Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.861
Filtrar
1.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38721692

RESUMO

Duchenne muscular dystrophy (DMD) is caused by mutations in the DMD gene, resulting in the loss of dystrophin, a large cytosolic protein that links the cytoskeleton to extracellular matrix receptors in skeletal muscle. Aside from progressive muscle damage, many patients with DMD also have neurological deficits of unknown etiology. To investigate potential mechanisms for DMD neurological deficits, we assessed postnatal oligodendrogenesis and myelination in the Dmdmdx mouse model. In the ventricular-subventricular zone (V-SVZ) stem cell niche, we found that oligodendrocyte progenitor cell (OPC) production was deficient, with reduced OPC densities and proliferation, despite a normal stem cell niche organization. In the Dmdmdx corpus callosum, a large white matter tract adjacent to the V-SVZ, we also observed reduced OPC proliferation and fewer oligodendrocytes. Transmission electron microscopy further revealed significantly thinner myelin, an increased number of abnormal myelin structures and delayed myelin compaction, with hypomyelination persisting into adulthood. Our findings reveal alterations in oligodendrocyte development and myelination that support the hypothesis that changes in diffusion tensor imaging seen in patients with DMD reflect developmental changes in myelin architecture.


Assuntos
Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Bainha de Mielina , Oligodendroglia , Animais , Bainha de Mielina/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/genética , Proliferação de Células , Distrofina/metabolismo , Distrofina/deficiência , Distrofina/genética , Corpo Caloso/patologia , Corpo Caloso/metabolismo , Camundongos Endogâmicos C57BL , Camundongos , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/patologia , Ventrículos Laterais/patologia , Ventrículos Laterais/metabolismo , Modelos Animais de Doenças , Diferenciação Celular , Masculino
2.
Skelet Muscle ; 14(1): 9, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702726

RESUMO

BACKGROUND: Adeno-associated virus (AAV)-based gene therapy is a promising strategy to treat muscle diseases. However, this strategy is currently confronted with challenges, including a lack of transduction efficiency across the entire muscular system and toxicity resulting from off-target tissue effects. Recently, novel myotropic AAVs named MyoAAVs and AAVMYOs have been discovered using a directed evolution approach, all separately demonstrating enhanced muscle transduction efficiency and liver de-targeting effects. However, these newly discovered AAV variants have not yet been compared. METHODS: In this study, we performed a comparative analysis of these various AAV9-derived vectors under the same experimental conditions following different injection time points in two distinct mouse strains. RESULTS: We highlight differences in transduction efficiency between AAV9, AAVMYO, MyoAAV2A and MyoAAV4A that depend on age at injection, doses and mouse genetic background. In addition, specific AAV serotypes appeared more potent to transduce skeletal muscles including diaphragm and/or to de-target heart or liver. CONCLUSIONS: Our study provides guidance for researchers aiming to establish proof-of-concept approaches for preventive or curative perspectives in mouse models, to ultimately lead to future clinical trials for muscle disorders.


Assuntos
Dependovirus , Terapia Genética , Vetores Genéticos , Camundongos Endogâmicos C57BL , Músculo Esquelético , Transdução Genética , Animais , Dependovirus/genética , Vetores Genéticos/administração & dosagem , Músculo Esquelético/metabolismo , Camundongos , Transdução Genética/métodos , Terapia Genética/métodos , Masculino , Fígado/metabolismo , Camundongos Endogâmicos mdx
3.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564291

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease associated with cardiomyopathy. DMD cardiomyopathy is characterized by abnormal intracellular Ca2+ homeostasis and mitochondrial dysfunction. We used dystrophin and utrophin double-knockout (mdx:utrn-/-) mice in a sarcolipin (SLN) heterozygous-knockout (sln+/-) background to examine the effect of SLN reduction on mitochondrial function in the dystrophic myocardium. Germline reduction of SLN expression in mdx:utrn-/- mice improved cardiac sarco/endoplasmic reticulum (SR) Ca2+ cycling, reduced cardiac fibrosis, and improved cardiac function. At the cellular level, reducing SLN expression prevented mitochondrial Ca2+ overload, reduced mitochondrial membrane potential loss, and improved mitochondrial function. Transmission electron microscopy of myocardial tissues and proteomic analysis of mitochondria-associated membranes showed that reducing SLN expression improved mitochondrial structure and SR-mitochondria interactions in dystrophic cardiomyocytes. These findings indicate that SLN upregulation plays a substantial role in the pathogenesis of cardiomyopathy and that reducing SLN expression has clinical implications in the treatment of DMD cardiomyopathy.


Assuntos
Cardiomiopatias , Distrofina , Camundongos Endogâmicos mdx , Camundongos Knockout , Proteínas Musculares , Distrofia Muscular de Duchenne , Proteolipídeos , Utrofina , Animais , Masculino , Camundongos , Cálcio/metabolismo , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Cardiomiopatias/patologia , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Mitocôndrias Cardíacas/genética , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteolipídeos/metabolismo , Proteolipídeos/genética , Utrofina/genética , Utrofina/metabolismo
4.
Sci Rep ; 14(1): 7702, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565593

RESUMO

Utrophin (UTRN), known as a tumor suppressor, potentially regulates tumor development and the immune microenvironment. However, its impact on breast cancer's development and treatment remains unstudied. We conducted a thorough examination of UTRN using both bioinformatic and in vitro experiments in this study. We discovered UTRN expression decreased in breast cancer compared to standard samples. High UTRN expression correlated with better prognosis. Drug sensitivity tests and RT-qPCR assays revealed UTRN's pivotal role in tamoxifen resistance. Furthermore, the Kruskal-Wallis rank test indicated UTRN's potential as a valuable diagnostic biomarker for breast cancer and its utility in detecting T stage of breast cancer. Additionally, our results demonstrated UTRN's close association with immune cells, inhibitors, stimulators, receptors, and chemokines in breast cancer (BRCA). This research provides a novel perspective on UTRN's role in breast cancer's prognostic and therapeutic value. Low UTRN expression may contribute to tamoxifen resistance and a poor prognosis. Specifically, UTRN can improve clinical decision-making and raise the diagnosis accuracy of breast cancer.


Assuntos
Neoplasias da Mama , Animais , Camundongos , Humanos , Feminino , Utrofina/metabolismo , Camundongos Endogâmicos mdx , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Biomarcadores , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico , Prognóstico , Microambiente Tumoral
5.
Physiol Rep ; 12(8): e16004, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38658324

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy due to mutations in the dystrophin gene. Diaphragmatic weakness in DMD causes hypoventilation and elevated afterload on the right ventricle (RV). Thus, RV dysfunction in DMD develops early in disease progression. Herein, we deliver a 30-min sustained RV preload/afterload challenge to isolated hearts of wild-type (Wt) and dystrophic (Dmdmdx-4Cv) mice at both young (2-6 month) and middle-age (8-12 month) to test the hypothesis that the dystrophic RV is susceptible to dysfunction with elevated load. Young dystrophic hearts exhibited greater pressure development than wild type under baseline (Langendorff) conditions, but following RV challenge exhibited similar contractile function as wild type. Following the RV challenge, young dystrophic hearts had an increased incidence of premature ventricular contractions (PVCs) compared to wild type. Hearts of middle-aged wild-type and dystrophic mice had similar contractile function during baseline conditions. After RV challenge, hearts of middle-aged dystrophic mice had severe RV dysfunction and arrhythmias, including ventricular tachycardia. Following the RV load challenge, dystrophic hearts had greater lactate dehydrogenase (LDH) release than wild-type mice indicative of damage. Our data indicate age-dependent changes in RV function with load in dystrophin deficiency, highlighting the need to avoid sustained RV load to forestall dysfunction and arrhythmia.


Assuntos
Arritmias Cardíacas , Distrofina , Contração Miocárdica , Animais , Masculino , Distrofina/genética , Distrofina/deficiência , Camundongos , Arritmias Cardíacas/fisiopatologia , Arritmias Cardíacas/etiologia , Arritmias Cardíacas/genética , Disfunção Ventricular Direita/fisiopatologia , Disfunção Ventricular Direita/genética , Disfunção Ventricular Direita/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/complicações , Distrofia Muscular de Duchenne/metabolismo , Camundongos Endogâmicos mdx , Camundongos Endogâmicos C57BL
6.
Skelet Muscle ; 14(1): 8, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671506

RESUMO

BACKGROUND: Duchenne muscular dystrophy (DMD) is associated with impaired muscle regeneration, progressive muscle weakness, damage, and wasting. While the cause of DMD is an X-linked loss of function mutation in the gene encoding dystrophin, the exact mechanisms that perpetuate the disease progression are unknown. Our laboratory has demonstrated that pannexin 1 (Panx1 in rodents; PANX1 in humans) is critical for the development, strength, and regeneration of male skeletal muscle. In normal skeletal muscle, Panx1 is part of a multiprotein complex with dystrophin. We and others have previously shown that Panx1 levels and channel activity are dysregulated in various mouse models of DMD. METHODS: We utilized myoblast cell lines derived from DMD patients to assess PANX1 expression and function. To investigate how Panx1 dysregulation contributes to DMD, we generated a dystrophic (mdx) mouse model that lacks Panx1 (Panx1-/-/mdx). In depth characterization of this model included histological analysis, as well as locomotor, and physiological tests such as muscle force and grip strength assessments. RESULTS: Here, we demonstrate that PANX1 levels and channel function are reduced in patient-derived DMD myoblast cell lines. Panx1-/-/mdx mice have a significantly reduced lifespan, and decreased body weight due to lean mass loss. Their tibialis anterior were more affected than their soleus muscles and displayed reduced mass, myofiber loss, increased centrally nucleated myofibers, and a lower number of muscle stem cells compared to that of Panx1+/+/mdx mice. These detrimental effects were associated with muscle and locomotor functional impairments. In vitro, PANX1 overexpression in patient-derived DMD myoblasts improved their differentiation and fusion. CONCLUSIONS: Collectively, our findings suggest that PANX1/Panx1 dysregulation in DMD exacerbates several aspects of the disease. Moreover, our results suggest a potential therapeutic benefit to increasing PANX1 levels in dystrophic muscles.


Assuntos
Conexinas , Camundongos Endogâmicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteínas do Tecido Nervoso , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Conexinas/genética , Conexinas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Humanos , Camundongos , Mioblastos/metabolismo , Linhagem Celular , Força Muscular , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38673859

RESUMO

The dynamic relationship between heart failure and cancer poses a dual challenge. While cardiac remodeling can promote cancer growth and metastasis, tumor development can ameliorate cardiac dysfunction and suppress fibrosis. However, the precise mechanism through which cancer influences the heart and fibrosis is yet to be uncovered. To further explore the interaction between heart failure and cancer, we used the MDX mouse model, which suffers from cardiac fibrosis and cardiac dysfunction. A previous study from our lab demonstrated that tumor growth improves cardiac dysfunction and dampens fibrosis in the heart and diaphragm muscles of MDX mice. We used breast Polyoma middle T (PyMT) and Lewis lung carcinoma (LLC) cancer cell lines that developed into large tumors. To explore whether the aggressiveness of the cancer cell line is crucial for the beneficial phenotype, we employed a PyMT breast cancer cell line lacking integrin ß1, representing a less aggressive cell line compared to the original PyMT cells. In addition, we examined immortalized and primary MEF cells. The injection of integrin ß1 KO PyMT cancer cells and Mouse Embryo Fibroblasts cells (MEF) resulted in the improvement of cardiac function and decreased fibrosis in the heart, diaphragm, and skeletal muscles of MDX mice. Collectively, our data demonstrate that the cancer line aggressiveness as well as primary MEF cells are sufficient to impose the beneficial phenotype. These discoveries present potential novel clinical therapeutic approaches with beneficial outcome for patients with fibrotic diseases and cardiac dysfunction that do not require tumor growth.


Assuntos
Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/metabolismo , Camundongos , Linhagem Celular Tumoral , Camundongos Endogâmicos C57BL , Feminino , Miocárdio/patologia , Miocárdio/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos
8.
Dis Model Mech ; 17(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38602028

RESUMO

Duchenne muscular dystrophy (DMD) is a devastating monogenic skeletal muscle-wasting disorder. Although many pharmacological and genetic interventions have been reported in preclinical studies, few have progressed to clinical trials with meaningful benefit. Identifying therapeutic potential can be limited by availability of suitable preclinical mouse models. More rigorous testing across models with varied background strains and mutations can identify treatments for clinical success. Here, we report the generation of a DMD mouse model with a CRISPR-induced deletion within exon 62 of the dystrophin gene (Dmd) and the first generated in BALB/c mice. Analysis of mice at 3, 6 and 12 months of age confirmed loss of expression of the dystrophin protein isoform Dp427 and resultant dystrophic pathology in limb muscles and the diaphragm, with evidence of centrally nucleated fibers, increased inflammatory markers and fibrosis, progressive decline in muscle function, and compromised trabecular bone development. The BALB/c.mdx62 mouse is a novel model of DMD with associated variations in the immune response and muscle phenotype, compared with those of existing models. It represents an important addition to the preclinical model toolbox for developing therapeutic strategies.


Assuntos
Modelos Animais de Doenças , Distrofina , Camundongos Endogâmicos BALB C , Músculo Esquelético , Distrofia Muscular de Duchenne , Animais , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética , Distrofina/metabolismo , Distrofina/genética , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Camundongos , Éxons/genética , Masculino , Fibrose , Fenótipo
9.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473751

RESUMO

The diaphragm muscle is essential for breathing, and its dysfunctions can be fatal. Many disorders affect the diaphragm, including muscular dystrophies. Despite the clinical relevance of targeting the diaphragm, there have been few studies evaluating diaphragm function following a given experimental treatment, with most of these involving anti-inflammatory drugs or gene therapy. Cell-based therapeutic approaches have shown success promoting muscle regeneration in several mouse models of muscular dystrophy, but these have focused mainly on limb muscles. Here we show that transplantation of as few as 5000 satellite cells directly into the diaphragm results in consistent and robust myofiber engraftment in dystrophin- and fukutin-related protein-mutant dystrophic mice. Transplanted cells also seed the stem cell reservoir, as shown by the presence of donor-derived satellite cells. Force measurements showed enhanced diaphragm strength in engrafted muscles. These findings demonstrate the feasibility of cell transplantation to target the diseased diaphragm and improve its contractility.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Distrofia Muscular de Duchenne/genética , Diafragma , Camundongos Endogâmicos mdx , Músculo Esquelético , Transplante de Células
10.
Int J Exp Pathol ; 105(2): 75-85, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38477495

RESUMO

Duchenne muscular dystrophy (DMD) occurs due to genetic mutations that lead to a deficiency in dystrophin production and consequent progressive degeneration of skeletal muscle fibres, through oxidative stress and an exacerbated inflammatory process. The flavonoid trilobatin (TLB) demonstrates antioxidant and anti-inflammatory potential. Its high safety profile and effective action make it a potent therapy for the process of dystrophic muscle myonecrosis. Thus, we sought to investigate the action of TLB on damage in a DMD model, the mdx mouse. Eight-week-old male animals were treated with 160 mg/kg/day of trilobatin for 8 weeks. Control animals were treated with saline. Following treatment, muscle strength, serum creatine kinase (CK) levels, histopathology (necrotic myofibres, regenerated fibres/central nuclei, Feret's diameter and inflammatory area) and the levels of catalase and NF-κB (western blotting) of the quadriceps (QUA), diaphragm (DIA) and tibialis anterior (TA) muscles were measured. TLB was able to significantly increase muscle strength and reduce serum CK levels in dystrophic animals. The QUA of mdx mice showed a reduction in catalase and the number of fibres with a centralized nucleus after treatment with TLB. In the DIA of dystrophic animals, TLB reduced the necrotic myofibres, inflammatory area and NF-κB and increased the number of regenerated fibres and the total fibre diameter. In TA, TLB increased the number of regenerated fibres and reduced catalase levels in these animals. It is concluded that in the mdx experimental model, treatment with TLB was beneficial in the treatment of DMD.


Assuntos
Flavonoides , Distrofia Muscular de Duchenne , Polifenóis , Camundongos , Animais , Masculino , Distrofia Muscular de Duchenne/tratamento farmacológico , Catalase , Camundongos Endogâmicos mdx , NF-kappa B , Músculo Esquelético/patologia
11.
Biomolecules ; 14(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38540736

RESUMO

Duchenne muscular dystrophy is caused by loss of the dystrophin protein. This pathology is accompanied by mitochondrial dysfunction contributing to muscle fiber instability. It is known that mitochondria-targeted in vivo therapy mitigates pathology and improves the quality of life of model animals. In the present work, we applied mitochondrial transplantation therapy (MTT) to correct the pathology in dystrophin-deficient mdx mice. Intramuscular injections of allogeneic mitochondria obtained from healthy animals into the hind limbs of mdx mice alleviated skeletal muscle injury, reduced calcium deposits in muscles and serum creatine kinase levels, and improved the grip strength of the hind limbs and motor activity of recipient mdx mice. We noted normalization of the mitochondrial ultrastructure and sarcoplasmic reticulum/mitochondria interactions in mdx muscles. At the same time, we revealed a decrease in the efficiency of oxidative phosphorylation in the skeletal muscle mitochondria of recipient mdx mice accompanied by a reduction in lipid peroxidation products (MDA products) and reduced calcium overloading. We found no effect of MTT on the expression of mitochondrial signature genes (Drp1, Mfn2, Ppargc1a, Pink1, Parkin) and on the level of mtDNA. Our results show that systemic MTT mitigates the development of destructive processes in the quadriceps muscle of mdx mice.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Camundongos , Camundongos Endogâmicos mdx , Distrofina/genética , Cálcio/metabolismo , Qualidade de Vida , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Distrofia Muscular de Duchenne/patologia , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo
12.
EMBO Mol Med ; 16(4): 1027-1045, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448545

RESUMO

Clinical deployment of oligonucleotides requires delivery technologies that improve stability, target tissue accumulation and cellular internalization. Exosomes show potential as ideal delivery vehicles. However, an affordable generalizable system for efficient loading of oligonucleotides on exosomes remain lacking. Here, we identified an Exosomal Anchor DNA Aptamer (EAA) via SELEX against exosomes immobilized with our proprietary CP05 peptides. EAA shows high binding affinity to different exosomes and enables efficient loading of nucleic acid drugs on exosomes. Serum stability of thrombin inhibitor NU172 was prolonged by exosome-loading, resulting in increased blood flow after injury in vivo. Importantly, Duchenne Muscular Dystrophy PMO can be readily loaded on exosomes via EAA (EXOEAA-PMO). EXOEAA-PMO elicited significantly greater muscle cell uptake, tissue accumulation and dystrophin expression than PMO in vitro and in vivo. Systemic administration of EXOEAA-PMO elicited therapeutic levels of dystrophin restoration and functional improvements in mdx mice. Altogether, our study demonstrates that EAA enables efficient loading of different nucleic acid drugs on exosomes, thus providing an easy and generalizable strategy for loading nucleic acid therapeutics on exosomes.


Assuntos
Exossomos , Distrofia Muscular de Duchenne , Animais , Camundongos , Distrofina/genética , Camundongos Endogâmicos mdx , Exossomos/metabolismo , Morfolinos/metabolismo , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/metabolismo , Oligonucleotídeos/uso terapêutico
13.
PLoS One ; 19(3): e0300006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498472

RESUMO

PURPOSE: Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS: For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06µM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS: LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-ß). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION: These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.


Assuntos
Músculo Esquelético , Distrofia Muscular de Duchenne , Ubiquinona/análogos & derivados , Animais , Camundongos , Humanos , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Proteínas Quinases Ativadas por AMP/metabolismo , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Autofagia , Modelos Animais de Doenças
14.
PLoS One ; 19(3): e0295700, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457407

RESUMO

Mechanical overloading (OVL) resulting from the ablation of muscle agonists, a supra-physiological model of resistance training, reduces skeletal muscle fragility, i.e. the immediate maximal force drop following lengthening contractions, and increases maximal force production, in mdx mice, a murine model of Duchene muscular dystrophy (DMD). Here, we further analyzed these beneficial effects of OVL by determining whether they were blocked by cyclosporin, an inhibitor of the calcineurin pathway, and whether there were also observed in the D2-mdx mice, a more severe murine DMD model. We found that cyclosporin did not block the beneficial effect of 1-month OVL on plantaris muscle fragility in mdx mice, nor did it limit the increases in maximal force and muscle weight (an index of hypertrophy). Fragility and maximal force were also ameliorated by OVL in the plantaris muscle of D2-mdx mice. In addition, OVL increased the expression of utrophin, cytoplamic γ-actin, MyoD, and p-Akt in the D2-mdx mice, proteins playing an important role in fragility, maximal force gain and muscle growth. In conclusion, OVL reduced fragility and increased maximal force in the more frequently used mild mdx model but also in D2-mdx mice, a severe model of DMD, closer to human physiopathology. Moreover, these beneficial effects of OVL did not seem to be related to the activation of the calcineurin pathway. Thus, this preclinical study suggests that resistance training could have a potential benefit in the improvement of the quality of life of DMD patients.


Assuntos
Ciclosporinas , Distrofia Muscular de Duchenne , Treinamento Resistido , Humanos , Animais , Camundongos , Distrofia Muscular de Duchenne/patologia , Camundongos Endogâmicos mdx , Calcineurina/metabolismo , Qualidade de Vida , Músculo Esquelético/metabolismo , Ciclosporinas/farmacologia , Modelos Animais de Doenças
15.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38438561

RESUMO

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Modelos Animais de Doenças , Distrofina/genética , Éxons , Vetores Genéticos , Camundongos Endogâmicos mdx , Músculos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
16.
Trends Mol Med ; 30(3): 278-294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38408879

RESUMO

Earlier evidence that targeting the balance between histone acetyltransferases (HATs) and deacetylases (HDACs), through exposure to HDAC inhibitors (HDACis), could enhance skeletal myogenesis, prompted interest in using HDACis to promote muscle regeneration. Further identification of constitutive HDAC activation in dystrophin-deficient muscles, caused by dysregulated nitric oxide (NO) signaling, provided the rationale for HDACi-based therapeutic interventions for Duchenne muscular dystrophy (DMD). In this review, we describe the molecular, preclinical, and clinical evidence supporting the efficacy of HDACis in countering disease progression by targeting pathogenic networks of gene expression in multiple muscle-resident cell types of patients with DMD. Given that givinostat is paving the way for HDACi-based interventions in DMD, next-generation HDACis with optimized therapeutic profiles and efficacy could be also explored for synergistic combinations with other therapeutic strategies.


Assuntos
Distrofia Muscular de Duchenne , Camundongos , Animais , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Músculo Esquelético/metabolismo , Camundongos Endogâmicos mdx , Distrofina/metabolismo , Transdução de Sinais
17.
Int J Mol Sci ; 25(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38339125

RESUMO

The leading cause of death for patients with Duchenne muscular dystrophy (DMD), a progressive muscle disease, is heart failure. Prostaglandin (PG) D2, a physiologically active fatty acid, is synthesized from the precursor PGH2 by hematopoietic prostaglandin D synthase (HPGDS). Using a DMD animal model (mdx mice), we previously found that HPGDS expression is increased not only in injured muscle but also in the heart. Moreover, HPGDS inhibitors can slow the progression of muscle injury and cardiomyopathy. However, the location of HPGDS in the heart is still unknown. Thus, this study investigated HPGDS expression in autopsy myocardial samples from DMD patients. We confirmed the presence of fibrosis, a characteristic phenotype of DMD, in the autopsy myocardial sections. Additionally, HPGDS was expressed in mast cells, pericytes, and myeloid cells of the myocardial specimens but not in the myocardium. Compared with the non-DMD group, the DMD group showed increased HPGDS expression in mast cells and pericytes. Our findings confirm the possibility of using HPGDS inhibitor therapy to suppress PGD2 production to treat skeletal muscle disorders and cardiomyopathy. It thus provides significant insights for developing therapeutic drugs for DMD.


Assuntos
Cardiomiopatias , Oxirredutases Intramoleculares , Lipocalinas , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Modelos Animais de Doenças , Mastócitos/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Miocárdio/metabolismo , Pericitos/metabolismo
18.
FASEB J ; 38(3): e23432, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38300173

RESUMO

The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Proteínas Substratos do Receptor de Insulina/genética , Cinesinas/genética , Camundongos Endogâmicos mdx , Mioblastos , Transdução de Sinais
19.
Hum Mol Genet ; 33(7): 594-611, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38181046

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal degenerative muscle wasting disease caused by the loss of the structural protein dystrophin with secondary pathological manifestations including metabolic dysfunction, mood and behavioral disorders. In the mildly affected mdx mouse model of DMD, brief scruff stress causes inactivity, while more severe subordination stress results in lethality. Here, we investigated the kynurenine pathway of tryptophan degradation and the nicotinamide adenine dinucleotide (NAD+) metabolic pathway in mdx mice and their involvement as possible mediators of mdx stress-related pathology. We identified downregulation of the kynurenic acid shunt, a neuroprotective branch of the kynurenine pathway, in mdx skeletal muscle associated with attenuated peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) transcriptional regulatory activity. Restoring the kynurenic acid shunt by skeletal muscle-specific PGC-1α overexpression in mdx mice did not prevent scruff -induced inactivity, nor did abrogating extrahepatic kynurenine pathway activity by genetic deletion of the pathway rate-limiting enzyme, indoleamine oxygenase 1. We further show that reduced NAD+ production in mdx skeletal muscle after subordination stress exposure corresponded with elevated levels of NAD+ catabolites produced by ectoenzyme cluster of differentiation 38 (CD38) that have been implicated in lethal mdx response to pharmacological ß-adrenergic receptor agonism. However, genetic CD38 ablation did not prevent mdx scruff-induced inactivity. Our data do not support a direct contribution by the kynurenine pathway or CD38 metabolic dysfunction to the exaggerated stress response of mdx mice.


Assuntos
ADP-Ribosil Ciclase 1 , Indolamina-Pirrol 2,3,-Dioxigenase , Glicoproteínas de Membrana , Distrofia Muscular de Duchenne , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Animais , Camundongos , Modelos Animais de Doenças , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/patologia , NAD/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Glicoproteínas de Membrana/metabolismo , ADP-Ribosil Ciclase 1/metabolismo
20.
J Neuromuscul Dis ; 11(2): 299-314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38189760

RESUMO

Insulin-like growth factor-1 (IGF-1) has been considered as a therapeutic agent for muscle wasting conditions including Duchenne muscular dystrophy as it stimulates muscle regeneration, growth and function. Several preclinical and clinical studies have been conducted to show the therapeutic potential of IGF-1, however, delivery issues, short half-life and isoform complexity have impose challenges. Antisense oligonucleotides (AONs) are able to downregulate target proteins by interfering with their transcripts. Here, we investigated the feasibility of enhancing IGF-1 signaling by downregulation of IGF-binding proteins. We observed that out of frame exon skipping of Igfbp1 and Igfbp3 downregulated their protein expression, which increased Akt phosphorylation on the downstream IGF-1 signaling in vitro. 3'RNA sequencing analysis revealed the related transcriptome in C2C12 cells in response to IGFBP3 downregulation. The AONs did however not induce any exon skipping or protein knockdown in mdx mice after 6 weeks of systemic treatment. We conclude that IGFBP downregulation could be a good strategy to increase IGF-1 signaling but alternative tools are needed for efficient delivery and knockdown in vivo.


Assuntos
Distrofina , Oligonucleotídeos Antissenso , Camundongos , Animais , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Distrofina/genética , Camundongos Endogâmicos mdx , Fator de Crescimento Insulin-Like I/metabolismo , Regulação para Baixo , Oligonucleotídeos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA