Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.658
Filtrar
1.
Int J Biol Sci ; 20(7): 2356-2369, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725858

RESUMO

Dysregulation of cancer cell motility is a key driver of invasion and metastasis. High dysadherin expression in cancer cells is correlated with invasion and metastasis. Here, we found the molecular mechanism by which dysadherin regulates the migration and invasion of colon cancer (CC). Comprehensive analysis using single-cell RNA sequencing data from CC patients revealed that high dysadherin expression in cells is linked to cell migration-related gene signatures. We confirmed that the deletion of dysadherin in tumor cells hindered local invasion and distant migration using in vivo tumor models. In this context, by performing cell morphological analysis, we found that aberrant cell migration resulted from impaired actin dynamics, focal adhesion turnover and protrusive structure formation upon dysadherin expression. Mechanistically, the activation of focal adhesion kinase (FAK) was observed in dysadherin-enriched cells. The dysadherin/FAK axis enhanced cell migration and invasion by activating the FAK downstream cascade, which includes the Rho family of small GTPases. Overall, this study illuminates the role of dysadherin in modulating cancer cell migration by forcing actin dynamics and protrusive structure formation via FAK signaling, indicating that targeting dysadherin may be a potential therapeutic strategy for CC patients.


Assuntos
Movimento Celular , Neoplasias do Colo , Humanos , Movimento Celular/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/genética , Linhagem Celular Tumoral , Animais , Camundongos , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Quinase 1 de Adesão Focal/metabolismo , Quinase 1 de Adesão Focal/genética , Canais Iônicos/metabolismo , Canais Iônicos/genética , Transdução de Sinais
2.
Sci Rep ; 14(1): 10365, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710778

RESUMO

Cardiac fibroblasts (CFs) are essential for preserving myocardial integrity and function. They can detect variations in cardiac tissue stiffness using various cellular mechanosensors, including the Ca2+ permeable mechanosensitive channel Piezo1. Nevertheless, how CFs adapt the mechanosensitive response to stiffness changes remains unclear. In this work we adopted a multimodal approach, combining the local mechanical stimulation (from 10 pN to 350 nN) with variations of culture substrate stiffness. We found that primary rat CFs cultured on stiff (GPa) substrates showed a broad Piezo1 distribution in the cell with particular accumulation at the mitochondria membrane. CFs displayed a force-dependent behavior in both calcium uptake and channel activation probability, showing a threshold at 300 nN, which involves both cytosolic and mitochondrial Ca2+ mobilization. This trend decreases as the myofibroblast phenotype within the cell population increases, following a possible Piezo1 accumulation at focal adhesion sites. In contrast, the inhibition of fibroblasts to myofibroblasts transition with soft substrates (kPa) considerably reduces both mechanically- and chemically-induced Piezo1 activation and expression. Our findings shed light on how Piezo1 function and expression are regulated by the substrate stiffness and highlight its involvement in the environment-mediated modulation of CFs mechanosensitivity.


Assuntos
Fibroblastos , Canais Iônicos , Mecanotransdução Celular , Proteínas de Membrana , Animais , Canais Iônicos/metabolismo , Ratos , Fibroblastos/metabolismo , Fibroblastos/citologia , Células Cultivadas , Cálcio/metabolismo , Miofibroblastos/metabolismo , Miofibroblastos/fisiologia , Miocárdio/metabolismo , Miocárdio/citologia , Microambiente Celular
3.
Artigo em Inglês | MEDLINE | ID: mdl-38780269

RESUMO

As obesity has raised heightening awareness, researchers have attempted to identify potential targets that can be treated for therapeutic intervention. Focusing on the central nervous system (CNS), the key organ in maintaining energy balance, a plethora of ion channels that are expressed in the CNS have been inspected and determined through manipulation in different hypothalamic neural subpopulations for their roles in fine-tuning neuronal activity on energy state alterations, possibly acting as metabolic sensors. However, a remaining gap persists between human clinical investigations and mouse studies. Despite having delineated the pathways and mechanisms of how the mouse study-identified ion channels modulate energy homeostasis, only a few targets overlap with the obesity-related risk genes extracted from human genome-wide association studies. Here, we present the most recently discovered CNS-specific metabolism-correlated ion channels using reverse and forward genetics approaches in mice and humans, respectively, in the hope of illuminating the prospects for future therapeutic development.


Assuntos
Canalopatias , Obesidade , Humanos , Animais , Obesidade/genética , Obesidade/metabolismo , Canalopatias/genética , Canalopatias/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Metabolismo Energético/genética , Camundongos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia
5.
J Mol Cell Cardiol ; 191: 63-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718563

RESUMO

INTRODUCTION: Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS: We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION: We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.


Assuntos
Aneurisma da Aorta Torácica , Modelos Animais de Doenças , Células Endoteliais , Canais Iônicos , Camundongos Knockout , Análise de Célula Única , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos , Células Endoteliais/metabolismo , Humanos , Masculino , Pirazinas , Tiadiazóis
6.
Channels (Austin) ; 18(1): 2355123, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38754025

RESUMO

PIEZO1 and PIEZO2 are mechanically activated ion channels that confer mechanosensitivity to various cell types. PIEZO channels are commonly examined using the so-called poking technique, where currents are recorded in the whole-cell configuration of the patch-clamp technique, while the cell surface is mechanically stimulated with a small fire-polished patch pipette. Currently, there is no gold standard for mechanical stimulation, and therefore, stimulation protocols differ significantly between laboratories with regard to stimulation velocity, angle, and size of the stimulation probe. Here, we systematically examined the impact of variations in these three stimulation parameters on the outcomes of patch-clamp recordings of PIEZO1 and PIEZO2. We show that the inactivation kinetics of PIEZO1 and, to a lesser extent, of PIEZO2 change with the angle at which the probe that is used for mechanical stimulation is positioned and, even more prominently, with the size of its tip. Moreover, we found that the mechanical activation threshold of PIEZO2, but not PIEZO1, decreased with increasing stimulation speeds. Thus, our data show that two key outcome parameters of PIEZO-related patch-clamp studies are significantly affected by common variations in the mechanical stimulation protocols, which calls for caution when comparing data from different laboratories and highlights the need to establish a gold standard for mechanical stimulation to improve comparability and reproducibility of data obtained with the poking technique.


Assuntos
Canais Iônicos , Técnicas de Patch-Clamp , Canais Iônicos/metabolismo , Humanos , Cinética , Células HEK293 , Mecanotransdução Celular
7.
Sci Rep ; 14(1): 11241, 2024 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755246

RESUMO

Current density, the membrane current value divided by membrane capacitance (Cm), is widely used in cellular electrophysiology. Comparing current densities obtained in different cell populations assume that Cm and ion current magnitudes are linearly related, however data is scarce about this in cardiomyocytes. Therefore, we statistically analyzed the distributions, and the relationship between parameters of canine cardiac ion currents and Cm, and tested if dividing original parameters with Cm had any effect. Under conventional voltage clamp conditions, correlations were high for IK1, moderate for IKr and ICa,L, while negligible for IKs. Correlation between Ito1 peak amplitude and Cm was negligible when analyzing all cells together, however, the analysis showed high correlations when cells of subepicardial, subendocardial or midmyocardial origin were analyzed separately. In action potential voltage clamp experiments IK1, IKr and ICa,L parameters showed high correlations with Cm. For INCX, INa,late and IKs there were low-to-moderate correlations between Cm and these current parameters. Dividing the original current parameters with Cm reduced both the coefficient of variation, and the deviation from normal distribution. The level of correlation between ion currents and Cm varies depending on the ion current studied. This must be considered when evaluating ion current densities in cardiac cells.


Assuntos
Potenciais de Ação , Capacitância Elétrica , Ventrículos do Coração , Miócitos Cardíacos , Técnicas de Patch-Clamp , Animais , Cães , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Potenciais de Ação/fisiologia , Potenciais da Membrana/fisiologia , Canais Iônicos/metabolismo , Membrana Celular/metabolismo
8.
J Clin Invest ; 134(10)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747287

RESUMO

Lymphedema is a debilitating disease with no effective cure and affects an estimated 250 million individuals worldwide. Prior studies have identified mutations in piezo-type mechanosensitive ion channel component 1 (PIEZO1), angiopoietin 2 (ANGPT2), and tyrosine kinase with Ig-like and EGF-like domains 1 (TIE1) in patients with primary lymphedema. Here, we identified crosstalk between these molecules and showed that activation of the mechanosensory channel PIEZO1 in lymphatic endothelial cells (LECs) caused rapid exocytosis of the TIE ligand ANGPT2, ectodomain shedding of TIE1 by disintegrin and metalloproteinase domain-containing protein 17 (ADAM17), and increased TIE/PI3K/AKT signaling, followed by nuclear export of the transcription factor FOXO1. These data establish a functional network between lymphedema-associated genes and provide what we believe to be the first molecular mechanism bridging channel function with vascular signaling and intracellular events culminating in transcriptional regulation of genes expressed in LECs. Our study provides insights into the regulation of lymphatic function and molecular pathways involved in human disease.


Assuntos
Angiopoietina-2 , Proteína Forkhead Box O1 , Canais Iônicos , Linfangiogênese , Linfedema , Receptor de TIE-1 , Transdução de Sinais , Canais Iônicos/metabolismo , Canais Iônicos/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Animais , Angiopoietina-2/metabolismo , Angiopoietina-2/genética , Linfedema/metabolismo , Linfedema/genética , Linfedema/patologia , Camundongos , Linfangiogênese/genética , Receptor de TIE-1/metabolismo , Receptor de TIE-1/genética , Células Endoteliais/metabolismo , Mecanotransdução Celular , Proteína ADAM17/metabolismo , Proteína ADAM17/genética
10.
Cardiovasc Diabetol ; 23(1): 150, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702777

RESUMO

BACKGROUND: Vasculopathy is the most common complication of diabetes. Endothelial cells located in the innermost layer of blood vessels are constantly affected by blood flow or vascular components; thus, their mechanosensitivity plays an important role in mediating vascular regulation. Endothelial damage, one of the main causes of hyperglycemic vascular complications, has been extensively studied. However, the role of mechanosensitive signaling in hyperglycemic endothelial damage remains unclear. METHODS: Vascular endothelial-specific Piezo1 knockout mice were generated to investigate the effects of Piezo1 on Streptozotocin-induced hyperglycemia and vascular endothelial injury. In vitro activation or knockdown of Piezo1 was performed to evaluate the effects on the proliferation, migration, and tubular function of human umbilical vein endothelial cells in high glucose. Reactive oxygen species production, mitochondrial membrane potential alternations, and oxidative stress-related products were used to assess the extent of oxidative stress damage caused by Piezo1 activation. RESULTS: Our study found that in VECreERT2;Piezo1flox/flox mice with Piezo1 conditional knockout in vascular endothelial cells, Piezo1 deficiency alleviated streptozotocin-induced hyperglycemia with reduced apoptosis and abscission of thoracic aortic endothelial cells, and decreased the inflammatory response of aortic tissue caused by high glucose. Moreover, the knockout of Piezo1 showed a thinner thoracic aortic wall, reduced tunica media damage, and increased endothelial nitric oxide synthase expression in transgenic mice, indicating the relief of endothelial damage caused by hyperglycemia. We also showed that Piezo1 activation aggravated oxidative stress injury and resulted in severe dysfunction through the Ca2+-induced CaMKII-Nrf2 axis in human umbilical vein endothelial cells. In Piezo1 conditional knockout mice, Piezo1 deficiency partially restored superoxide dismutase activity and reduced malondialdehyde content in the thoracic aorta. Mechanistically, Piezo1 deficiency decreased CaMKII phosphorylation and restored the expression of Nrf2 and its downstream molecules HO-1 and NQO1. CONCLUSION: In summary, our study revealed that Piezo1 is involved in high glucose-induced oxidative stress injury and aggravated endothelial dysfunction, which have great significance for alleviating endothelial damage caused by hyperglycemia.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Células Endoteliais da Veia Umbilical Humana , Canais Iônicos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo , Animais , Humanos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Diabetes Mellitus Experimental/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Glicemia/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Mecanotransdução Celular , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/deficiência , Células Cultivadas , Proliferação de Células , Apoptose , Masculino , Angiopatias Diabéticas/metabolismo , Angiopatias Diabéticas/fisiopatologia , Angiopatias Diabéticas/patologia , Angiopatias Diabéticas/genética , Angiopatias Diabéticas/etiologia , Movimento Celular , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Camundongos , Estreptozocina , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Endotélio Vascular/patologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética
11.
J Med Chem ; 67(10): 8225-8246, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38716967

RESUMO

Piezo1, a mechano-activated ion channel, has wide-ranging physiological and therapeutic implications, with the ongoing development of specific agonists unveiling cellular responses to mechanical stimuli. In our study, we systematically analyzed the chemical subunits in Piezo1 protein agonist Yoda1 to comprehend the structure-activity relationship and push forward next-generation agonist development. Preliminary screening assays for Piezo1 agonism were performed using the Piezo1-mCherry-transfected HEK293A cell line, keeping Yoda1 as a positive control. We introduce a novel Piezo1 agonist Yaddle1 (34, 0.40 µM), featuring a trifluoromethyl group, with further exploration through in vitro studies and density functional theory calculations, emphasizing its tetrel interactions, to act as an ambidextrous wedge between the domains of Piezo1. In contrast to the poor solubility of the established agonist Yoda1, our results showed that the kinetic solubility of Yaddle1 (26.72 ± 1.8 µM at pH 7.4) is 10-fold better than that of Yoda1 (1.22 ± 0.11 µM at pH 7.4). Yaddle1 (34) induces Ca2+ influx in human CD4+ T cell, suggesting its potential as a vaccine adjuvant for enhanced T cell activation.


Assuntos
Canais Iônicos , Linfócitos T , Humanos , Canais Iônicos/metabolismo , Células HEK293 , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Ativação Linfocitária/efeitos dos fármacos , Pirazinas , Tiadiazóis
12.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732096

RESUMO

Alterations in intraocular and external pressure critically involve the pathogenesis of glaucoma, traumatic retinal injury (TRI), and other retinal disorders, and retinal neurons have been reported to express multiple mechanical-sensitive channels (MSCs) in recent decades. However, the role of MSCs in visual functions and pressure-related retinal conditions has been unclear. This review will focus on the variety and functional significance of the MSCs permeable to K+, Na+, and Ca2+, primarily including the big potassium channel (BK); the two-pore domain potassium channels TRAAK and TREK; Piezo; the epithelial sodium channel (ENaC); and the transient receptor potential channels vanilloid TRPV1, TRPV2, and TRPV4 in retinal photoreceptors, bipolar cells, horizontal cells, amacrine cells, and ganglion cells. Most MSCs do not directly mediate visual signals in vertebrate retinas. On the other hand, some studies have shown that MSCs can open in physiological conditions and regulate the activities of retinal neurons. While these data reasonably predict the crossing of visual and mechanical signals, how retinal light pathways deal with endogenous and exogenous mechanical stimulation is uncertain.


Assuntos
Canais Iônicos , Neurônios Retinianos , Humanos , Animais , Canais Iônicos/metabolismo , Neurônios Retinianos/metabolismo , Mecanotransdução Celular , Retina/metabolismo , Retina/citologia
13.
Proc Natl Acad Sci U S A ; 121(22): e2401591121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38787877

RESUMO

The sodium (Na+) leak channel (NALCN) is a member of the four-domain voltage-gated cation channel family that includes the prototypical voltage-gated sodium and calcium channels (NaVs and CaVs, respectively). Unlike NaVs and CaVs, which have four lateral fenestrations that serve as routes for lipophilic compounds to enter the central cavity to modulate channel function, NALCN has bulky residues (W311, L588, M1145, and Y1436) that block these openings. Structural data suggest that occluded fenestrations underlie the pharmacological resistance of NALCN, but functional evidence is lacking. To test this hypothesis, we unplugged the fenestrations of NALCN by substituting the four aforementioned residues with alanine (AAAA) and compared the effects of NaV, CaV, and NALCN blockers on both wild-type (WT) and AAAA channels. Most compounds behaved in a similar manner on both channels, but phenytoin and 2-aminoethoxydiphenyl borate (2-APB) elicited additional, distinct responses on AAAA channels. Further experiments using single alanine mutants revealed that phenytoin and 2-APB enter the inner cavity through distinct fenestrations, implying structural specificity to their modes of access. Using a combination of computational and functional approaches, we identified amino acid residues critical for 2-APB activity, supporting the existence of drug binding site(s) within the pore region. Intrigued by the activity of 2-APB and its analogues, we tested compounds containing the diphenylmethane/amine moiety on WT channels. We identified clinically used drugs that exhibited diverse activity, thus expanding the pharmacological toolbox for NALCN. While the low potencies of active compounds reiterate the pharmacological resistance of NALCN, our findings lay the foundation for rational drug design to develop NALCN modulators with refined properties.


Assuntos
Fenitoína , Sítios de Ligação , Humanos , Fenitoína/metabolismo , Fenitoína/farmacologia , Compostos de Boro/química , Compostos de Boro/farmacologia , Compostos de Boro/metabolismo , Canais Iônicos/metabolismo , Canais Iônicos/genética , Células HEK293 , Animais , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/química , Proteínas de Membrana
14.
Cell ; 187(11): 2767-2784.e23, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38733989

RESUMO

The vasculature of the central nervous system is a 3D lattice composed of laminar vascular beds interconnected by penetrating vessels. The mechanisms controlling 3D lattice network formation remain largely unknown. Combining viral labeling, genetic marking, and single-cell profiling in the mouse retina, we discovered a perivascular neuronal subset, annotated as Fam19a4/Nts-positive retinal ganglion cells (Fam19a4/Nts-RGCs), directly contacting the vasculature with perisomatic endfeet. Developmental ablation of Fam19a4/Nts-RGCs led to disoriented growth of penetrating vessels near the ganglion cell layer (GCL), leading to a disorganized 3D vascular lattice. We identified enriched PIEZO2 expression in Fam19a4/Nts-RGCs. Piezo2 loss from all retinal neurons or Fam19a4/Nts-RGCs abolished the direct neurovascular contacts and phenocopied the Fam19a4/Nts-RGC ablation deficits. The defective vascular structure led to reduced capillary perfusion and sensitized the retina to ischemic insults. Furthermore, we uncovered a Piezo2-dependent perivascular granule cell subset for cerebellar vascular patterning, indicating neuronal Piezo2-dependent 3D vascular patterning in the brain.


Assuntos
Cerebelo , Neurônios , Retina , Animais , Feminino , Masculino , Camundongos , Cerebelo/metabolismo , Cerebelo/irrigação sanguínea , Cerebelo/citologia , Canais Iônicos/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Retina/citologia , Retina/metabolismo , Células Ganglionares da Retina/metabolismo , Vasos Retinianos/metabolismo
15.
J Assoc Physicians India ; 72(1): 110, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38736086

RESUMO

Most biological functions have their basis in a rapid change in cell membrane permeability. Hodgkin and Huxley showed regulation of the flow of molecules and ions between the nerve cell and its environment (Nobel Prize 1963), by recording macroscopic currents. Two Germans Neher and Sakmann showed that specific ion channels actually exist, and specific membrane proteins act as gates or agents for active transport regulating in physiological and pathological processes.


Assuntos
Canais Iônicos , Canais Iônicos/fisiologia , Canais Iônicos/metabolismo , História do Século XX , Humanos
16.
Physiol Rep ; 12(9): e16043, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38724885

RESUMO

The epithelial cells that line the kidneys and lower urinary tract are exposed to mechanical forces including shear stress and wall tension; however, the mechanosensors that detect and respond to these stimuli remain obscure. Candidates include the OSCA/TMEM63 family of ion channels, which can function as mechanosensors and osmosensors. Using Tmem63bHA-fl/HA-fl reporter mice, we assessed the localization of HA-tagged-TMEM63B within the urinary tract by immunofluorescence coupled with confocal microscopy. In the kidneys, HA-TMEM63B was expressed by proximal tubule epithelial cells, by the intercalated cells of the collecting duct, and by the epithelial cells lining the thick ascending limb of the medulla. In the urinary tract, HA-TMEM63B was expressed by the urothelium lining the renal pelvis, ureters, bladder, and urethra. HA-TMEM63B was also expressed in closely allied organs including the epithelial cells lining the seminal vesicles, vas deferens, and lateral prostate glands of male mice and the vaginal epithelium of female mice. Our studies reveal that TMEM63B is expressed by subsets of kidney and lower urinary tract epithelial cells, which we hypothesize are sites of TMEM63B mechanosensation or osmosensation, or both.


Assuntos
Sistema Urinário , Animais , Camundongos , Masculino , Feminino , Sistema Urinário/metabolismo , Mecanotransdução Celular/fisiologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos Endogâmicos C57BL , Urotélio/metabolismo , Urotélio/citologia , Células Epiteliais/metabolismo
17.
BMC Oral Health ; 24(1): 465, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627713

RESUMO

BACKGROUND: Mechanosensitive ion channel PIEZOs have been widely reported to involve inflammation and pain. This study aimed to clarify expression patterns of PIEZOs and their potential relations to irreversible pulpitis. MATERIALS AND METHODS: Normal pulp tissues (n = 29) from patients with impacted third molars and inflamed pulp tissues (n = 23) from patients with irreversible pulpitis were collected. Pain levels were assessed using a numerical rating scale. PIEZO expressions were measured using real-time PCR and then confirmed using GEO datasets GSE77459, immunoblot, and immunohistochemistry staining. Correlations of PIEZO mRNA expression with inflammatory markers, pain markers, or clinical pain levels were evaluated using Spearman's correlation analysis. Univariate analysis was conducted to analyze PIEZO expressions based on pain description and clinical examinations of cold test, percussion, palpation, and bite test. RESULTS: Compared with normal pulp tissues, mRNA expression levels of PIEZO1 were significantly increased in inflamed pulp tissues, while PIEZO2 was significantly decreased, which was further confirmed in GSE77459 and on a protein and histological level. The positive correlation of the mRNA expression levels between PIEZO1 and inflammatory markers, as well as between PIEZO2 and pain markers, was verified. PIEZO2 expression was also positively correlated with pain levels. Besides, irreversible pulpitis patients who reported continuous pain and who detected a positive response to cold stimulus exhibited a higher expression level of PIEZO2 in the inflamed pulp tissues. By contrast, patients reporting pain duration of more than one week showed a higher expression level of PIEZO1. CONCLUSIONS: This study demonstrated the upregulation of PIEZO1 and the downregulation of PIEZO2 in irreversible pulpitis and revealed the potential relation of PIEZO1 and PIEZO2 to inflammation and pain. These findings suggested that PIEZOs might play critical roles in the progression of irreversible pulpitis and paved the way for further investigations aimed at novel therapies of irreversible pulpitis by targeting PIEZOs.


Assuntos
Pulpite , Humanos , Canais Iônicos/genética , Canais Iônicos/metabolismo , Inflamação , Dor , RNA Mensageiro
18.
Arch Oral Biol ; 163: 105963, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608563

RESUMO

OBJECTIVES: Orthodontic tooth movement is a mechanobiological reaction induced by appropriate forces, including bone remodeling. The mechanosensitive Piezo channels have been shown to contribute to bone remodeling. However, information about the pathways through which Piezo channels affects osteoblasts remains limited. Thus, we aimed to investigate the influence of Piezo1 on the osteogenic and osteoclast factors in osteoblasts under mechanical load. MATERIALS AND METHODS: Cyclic stretch (CS) experiments on MC3T3-E1 were conducted using a BioDynamic mechanical stretching device. The Piezo1 channel blocker GsMTx4 and the Piezo1 channel agonist Yoda1 were used 12 h before the application of CS. MC3T3-E1 cells were then subjected to 15% CS, and the expression of Piezo1, Piezo2, BMP-2, OCN, Runx2, RANKL, p-p65/p65, and ALP was measured using quantitative real-time polymerase chain reaction, western blot, alkaline phosphatase staining, and immunofluorescence staining. RESULTS: CS of 15% induced the highest expression of Piezo channel and osteoblast factors. Yoda1 significantly increased the CS-upregulated expression of Piezo1 and ALP activity but not Piezo2 and RANKL. GsMTx4 downregulated the CS-upregulated expression of Piezo1, Piezo2, Runx2, OCN, p-65/65, and ALP activity but could not completely reduce CS-upregulated BMP-2. CONCLUSIONS: The appropriate force is more suitable for promoting osteogenic differentiation in MC3T3-E1. The Piezo1 channel participates in osteogenic differentiation of osteoblasts through its influence on the expression of osteogenic factors like BMP-2, Runx2, and OCN and is involved in regulating osteoclasts by influencing phosphorylated p65. These results provide a foundation for further exploration of osteoblast function in orthodontic tooth movement.


Assuntos
Proteína Morfogenética Óssea 2 , Subunidade alfa 1 de Fator de Ligação ao Core , Canais Iônicos , Osteoblastos , Osteogênese , Osteoblastos/metabolismo , Canais Iônicos/metabolismo , Animais , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Osteogênese/fisiologia , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Osteoclastos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Ligante RANK/metabolismo , Western Blotting , Estresse Mecânico , Diferenciação Celular , Osteocalcina/metabolismo , Fosfatase Alcalina/metabolismo , Oligopeptídeos/farmacologia , Técnicas de Movimentação Dentária , Mecanotransdução Celular/fisiologia , Linhagem Celular , Remodelação Óssea/fisiologia , Pirazinas , Venenos de Aranha , Tiadiazóis , Peptídeos e Proteínas de Sinalização Intercelular
19.
Acta Physiol (Oxf) ; 240(6): e14152, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38682304

RESUMO

Piezo1 is an essential mechanosensitive transduction ion channel in mammals. Its unique structure makes it capable of converting mechanical cues into electrical and biological signals, modulating biological and (patho)physiological processes in a wide variety of cells. There is increasing evidence demonstrating that the piezo1 channel plays a vital role in renal physiology and disease conditions. This review summarizes the current evidence on the structure and properties of Piezo1, gating modulation, and pharmacological characteristics, with special focus on the distribution and (patho)physiological significance of Piezo1 in the kidney, which may provide insights into potential treatment targets for renal diseases involving this ion channel.


Assuntos
Canais Iônicos , Rim , Mecanotransdução Celular , Canais Iônicos/metabolismo , Humanos , Animais , Mecanotransdução Celular/fisiologia , Rim/metabolismo
20.
ACS Appl Mater Interfaces ; 16(17): 21623-21632, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38594642

RESUMO

Giant lipid vesicles composed of a lipid bilayer form complex membrane structures and enzyme network reactions that can be used to construct well-defined artificial cell models based on microfluidic technologies and synthetic biology. As a different approach to cell-mimicking systems, we formed an asymmetric lipid-amphiphilic protein (oleosin) vesicle containing a lipid and an oleosin monolayer in the outer and inner leaflets, respectively. These asymmetric vesicles enabled the reconstitution and function of ß-barrel types of membrane proteins (OmpG) and the fission of vesicles stimulated by lysophospholipids. These applications combine the advantages of the high stability of lipids and oleosin leaflets in asymmetric lipid-oleosin vesicles. In this study, to evaluate the versatility of this asymmetric lipid-oleosin vesicle, the molecular transport of the mechanosensitive channel of large conductance (MscL) with an α-helix was evaluated by changing the tension of the asymmetric vesicle membrane with lysophospholipid. A nanopore of MscL assembled as a pentamer of MscLs transports small molecules of less than 10 kDa by sensing physical stress at the lipid bilayer. The amount and maximum size of the small molecules transported via MscL in the asymmetric lipid-oleosin vesicles were compared to those in the lipid vesicles. We revealed the existence of the C- and N-terminal regions (cytoplasmic side) of MscL on the inner leaflet of the asymmetric lipid-oleosin vesicles using an insertion direction assay. Furthermore, the change in the tension of the lipid-oleosin membrane activated the proteins in these vesicles, inducing their transportation through MscL nanopores. Therefore, asymmetric lipid-oleosin vesicles containing MscL can be used as substrates to study the external environment response of complex artificial cell models.


Assuntos
Bicamadas Lipídicas , Bicamadas Lipídicas/química , Canais Iônicos/química , Canais Iônicos/metabolismo , Lisofosfolipídeos/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA