (c) growth behavior. RTL-W1 organelle content is constituted basically by mitochondria and abundant free ribosomes, with no (cytochemically) detectable peroxisomes and lysosomes. Immunocytochemistry showed a strong marking for AE1/AE3 and vimentin (in a cell subset). Since AE1/AE3 stained biliary epithelial ducts in trout liver, and considering the morphological characteristics and long term culture, RTL-W1 cells seem more similar to bile preductular epithelial cells (considered as stem cells in teleost liver). Also, we observed abnormal nuclear features described for both malignant cell lines and stem cells, so we could not conclude about tumorigenicity. Cell aggregates had signs of hepatocytic differentiation, such as the development of RER and microvillus-like projections into intercellular spaces. The morphological resemblance to the original tissue suggests that aggregates could have an added value in metabolic as well as in cell-to-cell interaction studies.


Assuntos
Linhagem Celular/citologia , Fígado/citologia , Fígado/crescimento & desenvolvimento , Animais , Caderinas/metabolismo , Caderinas/ultraestrutura , Agregação Celular , Comunicação Celular , Linhagem Celular/imunologia , Linhagem Celular/ultraestrutura , Citocromo P-450 CYP1A1/metabolismo , Hepatócitos/metabolismo , Hepatócitos/ultraestrutura , Fígado/imunologia , Fígado/ultraestrutura , Oncorhynchus mykiss/crescimento & desenvolvimento , Oncorhynchus mykiss/imunologia
12.
PLoS One ; 7(10): e47592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23077648

RESUMO

The N-cadherin (N-cad) complex plays a crucial role in cardiac cell structure and function. Cadherins are adhesion proteins linking adjacent cardiac cells and, like integrin adhesions, are sensitive to force transmission. Forces through these adhesions are capable of eliciting structural and functional changes in myocytes. Compared to integrins, the mechanisms of force transduction through cadherins are less explored. α-catenin is a major component of the cadherin-catenin complex, thought to provide a link to the cell actin cytoskeleton. Using N-cad micropatterned substrates in an adhesion constrainment model, the results from this study show that α-catenin localizes to regions of highest internal stress in myocytes. This localization suggests that α-catenin acts as an adaptor protein associated with the cadherin mechanosensory apparatus, which is distinct from mechanosensing through integrins. Myosin inhibition in cells bound by integrins to fibronectin-coated patterns disrupts myofibiril organization, whereas on N-cad coated patterns, myosin inhibition leads to better organized myofibrils. This result indicates that the two adhesion systems provide independent mechanisms for regulating myocyte structural organization.


Assuntos
Caderinas/metabolismo , Adesão Celular , Contração Muscular , Miócitos Cardíacos/metabolismo , alfa Catenina , Actinas/metabolismo , Animais , Caderinas/ultraestrutura , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto , Fibronectinas/metabolismo , Integrinas/metabolismo , Contração Muscular/fisiologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Miofibrilas/metabolismo , Miosinas/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , alfa Catenina/metabolismo , alfa Catenina/ultraestrutura , beta Catenina/metabolismo
13.
Mol Biol Cell ; 23(2): 310-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22090347

RESUMO

The actin cytoskeleton and associated proteins play a vital role in cell-cell adhesion. However, the procedure by which cells establish adherens junctions remains unclear. We investigated the dynamics of cell-cell junction formation and the corresponding architecture of the underlying cytoskeleton in cultured human umbilical vein endothelial cells. We show that the initial interaction between cells is mediated by protruding lamellipodia. On their retraction, cells maintain contact through thin bridges formed by filopodia-like protrusions connected by VE-cadherin-rich junctions. Bridges share multiple features with conventional filopodia, such as an internal actin bundle associated with fascin along the length and vasodilator-stimulated phosphoprotein at the tip. It is striking that, unlike conventional filopodia, transformation of actin organization from the lamellipodial network to filopodial bundle during bridge formation occurs in a proximal-to-distal direction and is accompanied by recruitment of fascin in the same direction. Subsequently, bridge bundles recruit nonmuscle myosin II and mature into stress fibers. Myosin II activity is important for bridge formation and accumulation of VE-cadherin in nascent adherens junctions. Our data reveal a mechanism of cell-cell junction formation in endothelial cells using lamellipodia as the initial protrusive contact, subsequently transforming into filopodia-like bridges connected through adherens junctions. Moreover, a novel lamellipodia-to-filopodia transition is used in this context.


Assuntos
Comunicação Celular , Citoesqueleto/fisiologia , Endotélio Vascular/fisiologia , Células Endoteliais da Veia Umbilical Humana/fisiologia , Junções Intercelulares/fisiologia , Actinas/química , Actinas/ultraestrutura , Antígenos CD/química , Antígenos CD/ultraestrutura , Caderinas/química , Caderinas/ultraestrutura , Células Cultivadas , Citoesqueleto/ultraestrutura , Endotélio Vascular/ultraestrutura , Células Endoteliais da Veia Umbilical Humana/ultraestrutura , Humanos , Junções Intercelulares/ultraestrutura , Microscopia Eletrônica de Transmissão , Miosina Tipo II/química , Miosina Tipo II/ultraestrutura , Pseudópodes/fisiologia , Pseudópodes/ultraestrutura
14.
Mol Biol Rep ; 38(1): 667-73, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20369384

RESUMO

Mint protein family, as adaptor molecules, contains three members, Mint1, Mint2 and Mint3. Although Mint3 is ubiquitously expressed, Mint1 and Mint2 have been reported to express specifically in neuron. Here we demonstrated Mint1 and Mint2 expression pattern in rat spinal cord. The protein level of Mint2 was found to be higher than that of Mint1 in rat spinal by western blot. In an attempt to know Mint2 distribution in the spinal cord of rat, in situ hybridization was carried out, Mint2 mRNA was showed to be ubiquitously distributed in cervical, thoracic and lumbar sections of rat spinal cord, and high intensive signal was detected in motor neurons. These were further confirmed by fluorescent immunohistochemistry, Mint2 was also found to exist throughout gray matter especially motor neurons where Mint2 was mainly located in perikaryon, however, Mint1 was showed to be relatively lower. By electron microscope, Mint2 was found to be mainly located in vesicles in perikaryon in motor neuron of lumbar section, and at the same time Mint2 was located in axons in myelin and presynaptic terminals. These data suggest that Mint2 may play more important role in spinal cord than the other two family members.


Assuntos
Caderinas/metabolismo , Caderinas/ultraestrutura , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Medula Espinal/metabolismo , Medula Espinal/ultraestrutura , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Western Blotting , Caderinas/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica , Hibridização In Situ , Masculino , Proteínas de Membrana/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Proteínas do Tecido Nervoso/genética , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Medula Espinal/citologia
15.
J Biochem ; 147(3): 415-25, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19919954

RESUMO

The accumulation of classical cadherins is essential for their function, but the mechanism is poorly understood. Hence, we investigated the accumulation of E- and N-cadherin and the formation of cell junctions in epithelial cells. Immunostaining revealed a scattered dot-like accumulation of E- and N-cadherin throughout the lateral membrane in MDCK II and other epithelial cells. Mutant E-cadherin lacking the beta-catenin binding site accumulated granularly at cell-cell contact sites and showed weak cell aggregation activity in cadherin-deficient epithelial cells, MIA PaCa2 cells. Mutant E-cadherin lacking the p120-catenin binding site exhibited scattered punctate accumulation and strong cell adhesion activity in MIA PaCa2 cells. Electron microscopy demonstrated that MIA PaCa2 transfectants of E-cadherin containing beta-catenin binding site formed adherens junction, whereas E-cadherin lacking the binding site did not. Mutant N-cadherins showed accumulation properties similar to those of corresponding mutant E-cadherins. Moreover, wild type and mutant N-cadherin lacking the p120-catenin binding site showed subapical accumulation in polarized DLD-1 cells, whereas mutant N-cadherin lacking beta-catenin binding site did not. These results indicate that the extracellular domains of E- and N-cadherin determines the basic localization pattern, whereas the cytoplasmic domains modulate it thereby affects the cell adhesion activity, subapical accumulation, and the formation of adherens junction.


Assuntos
Caderinas/química , Caderinas/metabolismo , Células Epiteliais/metabolismo , Junções Aderentes/metabolismo , Sequência de Aminoácidos , Animais , Caderinas/ultraestrutura , Adesão Celular , Agregação Celular , Linhagem Celular , Citoplasma/química , Cães , Células Epiteliais/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência , beta Catenina/deficiência
16.
Sci Signal ; 2(85): pt5, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706872

RESUMO

Mechanotransduction, the conversion of mechanical force into an electrochemical signal, allows living organisms to detect touch, hear, register movement and gravity, and sense changes in cell volume and shape. Hair cells in the vertebrate inner ear are mechanoreceptor cells specialized for the detection of sound and head movement. Each hair cell contains, at the apical surface, rows of stereocilia that are connected by extracellular filaments to form an exquisitely organized bundle. Mechanotransduction channels, localized near the tips of the stereocilia, are gated by the gating spring, an elastic element that is stretched upon stereocilia deflection and mediates rapid channel opening. Components of the mechanotransduction machinery in hair cells have been identified and several are encoded by genes linked to deafness in humans, which indicates that defects in the mechanotransduction machinery are the underlying cause of some forms of hearing impairment.


Assuntos
Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Animais , Proteínas Relacionadas a Caderinas , Caderinas/fisiologia , Caderinas/ultraestrutura , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/fisiologia , Proteínas de Transporte/ultraestrutura , Proteínas de Ciclo Celular , Proteínas do Citoesqueleto , Células Ciliadas Auditivas/ultraestrutura , Audição/fisiologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Perda Auditiva Neurossensorial/fisiopatologia , Ativação do Canal Iônico/fisiologia , Mecanorreceptores/fisiologia , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Microscopia Imunoeletrônica , Mapeamento de Interação de Proteínas , Precursores de Proteínas/fisiologia , Precursores de Proteínas/ultraestrutura , Tato/fisiologia
17.
Int J Biochem Cell Biol ; 41(2): 349-69, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18848899

RESUMO

This review deals with the large and pleiotropic superfamily of cadherins and its molecular evolution. We compiled literature data and an in-depth phylogenetic analysis of more than 350 members of this superfamily from about 30 species, covering several but not all representative branches within metazoan evolution. We analyzed the sequence homology between either ectodomains or cytoplasmic domains, and we reviewed protein structural data and genomic architecture. Cadherins and cadherin-related molecules are defined by having an ectodomain in which at least two consecutive calcium-binding cadherin repeats are present. There are usually 5 or 6 domains, but in some cases as many as 34. Additional protein modules in the ectodomains point at adaptive evolution. Despite the occurrence of several conserved motifs in subsets of cytoplasmic domains, these domains are even more diverse than ectodomains and most likely have evolved separately from the ectodomains. By fine tuning molecular classifications, we reduced the number of solitary superfamily members. We propose a cadherin major branch, subdivided in two families and 8 subfamilies, and a cadherin-related major branch, subdivided in four families and 11 subfamilies. Accordingly, we propose a more appropriate nomenclature. Although still fragmentary, our insight into the molecular evolution of these remarkable proteins is steadily growing. Consequently, we can start to propose testable hypotheses for structure-function relationships with impact on our models of molecular evolution. An emerging concept is that the ever evolving diversity of cadherin structures is serving dual and important functions: specific cell adhesion and intricate cell signaling.


Assuntos
Caderinas/genética , Evolução Molecular , Sequência de Aminoácidos , Animais , Caderinas/química , Caderinas/ultraestrutura , Modelos Moleculares , Dados de Sequência Molecular , Filogenia
18.
Biophys J ; 94(12): 4621-33, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18326636

RESUMO

Modular proteins such as titin, fibronectin, and cadherin are ubiquitous components of living cells. Often involved in signaling and mechanical processes, their architecture is characterized by domains containing a variable number of heterogeneous "repeats" arranged in series, with either flexible or rigid linker regions that determine their elasticity. Cadherin repeats arranged in series are unique in that linker regions also feature calcium-binding motifs. While it is well known that the extracellular repeats of cadherin proteins mediate cell-cell adhesion in a calcium-dependent manner, the molecular mechanisms behind the influence of calcium in adhesion dynamics and cadherin's mechanical response are not well understood. Here we show, using molecular dynamics simulations, how calcium ions control the structural integrity of cadherin's linker regions, thereby affecting cadherin's equilibrium dynamics, the availability of key residues involved in cell-cell adhesion, and cadherin's mechanical response. The all-atom, multi-nanosecond molecular dynamics simulations involved the entire C-cadherin extracellular domain solvated in water (a 345,000 atom system). Equilibrium simulations show that the extracellular domain maintains its crystal conformation (elongated and slightly curved) when calcium ions are present. In the absence of calcium ions, however, it assumes a disordered conformation. The conserved residue Trp(2), which is thought to insert itself into a hydrophobic pocket of another cadherin molecule (thereby providing the basis for cell-cell adhesion), switches conformation from exposed to intermittently buried upon removal of calcium ions. Furthermore, the overall mechanical response of C-cadherin's extracellular domain is characterized at low force by changes in shape (tertiary structure elasticity), and at high force by unraveling of secondary structure elements (secondary structure elasticity). This mechanical response is modulated by calcium ions at both low and high force, switching from a stiff, rod-like to a soft, spring-like behavior upon removal of ions. The simulations provide an unprecedented molecular view of calcium-mediated allostery in cadherins, also illustrating the general principles of linker-mediated elasticity of modular proteins relevant not only for cell-cell adhesion and sound transduction, but also muscle elasticity.


Assuntos
Caderinas/química , Caderinas/ultraestrutura , Cálcio/química , Modelos Químicos , Modelos Moleculares , Proteínas de Xenopus/química , Proteínas de Xenopus/ultraestrutura , Sítios de Ligação , Simulação por Computador , Elasticidade , Ligação Proteica , Conformação Proteica , Estresse Mecânico
20.
Biochem Biophys Res Commun ; 366(1): 92-7, 2008 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-18053802

RESUMO

Cadherin 23 (Cdh23), an essential factor in inner ear mechano-electric transduction, exists in two alternatively spliced forms, Cdh23(+68) and Cdh23(-68), depending on the presence and absence of exon 68. Cdh23(+68) is inner ear-specific. The exon 68-corresponding region confers an alpha-helical configuration upon the cytoplasmic domain (Cy) and includes a cysteine residue, Cys(3240). We demonstrate here that Cy(+68) as well as the transmembrane (TM) plus Cy(+68) region is present in two different forms in transfected cells, reduced and non-reduced, the latter existing in more compact configuration than the former. The observed characteristic of Cy(+68) was completely abolished by Cys(3240)Ala substitution. Treatment of TMCy(+68)-transfected cells with diethyl maleate, a glutathione depleting reagent, resulted in conversion of the non-reduced to the reduced form of TMCy(+68), suggesting glutathione to be a Cys(3240)-binding partner. Multiple alignment of mammalian Cdh23Cy sequences indicated the occurrence of conformation-inducible Cys in Cdh23Cy of mammals, but not lower vertebrates. The implications of Cys-dependent structural ambivalence of Cdh23 in inner ear mechanosensation are discussed.


Assuntos
Caderinas/química , Caderinas/metabolismo , Orelha Interna/química , Orelha Interna/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Relacionadas a Caderinas , Caderinas/ultraestrutura , Citoplasma/química , Citoplasma/metabolismo , Humanos , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/ultraestrutura , Estrutura Terciária de Proteína , Especificidade da Espécie , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA