Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 300
Filtrar
1.
Diabetes ; 71(3): 367-375, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196393

RESUMO

Secretion of insulin from pancreatic ß-cells is complex, but physiological glucose-dependent secretion is dominated by electrical activity, in turn controlled by ATP-sensitive potassium (KATP) channel activity. Accordingly, loss-of-function mutations of the KATP channel Kir6.2 (KCNJ11) or SUR1 (ABCC8) subunit increase electrical excitability and secretion, resulting in congenital hyperinsulinism (CHI), whereas gain-of-function mutations cause underexcitability and undersecretion, resulting in neonatal diabetes mellitus (NDM). Thus, diazoxide, which activates KATP channels, and sulfonylureas, which inhibit KATP channels, have dramatically improved therapies for CHI and NDM, respectively. However, key findings do not fit within this simple paradigm: mice with complete absence of ß-cell KATP activity are not hyperinsulinemic; instead, they are paradoxically glucose intolerant and prone to diabetes, as are older human CHI patients. Critically, despite these advances, there has been little insight into any role of KATP channel activity changes in the development of type 2 diabetes (T2D). Intriguingly, the CHI progression from hypersecretion to undersecretion actually mirrors the classical response to insulin resistance in the progression of T2D. In seeking to explain the progression of CHI, multiple lines of evidence lead us to propose that underlying mechanisms are also similar and that development of T2D may involve loss of KATP activity.


Assuntos
Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/fisiopatologia , Diabetes Mellitus Tipo 2/fisiopatologia , Canais KATP/fisiologia , Animais , Glicemia , Cálcio/farmacologia , Humanos , Resistência à Insulina , Secreção de Insulina/genética , Secreção de Insulina/fisiologia , Canais KATP/genética , Camundongos , Camundongos Knockout , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/fisiologia
2.
Eur J Clin Invest ; 52(2): e13683, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34587304

RESUMO

BACKGROUND: In the present work, we investigated the cardioprotective potential of pyridoxal-5-phosphate (PLP) in old rats as a cofactor of enzymes that synthesize hydrogen sulphide (H2 S). MATERIALS AND METHODS: PLP was administered per os in a dose of 0.7 mg per kg daily for 2 weeks. Rats were divided into three groups (adult, old and old +PLP) of 20 animals. The cardiac mRNA levels of genes encoding H2 S-synthesizing enzymes cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST), uncoupling proteins (UCP3), subunits of ATP-sensitive potassium (KATP ) channels were determined using real-time polymerase chain reaction analysis. We also studied the effect of PLP-administration on the content of H2 S, oxidative stress, the activities of inducible and constitutive NO-synthase (iNOS, cNOS), arginase and nitrate reductase in the heart homogenates as well as cardiac resistance to ischemia-reperfusion in Langendorff-isolated heart model. RESULTS: It was shown that PLP restored mRNA levels of CSE, 3-MST and UCP3 genes, and H2 S content and also significantly increased the expression of SUR2 and Kir6.1 (2.2 and 3.3 times, respectively) in the heart of old rats. PLP significantly reduced the formation of superoxide, malondialdehyde, diene conjugates as well as the activity of iNOS and arginase. PLP significantly increased constitutive synthesis of NO and prevented reperfusion disturbances of the heart function after ischemia. CONCLUSIONS: Thus, PLP-administration in old rats was associated with up-expression of CSE, 3-MST, UCP3 and SUR2 and Kir6.1 subunits of KATP channels, and also increased cNOS activity and reduced oxidative stress and prevented reperfusion dysfunction of the heart in ischemia-reperfusion.


Assuntos
Cardiotônicos/farmacologia , Cistationina gama-Liase/efeitos dos fármacos , Cistationina gama-Liase/fisiologia , Canais KATP/efeitos dos fármacos , Canais KATP/fisiologia , Fosfato de Piridoxal/farmacologia , Sulfurtransferases/efeitos dos fármacos , Sulfurtransferases/fisiologia , Envelhecimento , Animais , Cistationina gama-Liase/genética , Regulação da Expressão Gênica , Coração/efeitos dos fármacos , Canais KATP/genética , Masculino , Ratos , Ratos Wistar , Sulfurtransferases/genética
3.
Endocrinology ; 162(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34134142

RESUMO

Transitional hypoglycemia in normal newborns occurs in the first 3 days of life and has clinical features consistent with hyperinsulinism. We found a lower threshold for glucose-stimulated insulin secretion from freshly isolated embryonic day (E) 22 rat islets, which persisted into the first postnatal days. The threshold reached the adult level by postnatal day (P) 14. Culturing P14 islets also decreased the glucose threshold. Freshly isolated P1 rat islets had a lower threshold for insulin secretion in response to 2-aminobicyclo-(2, 2, 1)-heptane-2-carboxylic acid, a nonmetabolizable leucine analog, and diminished insulin release in response to tolbutamide, an inhibitor of ß-cell KATP channels. These findings suggested that decreased KATP channel function could be responsible for the lower glucose threshold for insulin secretion. Single-cell transcriptomic analysis did not reveal a lower expression of KATP subunit genes in E22 compared with P14 ß cells. The investigation of electrophysiological characteristics of dispersed ß cells showed that early neonatal and cultured cells had fewer functional KATP channels per unit membrane area. Our findings suggest that decreased surface density of KATP channels may contribute to the observed differences in glucose threshold for insulin release.


Assuntos
Glucose/farmacologia , Secreção de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , Canais KATP/fisiologia , 1-Metil-3-Isobutilxantina/farmacologia , Aminoácidos Cíclicos/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Embrião de Mamíferos , Feminino , Glucose/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Canais KATP/agonistas , Canais KATP/genética , Canais KATP/metabolismo , Cloreto de Potássio/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley
4.
J Ethnopharmacol ; 274: 114048, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-33781875

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Plectranthus vettiveroides (Jacob) N.P. Singh & B.D. Sharma is a traditional medicinal plant used in Siddha System of Medicine and its aromatic root is used to reduce the elevated blood pressure. AIM: The aim of the present study was to study vasorelaxant property of the root essential oil nanoemulsion (EON) of P. vettiveroides. METHODS: The EON was formulated to enhance the solubility and bioavailability and characterized. The preliminary screening was performed by treating the EON with aortic rings pre-contracted with phenylephrine (1 µM) and potassium chloride (80 mM). The role of K⁺ channels in EON induced vasorelaxation was investigated by pre-incubating the aortic rings with different K⁺ channel inhibitors namely, glibenclamide (a non-specific ATP sensitive K⁺ channel blocker, 10 µM), TEA (a Ca2⁺ activated non-selective K⁺ channel blocker, 10-2 M), 4-AP (a voltage-activated K⁺ channel blocker, 10-3 M) and barium chloride (inward rectifier K⁺ channel blocker, 1 mM). The involvement of extracellular Ca2+ was performed by adding cumulative dose of extracellular calcium in the presence and absence of EON and the concentration-response curve (CRC) obtained is compared. Similarly, the role of nitric oxide synthase, muscarinic and prostacyclin receptors on EON induced vasorelaxation were evaluated by pre-incubating the aortic rings with their inhibitors and the CRC obtained in the presence and absence of inhibitor were compared. RESULTS: The GC-MS and GC-FID analyses of the root essential oil revealed the presence of 62 volatile compounds. The EON exhibited significant vasorelaxant effect through nitric oxide-mediated pathway, G-protein coupled muscarinic (M3) receptor pathway, involvement of K+ channels (KATP, KIR, KCa), and blocking of the calcium influx by receptor-operated calcium channel. CONCLUSION: It is concluded that the root essential oil of P. vettiveroides is possessing marked vasorelaxant property. The multiple mechanisms of action of the essential oil of P. vettiveroides make it a potential source of antihypertensive drug.


Assuntos
Anti-Hipertensivos/farmacologia , Aorta Torácica/efeitos dos fármacos , Óleos Voláteis/farmacologia , Plectranthus , Vasodilatadores/farmacologia , Animais , Anti-Hipertensivos/química , Aorta Torácica/fisiologia , Cálcio/fisiologia , Canais de Cálcio/fisiologia , Emulsões , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Canais KATP/fisiologia , Masculino , Óxido Nítrico/fisiologia , Óleos Voláteis/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Raízes de Plantas , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Ratos Wistar , Receptor Muscarínico M3/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/química
5.
J Smooth Muscle Res ; 56(0): 29-45, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581184

RESUMO

Gastric motility is controlled by slow waves. In general, the activation of the ATP-sensitive K+ (KATP) channels in the smooth muscle opposes the membrane excitability and produces relaxation. Since metabolic inhibition and/or diabetes mellitus are accompanied by dysfunctions of gastric smooth muscle, we examined the possible roles of KATP channels in human gastric motility. We used human gastric corpus and antrum smooth muscle preparations and recorded the mechanical activities with a conventional contractile measuring system. We also identified the subunits of the KATP channels using Western blot. Pinacidil (10 µM), a KATP channel opener, suppressed contractions to 30% (basal tone to -0.2 g) of the control. The inhibitory effect of pinacidil on contraction was reversed to 59% of the control by glibenclamide (20 µM), a KATP channel blocker. The relaxation by pinacidil was not affected by a pretreatment with L-arginine methyl ester, tetraethylammonium, or 4-aminopyridine. Pinacidil also inhibited the acetylcholine (ACh)-induced tonic and phasic contractions in a glibenclamide-sensitive manner (42% and 6% of the control, respectively). Other KATP channel openers such as diazoxide, cromakalim and nicorandil also inhibited the spontaneous and ACh-induced contractions. Calcitonin gene-related peptide (CGRP), a gastric neuropeptide, induced muscle relaxation by the activation of KATP channels in human gastric smooth muscle. Finally, we have found with Western blot studies, that human gastric smooth muscle expressed KATP channels which were composed of Kir 6.2 and SUR2B subunits.


Assuntos
Canais KATP/metabolismo , Canais KATP/fisiologia , Músculo Liso/fisiologia , Estômago/fisiologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Glibureto/farmacologia , Humanos , Técnicas In Vitro , Canais KATP/antagonistas & inibidores , Contração Muscular/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/química
6.
Psychoneuroendocrinology ; 118: 104712, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32479969

RESUMO

BACKGROUND: Obesity, a critical feature in metabolic disorders, is associated with medical depression. Recent evidence reveals that brown adipose tissue (BAT) activity may contribute to mood disorders, Adenosine triphosphate (ATP)-sensitive K+ (KATP) channels regulate BAT sympathetic nerve activity. However, the mechanism through which BAT activity affects mood control remains unknown. We hypothesized the BAT is involved in depressive-like symptoms regulation by trafficking KATP channels. METHODS: Eight-week-old male B6 mice fed with a high-fat diet (HFD) for 12 weeks exhibited characteristics of metabolic disorders, including hyperglycemia, hyperinsulinemia, and hyperlipidemia, as well as depressive symptoms. In this study, we surgically removed interscapular BAT in mice, and these mice exhibited immobility in the forced swim test and less preference for sugar water compared with other mice. To delineate the role of KATP channels in BAT activity regulation, we implanted a miniosmotic pump containing glibenclamide (GB), a KATP channel blocker, into the interscapular BAT of HFD-fed mice. RESULTS: GB infusion improved glucose homeostasis, insulin sensitivity, and depressive-like symptoms. KATP channel expression was lower in HFD-fed mice than in chow-fed mice. Notably, GB infusion in HFD-fed mice restored KATP channel expression. CONCLUSION: KATP channels are functionally expressed in BAT, and inhibiting BAT-KATP channels improves metabolic syndromes and reduces depressive symptoms through beta-3-adrenergic receptor-mediated protein kinase A signaling.


Assuntos
Tecido Adiposo Marrom/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Glibureto/farmacologia , Rede Nervosa/efeitos dos fármacos , Obesidade , Recompensa , Tecido Adiposo Marrom/inervação , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiopatologia , Animais , Células Cultivadas , Citoproteção/efeitos dos fármacos , Dieta Hiperlipídica , Neurônios Dopaminérgicos/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Canais KATP/antagonistas & inibidores , Canais KATP/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Rede Nervosa/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Obesidade/psicologia , Sistema Nervoso Simpático/efeitos dos fármacos , Sistema Nervoso Simpático/metabolismo , Termogênese/efeitos dos fármacos
7.
Biol Pharm Bull ; 43(4): 707-715, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32238713

RESUMO

Chaihu-Shugan-San (CSS) has been widely used as an alternative treatment for gastrointestinal (GI) diseases in East Asia. Interstitial cells of Cajal (ICCs) are pacemakers in the GI tract. In the present study, we examined the action of CSS on pacemaker potentials in cultured ICCs from the mouse small intestine in vitro and on GI motility in vivo. We used the electrophysiological methods to measure the pacemaker potentials in ICCs. GI motility was investigated by measuring intestinal transit rates (ITR). CSS inhibited the pacemaker potentials in a dose-dependent manner. The capsazepine did not block the effect of CSS. However, the effects of CSS were blocked by glibenclamide. In addition, NG-nitro-L-arginine methyl ester (L-NAME) also blocked the CSS-induced effects. Pretreatment with SQ-22536 or with KT-5720 did not suppress the effects of CSS; however, pretreatment with ODQ or KT-5823 did. Furthermore, CSS significantly suppressed murine ITR enhancement by neostigmine in vivo. These results suggest that CSS exerts inhibitory effects on the pacemaker potentials of ICCs via nitric oxide (NO)/cGMP and ATP-sensitive K+ channel dependent and transient receptor potential vanilloid 1 (TRPV1) channel independent pathways. Accordingly, CSS could provide the basis for the development of new treatments for GI motility dysfunction.


Assuntos
Células Intersticiais de Cajal/efeitos dos fármacos , Intestino Delgado/citologia , Extratos Vegetais/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Motilidade Gastrointestinal/efeitos dos fármacos , Guanilato Ciclase/fisiologia , Células Intersticiais de Cajal/fisiologia , Intestino Delgado/fisiologia , Canais KATP/fisiologia , Masculino , Camundongos Endogâmicos ICR , Óxido Nítrico/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Canais de Cátion TRPV/fisiologia
8.
Proc Natl Acad Sci U S A ; 117(13): 7461-7470, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32170008

RESUMO

Local control of blood flow in the heart is important yet poorly understood. Here we show that ATP-sensitive K+ channels (KATP), hugely abundant in cardiac ventricular myocytes, sense the local myocyte metabolic state and communicate a negative feedback signal-correction upstream electrically. This electro-metabolic voltage signal is transmitted instantaneously to cellular elements in the neighboring microvascular network through gap junctions, where it regulates contractile pericytes and smooth muscle cells and thus blood flow. As myocyte ATP is consumed in excess of production, [ATP]i decreases to increase the openings of KATP channels, which biases the electrically active myocytes in the hyperpolarization (negative) direction. This change leads to relative hyperpolarization of the electrically connected cells that include capillary endothelial cells, pericytes, and vascular smooth muscle cells. Such hyperpolarization decreases pericyte and vascular smooth muscle [Ca2+]i levels, thereby relaxing the contractile cells to increase local blood flow and delivery of nutrients to the local cardiac myocytes and to augment ATP production by their mitochondria. Our findings demonstrate the pivotal roles of local cardiac myocyte metabolism and KATP channels and the minor role of inward rectifier K+ (Kir2.1) channels in regulating blood flow in the heart. These findings establish a conceptually new framework for understanding the hugely reliable and incredibly robust local electro-metabolic microvascular regulation of blood flow in heart.


Assuntos
Circulação Coronária/fisiologia , Coração/fisiologia , Canais KATP/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Células Endoteliais/metabolismo , Feminino , Ventrículos do Coração/metabolismo , Canais KATP/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos de Músculo Liso/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ratos , Ratos Sprague-Dawley , Fluxo Sanguíneo Regional/fisiologia , Transdução de Sinais
9.
J Chin Med Assoc ; 83(4): 357-366, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32101891

RESUMO

BACKGROUND: Nitric oxide (NO), which possesses both protective and toxic properties, has been observed to have a complicated biphasic character within various types of tissues, including neuronal cells. NO was also found to cause the increase of another important signaling molecular Zn (termed as NZR). The molecular mechanism of NZR has been extensively investigated, but the source of Zn is present of a major candidate that is yet to be answered. The NO-protein kinase G (PKG) pathway, mitochondria, and metallothioneins (MTs), are all proposed to be the individual source of NZR. However, this hypothesis remains inconclusive. In this study, we examined the function of PKG signaling cascades, the mitochondria storage, and MT-1 during NZR of living PC12 cells. METHODS: We applied live-cell imaging in combination with pharmacological inhibitors and activators as well as in vitro Zn assay to dissect the functions of the above candidates in NZR. RESULTS: Two mechanisms, namely, mitochondria as the only Zn source and the opening of NO-PKG-dependent mitochondrial ATP-sensitive potassium channels (mKATP) as the key to releasing NO-induced increase in mitochondrial Zn, were proven to be the two critical paths of NZR in neuronal-related cells. CONCLUSION: This new finding provides a reasonable explanation to previously existing and contradictory conclusions regarding the function of mitochondria/mKATP and PKG signaling on the molecular mechanism of NZR.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , GMP Cíclico/fisiologia , Mitocôndrias/fisiologia , Neurônios/metabolismo , Óxido Nítrico/fisiologia , Zinco/metabolismo , Animais , Canais KATP/fisiologia , Células PC12 , Ratos
10.
Food Chem Toxicol ; 134: 110804, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31505234

RESUMO

OBJECTIVE: To investigate the role of inflammatory response, oxidative damage and changes of ATP-sensitive potassium channels (sKATP) in basilar artery (BA) smooth muscle cells (SMCS) of rabbits in subarachnoid hemorrhage (SAH) model. METHODS: Time course studies on inflammatory response by real-time PCR, oxidative process and function of isolated basilar artery after SAH in New Zealand White rabbits were performed. Basilar artery smooth muscle cells (BASMCs) in each group were obtained and whole-cell patch-clamp technique was applied to record cell membrane capacitance and KATP currents. The morphologies of basal arteries were analyzed. Protective effect of shikonin were also determine by same parameters. RESULTS: Inflammatory cytokines levels were highest at 24h compare to 72h after SAH whereas the oxidative damage and cell death marker were at highest peak at 72h. Oxidative damage peak coincided with significant alterations in cell membrane capacitance, KATP currents and morphological changes in basilar arteries. Shikokin pretreatment attenuated early inflammatory response at 24h and associated oxidative damage at 72h. Finally, shikonin attenuated morphological changes in basilar arteries and dysfunction. CONCLUSION: Currents of ATP-sensitive potassium channels in basilar smooth muscle cells decreased after SAH by putative oxidative modification from immediate inflammatory response and can be protected by shikonin pretreatment.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Artéria Basilar/efeitos dos fármacos , Canais KATP/fisiologia , Músculo Liso Vascular/efeitos dos fármacos , Naftoquinonas/farmacologia , Hemorragia Subaracnóidea/patologia , Animais , Artéria Basilar/metabolismo , Artéria Basilar/patologia , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Masculino , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Estresse Oxidativo , Técnicas de Patch-Clamp , Coelhos , Hemorragia Subaracnóidea/imunologia , Hemorragia Subaracnóidea/metabolismo
11.
Biochem Pharmacol ; 169: 113629, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31491412

RESUMO

The gastroprotective effects of N-acylarylhydrazone derivatives on ethanol-induced gastric lesions in mice were investigated with respect to the NO/cGMP/KATP pathway. To investigate our hypothesis, the mice were intraperitoneally pretreated with glibenclamide, L-NAME, or ODQ 30 min before treatment with DMSO, LASSBio-294 (1, 2, and 4 mg/kg, p.o.), LASSBio-897 (0.5, 1, and 2 mg/kg, p.o.), or omeprazole. After 1 h, the mice received absolute ethanol (4 ml/kg) by gavage to induce gastric mucosal lesions, and the microscopic and macroscopic parameters were evaluated. GSH (non-protein sulfhydryl groups) and MDA (malondialdehyde) concentrations, hemoglobin levels, nitric oxide production, myeloperoxidase (MPO) activity, and TNF-α and IL-1ß levels were also analyzed in the stomach after absolute ethanol administration. Pretreatment with LASSBio-294 or LASSBio-897 significantly reduced the microscopic and macroscopic lesion area. The compounds restored the GSH, MDA, and hemoglobin levels and reduced MPO activity. Moreover, the compounds significantly reduced nitrate and nitrite concentrations in the stomach samples after ethanol administration. Molecular docking studies revealed that LASSBio-294 and LASSBio-897 interact with active sites of the eNOS (endothelial nitric oxide synthase) enzymes through hydrogen bonds. LASSBio-294 and LASSBio-897 also reduced TNF-α and IL-1ß levels. It was observed that a NO synthase inhibitor, an ATP-sensitive potassium channel blocker, and a guanylate cyclase inhibitor significantly reversed the gastroprotective effects of these compounds. Thus, the gastroprotective effect of LASSBio-294 and LASSBio-897 against gastric lesions is mediated through the NO/cGMP cascade, followed by blocking of the KATP channels.


Assuntos
GMP Cíclico/fisiologia , Mucosa Gástrica/efeitos dos fármacos , Hidrazonas/farmacologia , Canais KATP/fisiologia , Óxido Nítrico/fisiologia , Tiofenos/farmacologia , Animais , Etanol/toxicidade , Mucosa Gástrica/patologia , Glutationa/metabolismo , Canais KATP/antagonistas & inibidores , Masculino , Camundongos , Simulação de Acoplamento Molecular , Peroxidase/metabolismo , Transdução de Sinais/fisiologia
12.
Exp Mol Med ; 51(8): 1-13, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31387986

RESUMO

Excessive activation of the NLRP3 inflammasome is a key component contributing to the pathogenesis of various inflammatory diseases. However, the molecular mechanisms underlying its activation and regulation remain poorly defined. The objective of this study was to explore the possible function of the K+ channel pore-forming subunit Kir6.1 in regulating NLRP3 inflammasome activation and insulin resistance. Here, we demonstrate that Kir6.1 depletion markedly activates the NLRP3 inflammasome, whereas enhanced Kir6.1 expression produces opposing effects both in mice in vivo and in primary cells in vitro. We also demonstrate that Kir6.1 controls insulin resistance by inhibiting NLRP3 inflammasome activation in mice. We further show that Kir6.1 physically associates with NLRP3 and thus inhibits the interactions between the NLRP3 inflammasome subunits. Our results reveal a previously unrecognized function of Kir6.1 as a negative regulator of the NLRP3 inflammasome and insulin resistance, which is mediated by virtue of its ability to inhibit NLRP3 inflammasome assembly. These data provide novel insights into the regulatory mechanism of NLRP3 inflammasome activation and suggest that Kir6.1 is a promising therapeutic target for inflammasome-mediated inflammatory diseases.


Assuntos
Inflamassomos/metabolismo , Resistência à Insulina , Canais KATP/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Ativação do Canal Iônico , Canais KATP/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/fisiologia
13.
Brain ; 142(9): 2644-2654, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31292608

RESUMO

Migraine is one of the most disabling and prevalent of all disorders. To improve understanding of migraine mechanisms and to suggest a new therapeutic target, we investigated whether opening of ATP-sensitive potassium channels (KATP) would cause migraine attacks. In this randomized, double-blind, placebo-controlled, crossover study, 16 patients aged 18-49 years with one to five migraine attacks a month were randomly allocated to receive an infusion of 0.05 mg/min KATP channel opener levcromakalim and placebo on two different days (ClinicalTrials.gov number, NCT03228355). The primary endpoints were the difference in incidence of migraine attacks, headaches and the difference in area under the curve (AUC) for headache intensity scores (0-12 h) and for middle cerebral artery blood flow velocity (0-2 h) between levcromakalim and placebo. Between 24 May 2017 and 23 November 2017, 16 patients randomly received levcromakalim and placebo on two different days. Sixteen patients (100%) developed migraine attacks after levcromakalim compared with one patient (6%) after placebo (P = 0.0001); the difference of incidence is 94% [95% confidence interval (CI) 78-100%]. The incidence of headache over the 12 h observation period was higher but not significant after levcromakalim (n = 16) than after placebo (n = 7) (P = 0.016) (95% CI 16-71%). The AUC for headache intensity was significantly larger after levcromakalim compared to placebo (AUC0-12h, P < 0.0001). There was no change in mean middle cerebral artery blood flow velocity after levcromakalim compared to placebo (AUC0-2hP = 0.46). Opening of KATP channels caused migraine attacks in all patients. This suggests a crucial role of these channels in migraine pathophysiology and that KATP channel blockers could be potential targets for novel drugs for migraine.


Assuntos
Cromakalim/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Canais KATP/fisiologia , Transtornos de Enxaqueca/diagnóstico por imagem , Medição da Dor/efeitos dos fármacos , Vasodilatadores/administração & dosagem , Adolescente , Adulto , Cromakalim/efeitos adversos , Estudos Cross-Over , Método Duplo-Cego , Feminino , Humanos , Canais KATP/agonistas , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Medição da Dor/métodos , Resultado do Tratamento , Vasodilatadores/efeitos adversos , Adulto Jovem
14.
Sci Rep ; 9(1): 6952, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061431

RESUMO

Persistent hyperglycemia is causally associated with pancreatic ß-cell dysfunction and loss of pancreatic insulin. Glucose normally enhances ß-cell excitability through inhibition of KATP channels, opening of voltage-dependent calcium channels, increased [Ca2+]i, which triggers insulin secretion. Glucose-dependent excitability is lost in islets from KATP-knockout (KATP-KO) mice, in which ß-cells are permanently hyperexcited, [Ca2+]i, is chronically elevated and insulin is constantly secreted. Mouse models of human neonatal diabetes in which KATP gain-of-function mutations are expressed in ß-cells (KATP-GOF) also lose the link between glucose metabolism and excitation-induced insulin secretion, but in this case KATP-GOF ß-cells are chronically underexcited, with permanently low [Ca2+]i and lack of glucose-dependent insulin secretion. We used KATP-GOF and KATP-KO islets to examine the role of altered-excitability in glucotoxicity. Wild-type islets showed rapid loss of insulin content when chronically incubated in high-glucose, an effect that was reversed by subsequently switching to low glucose media. In contrast, hyperexcitable KATP-KO islets lost insulin content in both low- and high-glucose, while underexcitable KATP-GOF islets maintained insulin content in both conditions. Loss of insulin content in chronic excitability was replicated by pharmacological inhibition of KATP by glibenclamide, The effects of hyperexcitable and underexcitable islets on glucotoxicity observed in in vivo animal models are directly opposite to the effects observed in vitro: we clearly demonstrate here that in vitro, hyperexcitability is detrimental to islets whereas underexcitability is protective.


Assuntos
Membrana Celular/patologia , Glucose/farmacologia , Células Secretoras de Insulina/patologia , Insulina/metabolismo , Canais KATP/fisiologia , Proinsulina/metabolismo , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Edulcorantes/farmacologia
15.
Inflammopharmacology ; 27(6): 1285-1296, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30945072

RESUMO

Rutin is a glycone form of the flavonol quercetin and it reduces inflammatory pain in animal models. Therapy with granulocyte colony-stimulating factor (G-CSF) is known by the pain caused as its main side effect. The effect of rutin and its mechanisms of action were evaluated in a model of hyperalgesia induced by G-CSF in mice. The mechanical hyperalgesia induced by G-CSF was reduced by treatment with rutin in a dose-dependent manner. Treatment with both rutin + morphine or rutin + indomethacin, at doses that are ineffectual per se, significantly reduced the pain caused by G-CSF. The nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-protein kinase G (PKG)-ATP-sensitive potassium channel (KATP) signaling pathway activation is one of the analgesic mechanisms of rutin. Rutin also reduced the pro-hyperalgesic and increased anti-hyperalgesic cytokine production induced by G-CSF. Furthermore, rutin inhibited the activation of the nuclear factor kappa-light-chain enhancer of activated B cells (NFκB), which might explain the inhibition of the cytokine production. Treatment with rutin upregulated the decreased mRNA expression of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) combined with enhancement of the mRNA expression of the Nrf2 downstream target heme oxygenase (HO-1). Intraperitoneal (i.p.) treatment with rutin did not alter the mobilization of neutrophils induced by G-CSF. The analgesia by rutin can be explained by: NO-cGMP-PKG-KATP channel signaling activation, inhibition of NFκB and triggering the Nrf2/HO-1 pathway. The present study demonstrates rutin as a promising pharmacological approach to treat the pain induced by G-CSF without impairing its primary therapeutic benefit of mobilizing hematopoietic progenitor cells into the blood.


Assuntos
Analgésicos/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Dor/tratamento farmacológico , Rutina/farmacologia , Animais , GMP Cíclico/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Citocinas/biossíntese , Heme Oxigenase-1/fisiologia , Hiperalgesia/tratamento farmacológico , Canais KATP/fisiologia , Masculino , Camundongos , Fator 2 Relacionado a NF-E2/fisiologia , NF-kappa B/antagonistas & inibidores , Neutrófilos/efeitos dos fármacos , Óxido Nítrico/fisiologia , Dor/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos
16.
Mol Med ; 24(1): 47, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180807

RESUMO

BACKGROUND: Sulfonylureas (SUs) are widely prescribed for the treatment of type 2 diabetes (T2DM). Sulfonylurea receptors (SURs) are their main functional receptors. These receptors are also found in kidney, especially the tubular cells. However, the effects of SUs on renal proximal tubular epithelial cells (PTECs) were unclear. METHODS: Three commonly used SUs were included in this study to investigate if different SUs have different effects on the apoptosis of PTECs. HK-2 cells were exposed to SUs for 24 h prior to exposure to 30 mM glucose, the apoptosis rate was evaluated by Annexin/PI flow cytometry. Bcl-2, Bax and the ratio of LC3II to LC3I were also studied by western blot in vitro. Diazoxide was used to evaluate the role of KATP channel in SUs-induced apoptosis of PTECs. A Student's t-test was used to assess significance for data within two groups. RESULTS: Treatment with glibenclamide aggravated the apoptosis of HK-2 cells in high-glucose, as indicated by a significant decrease in the expression of Bcl-2 and increase in Bax. Additionally, the decreased LC3II/LC3I reflects that the autophagy was inhibited by glibenclamide. Similar but less pronounced change was found in glimepiride group, however, nearly opposite effects were found in gliclazide group. Further, the effects of glibenclamide on apoptosis promotion and the decreased LC3II/LC3I were ameliorated obviously by treatment with 100uM diazoxide. The potential protection effect of gliclazide was also inhibited after opening the KATP channel. CONCLUSION: Our results suggest that, the effects of glibenclamide and glimepiride on PTECs apoptosis, especially the former, were achieved in part by closing the KATP channel. In contrast to glibenclamide and glimepiride, therapeutic concentrations of gliclazide showed an inhibitory effect on apoptosis of PTECs, which may have a benefit in the preservation of functional PTECs mass.


Assuntos
Células Epiteliais/efeitos dos fármacos , Gliclazida/farmacologia , Glibureto/farmacologia , Canais KATP/fisiologia , Compostos de Sulfonilureia/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/fisiologia , Humanos , Túbulos Renais Proximais/citologia
17.
BMC Res Notes ; 11(1): 614, 2018 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-30144824

RESUMO

OBJECTIVE: Memantine, a drug for Alzheimer's disease, is considered to suppress excessive stimulation of N-methyl-D-aspartic acid receptors and to prevent neuronal death. However, a recent report indicated that the neuronal KATP channel also can become a target of memantine. The KATP channel is a key regulator of insulin secretion in pancreatic ß cells. Therefore, if memantine could inhibit the KATP channel in pancreatic ß cells, it would be an effective drug for both Alzheimer's disease and diabetes. However, there is no report on the effect of memantine on the KATP channel in pancreatic ß cells. Therefore, we investigated whether memantine affect the blood glucose level, insulin secretion and KATP channel activity in pancreatic ß cells. RESULTS: An intraperitoneal glucose tolerance test was performed with or without memantine (1 mg/kg) injection in intact mice. Insulin secretion from isolated islets was measured under low (2 mM) and high (20 mM) glucose concentrations with or without memantine (1 µM). The effect of memantine (1 µM) on KATP channel currents in isolated pancreatic ß cells was recorded using the whole-cell patch-clamp technique. Memantine had no effect on the blood glucose level, insulin secretion from isolated islets or KATP channel current in pancreatic ß cells.


Assuntos
Dopaminérgicos/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Canais KATP/efeitos dos fármacos , Memantina/farmacologia , Animais , Glucose , Insulina , Ilhotas Pancreáticas , Japão , Canais KATP/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
18.
Semin Perinatol ; 42(4): 221-227, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29880312

RESUMO

Forty years ago, non-steroidal anti-inflammatory drugs were first reported to decrease systemic prostaglandin levels and promote ductus arteriosus (DA) closure. And yet, prolonged patency of the DA (PDA) remains a significant clinical problem, complicated by imperfect therapies and wide variations in treatment strategy. There are few pharmacology-based tools available for treating PDA (indomethacin, ibuprofen, and acetaminophen), or for maintaining DA patency (PGE1) as is needed to facilitate corrective surgery for ductus-dependent congenital heart defects. Unfortunately, all of these treatments are inefficient and are associated with concerning adverse effects. This review highlights novel potential DA drug targets that may expand our therapeutic repertoire beyond the prostaglandin pathway.


Assuntos
Permeabilidade do Canal Arterial/tratamento farmacológico , Canal Arterial/efeitos dos fármacos , Canais KATP/efeitos dos fármacos , Grau de Desobstrução Vascular/efeitos dos fármacos , Acetaminofen/farmacologia , Acetaminofen/uso terapêutico , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/uso terapêutico , Canal Arterial/fisiopatologia , Permeabilidade do Canal Arterial/fisiopatologia , Humanos , Ibuprofeno/farmacologia , Ibuprofeno/uso terapêutico , Indometacina/farmacologia , Indometacina/uso terapêutico , Recém-Nascido , Recém-Nascido Prematuro , Canais KATP/fisiologia , Modelos Animais , Estudo de Prova de Conceito , Grau de Desobstrução Vascular/fisiologia
19.
Acta Pharmacol Sin ; 39(5): 683-694, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29671418

RESUMO

ATP-sensitive potassium (KATP) channels are ubiquitously expressed on the plasma membrane of cells in multiple organs, including the heart, pancreas and brain. KATP channels play important roles in controlling and regulating cellular functions in response to metabolic state, which are inhibited by ATP and activated by Mg-ADP, allowing the cell to couple cellular metabolic state (ATP/ADP ratio) to electrical activity of the cell membrane. KATP channels mediate insulin secretion in pancreatic islet beta cells, and controlling vascular tone. Under pathophysiological conditions, KATP channels play cytoprotective role in cardiac myocytes and neurons during ischemia and/or hypoxia. KATP channel is a hetero-octameric complex, consisting of four pore-forming Kir6.x and four regulatory sulfonylurea receptor SURx subunits. These subunits are differentially expressed in various cell types, thus determining the sensitivity of the cells to specific channel modifiers. Sulfonylurea class of antidiabetic drugs blocks KATP channels, which are neuroprotective in stroke, can be one of the high stoke risk factors for diabetic patients. In this review, we discussed the potential effects of KATP channel blockers when used under pathological conditions related to diabetics and cerebral ischemic stroke.


Assuntos
Infarto Cerebral/prevenção & controle , Diabetes Mellitus/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Canais KATP/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Animais , Infarto Cerebral/fisiopatologia , Diabetes Mellitus/fisiopatologia , Humanos , Hipoglicemiantes/efeitos adversos , Canais KATP/fisiologia , Bloqueadores dos Canais de Potássio/efeitos adversos , Compostos de Sulfonilureia/efeitos adversos , Compostos de Sulfonilureia/uso terapêutico
20.
J Pharm Pharmacol ; 70(4): 507-515, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29380385

RESUMO

OBJECTIVES: The main purpose of this study was to assess the role of l-arginine/SNAP/NO/cGMP/KATP channel pathway in analgesic effects of α-terpineol in mice. METHODS: Male NMRI mice were pretreated intraperitoneally with NO precursor (l-arginine, 100 mg/kg), NO synthase inhibitor (l-NAME, 30 mg/kg), NO donor (SNAP, 1 mg/kg), guanylyl cyclase inhibitor (methylene blue, 20 mg/kg), PDE inhibitor (sildenafil, 0.5 mg/kg), KATP channel blocker (glibenclamide, 10 mg/kg) and naloxone (2 mg/kg) 20 min before the administration of α-terpineol. The formalin test was performed 20 min after the administration of α-terpineol, and nociceptive responses of mice were recorded during 30 min. KEY FINDINGS: A significant and dose-dependent antinociception was produced by α-terpineol (40 and 80 mg/kg) in both the phases of formalin test. The antinociceptive effect of α-terpineol was significantly potentiated by l-arginine in the second phase while significantly antagonized by l-NAME in both phases of formalin test. Also, SNAP and sildenafil non-significantly enhanced-while methylene blue significantly diminished-the antinociceptive effect of α-terpineol in both phases of formalin test. Glibenclamide significantly reversed the α-terpineol-induced antinociception, indicating the involvement of KATP channels in antinociceptive effect of α-terpineol. CONCLUSIONS: These results indicate that the antinociceptive effect of α-terpineol is mediated through l-arginine/SNAP/NO/cGMP/KATP channel pathway.


Assuntos
Arginina/fisiologia , GMP Cíclico/fisiologia , Cicloexenos/uso terapêutico , Canais KATP/fisiologia , Monoterpenos/uso terapêutico , Óxido Nítrico/fisiologia , Medição da Dor/efeitos dos fármacos , S-Nitroso-N-Acetilpenicilamina/farmacologia , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Animais , Monoterpenos Cicloexânicos , Cicloexenos/farmacologia , Relação Dose-Resposta a Droga , Masculino , Camundongos , Monoterpenos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/antagonistas & inibidores , Dor/tratamento farmacológico , Medição da Dor/métodos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA