Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.985
Filtrar
1.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-39431324

RESUMO

The transforming growth factor beta (TGF-ß) signaling pathway is implicated in various physiological processes, including neuronal functions. In the nematode Caenorhabditis elegans, TGF-ß plays an important role in behaviors like nictation, a behavior crucial for dispersal. Through forward mutagenesis screening, we identified tax-4, a cyclic nucleotide-gated channel, as a suppressor of nictation defects in daf-7 mutants. Further investigation revealed the role of tax-4 in gustatory neurons. Furthermore, our findings indicate that the TAX-2/ TAX-4 heteromeric channel is likely to be involved in the regulation of nictation. These observations provide insights into the complexity of neuronal regulation and offer potential implications for understanding TGF-ß dysregulation, which is common in many human brain diseases.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Neurônios , Transdução de Sinais , Fator de Crescimento Transformador beta , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Neurônios/metabolismo , Mutação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Comportamento Animal , Canais Iônicos
2.
Invest Ophthalmol Vis Sci ; 65(12): 6, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39365261

RESUMO

Purpose: The purpose of this study was to assess the natural history of the foveal cone mosaic in CNGA3-associated achromatopsia (ACHM). Methods: Thirteen eyes from 10 genetically confirmed patients underwent longitudinal imaging with optical coherence tomography (OCT) and non-confocal split detection adaptive optics scanning light ophthalmoscopy (AOSLO). OCT scans assessed outer nuclear layer (ONL) thickness, foveal ellipsoid zone (EZ) disruption, and foveal hypoplasia. AOSLO images were analyzed to calculate peak foveal cone density (PCD) and mean inter-cell distance (ICD) between cones. Mixed effects models were used to analyze the rate of annual change of PCD and ICD. Results: Mean (±SD) age at visits was 29 ± 10 years, with a follow-up of 2.6 ± 1 years. There was no change in ONL thickness, degree of EZ disruption, or foveal hypoplasia over the follow-up period. We also observed a stable foveal cone mosaic using AOSLO imaging, with no significant change in PCD or ICD. Mean PCD was 15,346 cones/mm² at the mean age of 29 years old (cf. 64,000-324,000 cones/mm² in previously reported healthy controls), with a mean rate of change of -117.79 cones/mm² (0.8%) per year, P = 0.130. Mean ICD at the mean age was 13.82 µm, with a rate of change of 0.17 µm per year, P = 0.83. Conclusions: CNGA3-associated ACHM displays stable foveal cone structure over time with a similar rate of change to CNGB3-associated ACHM (2% decline per year). The stable PCD, small cohort, and large variability within the cohort means significant age associations were not detected.


Assuntos
Defeitos da Visão Cromática , Fóvea Central , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/diagnóstico por imagem , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Seguimentos , Fóvea Central/patologia , Fóvea Central/diagnóstico por imagem , Oftalmoscopia/métodos , Células Fotorreceptoras Retinianas Cones/patologia , Tomografia de Coerência Óptica/métodos , Acuidade Visual
3.
Nat Commun ; 15(1): 8230, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300080

RESUMO

The signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) regulates many ion channels. It inhibits eukaryotic cyclic nucleotide-gated (CNG) channels while activating their relatives, the hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels. The prokaryotic SthK channel from Spirochaeta thermophila shares features with CNG and HCN channels and is an established model for this channel family. Here, we show SthK activity is inhibited by PIP2. A cryo-EM structure of SthK in nanodiscs reveals a PIP2-fitting density coordinated by arginine and lysine residues from the S4 helix and the C-linker, located between voltage-sensing and pore domains of adjacent subunits. Mutation of two arginine residues weakens PIP2 inhibition with the double mutant displaying insensitivity to PIP2. We propose that PIP2 inhibits SthK by gluing S4 and S6 together, stabilizing a resting channel conformation. The PIP2 binding site is partially conserved in CNG channels suggesting the possibility of a similar inhibition mechanism in the eukaryotic homologs.


Assuntos
Microscopia Crioeletrônica , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Fosfatidilinositol 4,5-Difosfato , Spirochaeta , Fosfatidilinositol 4,5-Difosfato/metabolismo , Spirochaeta/metabolismo , Spirochaeta/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Sítios de Ligação , Ativação do Canal Iônico , Mutação , Modelos Moleculares , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Arginina/metabolismo , Arginina/química
4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(9): 1077-1083, 2024 Sep 10.
Artigo em Chinês | MEDLINE | ID: mdl-39217486

RESUMO

OBJECTIVE: To explore the molecular basis for a Chinese pedigree affected with Achromatopsia (ACHM). METHODS: A pedigree with ACHM which was admitted to the Women and Children's Hospital of Ningbo University on April 14, 2023 was selected as the study subject. Whole exome sequencing (WES) was carried out for the proband. Candidate variants were verified by Sanger sequencing and bioinformatic analysis. Related literature was reviewed, and clinical and genetic features of Chinese patients with ACHM due to variants of CNGA3 gene were summarized. RESULTS: WES revealed that the proband and his younger brother had both harbored compound heterozygous variants of the CNGA3 gene, namely c.1190G>T (p.Gly397Val) and c.2013del (p.Gly672ValfsTer69), which were respectively inherited from their mother and father. The c.1190G>T was a known pathogenic variant, whilst the c.2013del was unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.2013del variant was predicted to be likely pathogenic (PM2_Supporting+PVS1_Moderate+PM3+PP4). Literature review has identified 41 CNGA3 gene variants among 43 patients from 38 pedigrees, most of which were missense variants and had located in exon 8. Most patients were males, with nystagmus, photophobia, amblyopia and other symptoms during infancy/childhood as the main clinical manifestations, and there was a lack of genotype-phenotype correlation. CONCLUSION: The c.1190G>T (p.Gly397Val) and c.2013del (p.Gly672ValfsTer69) variants of the GNGA3 gene probably underlay the ACHM in the proband. Discovery of the c.2013del variant has enriched the mutational spectrum of the GNGA3 gene and provided a basis for genetic counseling and reproduction guidance for this pedigree.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Adulto , Criança , Feminino , Humanos , Masculino , China , Defeitos da Visão Cromática/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , População do Leste Asiático/genética , Sequenciamento do Exoma , Mutação , Linhagem
5.
Int J Mol Sci ; 25(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39337599

RESUMO

Salt stress severely inhibits plant growth. Understanding the mechanism of plant salt tolerance is highly important to improving plant salt tolerance. Previous studies have shown that nonselective cyclic nucleotide-gated ion channels (CNGCs) play an important role in plant salt tolerance. However, current research on CNGCs mainly focuses on CNGCs in glycophytic plants, and research on CNGCs in halophytes that exhibit special salt tolerance strategies is still scarce. This study used the halophilic plant Zoysia japonica, an excellent warm-season turfgrass, as the experimental material. Through bioinformatics analysis, 18 members of the CNGC family were identified in Zoysia japonica; they were designated ZjCNGC1 through ZjCNGC18 according to their scaffold-level chromosomal positions. ZjCNGCs are divided into four groups (I-IV), with the same groups having differentiated protein-conserved domains and gene structures. ZjCNGCs are unevenly distributed on 16 scaffold-level chromosomes. Compared with other species, the ZjCNGCs in Group III exhibit obvious gene expansion, mainly due to duplication of gene segments. The collinearity between ZjCNGCs, OsCNGCs, and SjCNGCs suggests that CNGCs are evolutionarily conserved among gramineous plants. However, the Group III ZjCNGCs are only partially collinear with OsCNGCs and SjCNGCs, implying that the expansion of Group III ZjCNGC genes may have been an independent event occurring in Zoysia japonica. Protein interaction prediction revealed that ZjCNGCs, calcium-dependent protein kinase, H+-ATPase, outwardly rectifying potassium channel protein, and polyubiquitin 3 interact with ZjCNGCs. Multiple stress response regulatory elements, including those involved in salt stress, are present on the ZjCNGC promoter. The qPCR results revealed differences in the expression patterns of ZjCNGCs in different parts of the plant. Under salt stress conditions, the expression of ZjCNGCs was significantly upregulated in roots and leaves, with ZjCNGC8 and ZjCNGC13 showing the greatest increase in expression in the roots. These results collectively suggest that ZjCNGCs play an important role in salt tolerance and that their expansion into Group III may be a special mechanism underlying the salt tolerance of Zoysia japonica.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas , Poaceae , Estresse Salino , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Salino/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Poaceae/genética , Poaceae/metabolismo , Tolerância ao Sal/genética , Genoma de Planta , Plantas Tolerantes a Sal/genética , Perfilação da Expressão Gênica , Cromossomos de Plantas/genética
6.
Int J Mol Sci ; 25(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39273686

RESUMO

Achromatopsia is the most common cone dysfunction syndrome, affecting 1 in 30,000 people. It is an autosomal recessive disorder with a heterogeneous genetic background with variants reported in CNGA3, CNGB3, GNAT2, PDE6C, PDE6H, and ATF6. Up to 90% of achromatopsia patients harbour mutations in CNGA3 or CNB3, which encode for the alpha and beta subunits of the cone cyclic nucleotide-gated (CNG) channel in cone-specific phototransduction. The condition presents at birth or early infancy with poor visual acuity, nystagmus, photophobia, and colour vision loss in all axes. Multimodal retinal imaging has provided insightful information to characterise achromatopsia patients based on their genotype. There is no FDA-approved treatment for achromatopsia; however, studies have reported several preclinical gene therapies with anatomical and functional improvements reported in vivo. There are currently five gene therapy clinical trials registered for human patients at the phase I/II stage and for CNGA3 or CNGB3 causing achromatopsia. This review aims to discuss the genetics of achromatopsia, genotypic and phenotypic correlations in multimodal retinal imaging, and the developments and challenges in gene therapy clinical trials.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Terapia Genética , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Humanos , Terapia Genética/métodos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Mutação , Animais , Ensaios Clínicos como Assunto
7.
Retina ; 44(10): 1836-1844, 2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39287548

RESUMO

PURPOSE: To ascertain the characteristics of achromatopsia (ACHM) in Japan by analyzing the genetic and phenotypic features of patients with ACHM. METHODS: The medical records of 52 patients from 47 Japanese families who were clinically diagnosed with ACHM were reviewed in this retrospective observational study. RESULTS: Thirty-six causative variants of ACHM were identified in 26 families via whole-exome sequencing: PDE6C (12 families), CNGA3 (10 families), CNGB3 (two families), and GNAT2 (two families). However, none of the 6 causative variants that are known to cause ACHM, or the 275 other genes listed in RetNet, were observed in 19 families. A significant trend toward older age and worsening of ellipsoid zone disruption on optical coherence tomography images was observed (P < 0.01). Progressive ellipsoid zone disruptions were observed in 13 eyes of seven patients during the follow-up visits. These patients harbored one or more variants in PDE6C. CONCLUSION: The ACHM phenotype observed in this study was similar to those observed in previous reports; however, the causative gene variants differed from those in Europe. The low identification ratio of causative genes in whole-exome sequencing suggests the presence of unique hotspots in Japanese patients with ACHM that were not detectable via ordinal whole-exome sequencing.


Assuntos
Defeitos da Visão Cromática , Sequenciamento do Exoma , Tomografia de Coerência Óptica , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/diagnóstico , Masculino , Feminino , Estudos Retrospectivos , Japão/epidemiologia , Adulto , Pessoa de Meia-Idade , Criança , Adolescente , Adulto Jovem , Mutação , Linhagem , Acuidade Visual , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Fenótipo , Pré-Escolar , Proteínas do Olho/genética , Idoso , Eletrorretinografia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Análise Mutacional de DNA
8.
J Physiol ; 602(19): 4889-4905, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39167717

RESUMO

Mammalian olfactory sensory neurons (OSNs) generate an odorant-induced response by sequentially activating two ion channels, which are in their ciliary membranes. First, a cationic, Ca2+-permeable cyclic nucleotide-gated channel is opened following odorant stimulation via a G protein-coupled transduction cascade and an ensuing rise in cAMP. Second, the increase in ciliary Ca2+ opens the excitatory Ca2+-activated Cl- channel TMEM16B, which carries most of the odorant-induced receptor current. While the role of TMEM16B in amplifying the response has been well established, it is less understood how this secondary ion channel contributes to response kinetics and action potential generation during single as well as repeated stimulation and, on the other hand, which response properties the cyclic nucleotide-gated (CNG) channel determines. We first demonstrate that basic membrane properties such as input resistance, resting potential and voltage-gated currents remained unchanged in OSNs that lack TMEM16B. The CNG channel predominantly determines the response delay and adaptation during odorant exposure, while the absence of the Cl- channels shortens both the time the response requires to reach its maximum and the time to terminate after odorant stimulation. This faster response termination in Tmem16b knockout OSNs allows them, somewhat counterintuitively despite the large reduction in receptor current, to fire action potentials more reliably when stimulated repeatedly in rapid succession, a phenomenon that occurs both in isolated OSNs and in OSNs within epithelial slices. Thus, while the two olfactory ion channels act in concert to generate the overall response, each one controls specific aspects of the odorant-induced response. KEY POINTS: Mammalian olfactory sensory neurons (OSNs) generate odorant-induced responses by activating two ion channels sequentially in their ciliary membranes: a Na+, Ca2⁺-permeable cyclic nucleotide-gated (CNG) channel and the Ca2⁺-activated Cl⁻ channel TMEM16B. The CNG channel controls response delay and adaptation during odorant exposure, while TMEM16B amplifies the response and influences the time required for the response to reach its peak and terminate. OSNs lacking TMEM16B display faster response termination, allowing them to fire action potentials more reliably during rapid repeated stimulation. The CNG and TMEM16B channels have distinct and complementary roles in shaping the kinetics and reliability of odorant-induced responses in OSNs.


Assuntos
Anoctaminas , Neurônios Receptores Olfatórios , Animais , Anoctaminas/metabolismo , Neurônios Receptores Olfatórios/fisiologia , Camundongos , Potenciais de Ação/fisiologia , Cálcio/metabolismo , Camundongos Knockout , Canais de Cloreto/metabolismo , Canais de Cloreto/fisiologia , Camundongos Endogâmicos C57BL , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Odorantes
9.
FASEB J ; 38(17): e70021, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39215566

RESUMO

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Estresse do Retículo Endoplasmático , Retículo Endoplasmático , Células Fotorreceptoras Retinianas Cones , Ubiquitina-Proteína Ligases , Animais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Cones/patologia , Camundongos , Retículo Endoplasmático/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Degradação Associada com o Retículo Endoplasmático , Camundongos Knockout , Camundongos Endogâmicos C57BL
10.
Brain Res Bull ; 215: 111026, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38971478

RESUMO

Achromatopsia is an inherited retinal disease that affects 1 in 30,000-50,000 individuals and is characterised by an absence of functioning cone photoreceptors from birth. This results in severely reduced visual acuity, no colour vision, marked sensitivity to light and involuntary oscillations of the eyes (nystagmus). In most cases, a single gene mutation prevents normal development of cone photoreceptors, with mutations in the CNGB3 or CNGA3 gene being responsible for ∼80 % of all patients with achromatopsia. There are a growing number of studies investigating recovery of cone function after targeted gene therapy. These studies have provided some promise for patients with the CNGA3 mutation, but thus far have found limited or no recovery for patients with the CNGB3 mutation. Here, we developed colour-calibrated visual stimuli designed to isolate cone photoreceptor responses. We combined these with adapted fMRI techniques and pRF mapping to identify if cortical responses to cone-driven signals could be detected in 9 adult patients with the CNGB3 mutation after receiving gene therapy. We did not detect any change in brain activity after gene therapy when the 9 patients were analysed as a group. However, on an individual basis, one patient self-reported a change in colour perception, corroborated by improved performance on a psychophysical task designed to selectively identify cone function. This suggests a level of cone sensitivity that was lacking pre-treatment, further supported by a subtle but reliable change in cortical activity within their primary visual cortex.


Assuntos
Defeitos da Visão Cromática , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Terapia Genética , Imageamento por Ressonância Magnética , Mutação , Células Fotorreceptoras Retinianas Cones , Humanos , Adulto , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/terapia , Defeitos da Visão Cromática/fisiopatologia , Terapia Genética/métodos , Masculino , Imageamento por Ressonância Magnética/métodos , Feminino , Mutação/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Células Fotorreceptoras Retinianas Cones/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Estimulação Luminosa/métodos , Percepção de Cores/fisiologia , Córtex Visual/diagnóstico por imagem
11.
Retina ; 44(11): 2019-2025, 2024 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-39024658

RESUMO

PURPOSE: Achromatopsia (ACHM) is a genetically heterogenous relatively stationary congenital autosomal recessive cone disorder characterized typically by photophobia, low vision, nystagmus, hyperopia, grossly normal retinal appearance, and absent photopic responses by full-field electroretinography. Incomplete forms occur as well. This study investigates the genetic basis of clinically suspected ACHM in the United Arab Emirates. METHODS: Retrospective case series (January 2016-December 2023) of patients with (1) clinically suspected ACHM or (2) mutations in ACHM-associated genes ( CNGA3 , CNGB3 , GNAT2 , PDE6C , PDE6H , AT6 ). RESULTS: Twenty-two clinically suspected patients (19 probands) were identified. Biallelic disease genes and the number of probands were CNGA3 (9), CNGB3 (6), PDE6C (1), GNAT2 (1), RGS9BP (1), and CNNM4 (1). Some mutant alleles were recurrent across different families. Two probands had their diagnoses revised after genetic testing and phenotypic reassessment to RGS9BP -related bradyopsia and CNNM4 -related Jalili syndrome. Three additional cases (making 22 total probands) were identified from ACHM gene mutation review-one each related to PDE6C , to AT6 , and to CNGB3 in concert with CNGA3 (triallelic disease). All three presented with macular discoloration, an atypical finding for classic ACHM. CONCLUSION: CNGA3 was the single most frequent implicated gene. Bradyopsia and Jalili syndrome can resemble incomplete ACHM. Recurrent mutant alleles may represent founder effects. Macular discoloration on presentation can occur in PDE6C -related disease, AT6 -related disease, and triallelic CNGB3 / CNGA3 -related disease. The possibility for triallelic disease exists and requires genetic counseling beyond that of simple autosomal recessive inheritance.


Assuntos
Defeitos da Visão Cromática , Eletrorretinografia , Mutação , Humanos , Defeitos da Visão Cromática/genética , Defeitos da Visão Cromática/diagnóstico , Defeitos da Visão Cromática/fisiopatologia , Estudos Retrospectivos , Masculino , Feminino , Criança , Adolescente , Emirados Árabes Unidos/epidemiologia , Adulto , Adulto Jovem , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Pré-Escolar , Análise Mutacional de DNA , Proteínas do Olho/genética , Linhagem , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Pessoa de Meia-Idade , Testes Genéticos
12.
Proc Natl Acad Sci U S A ; 121(25): e2321228121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857399

RESUMO

Ciliary defects are linked to ciliopathies, but impairments in the sensory cilia of Caenorhabditis elegans neurons extend lifespan, a phenomenon with previously unclear mechanisms. Our study reveals that neuronal cilia defects trigger the unfolded protein response of the endoplasmic reticulum (UPRER) within intestinal cells, a process dependent on the insulin/insulin-like growth factor 1 (IGF-1) signaling transcription factor and the release of neuronal signaling molecules. While inhibiting UPRER doesn't alter the lifespan of wild-type worms, it normalizes the extended lifespan of ciliary mutants. Notably, deactivating the cyclic nucleotide-gated (CNG) channel TAX-4 on the ciliary membrane promotes lifespan extension through a UPRER-dependent mechanism. Conversely, constitutive activation of TAX-4 attenuates intestinal UPRER in ciliary mutants. Administering a CNG channel blocker to worm larvae activates intestinal UPRER and increases adult longevity. These findings suggest that ciliary dysfunction in sensory neurons triggers intestinal UPRER, contributing to lifespan extension and implying that transiently inhibiting ciliary channel activity may effectively prolong lifespan.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cílios , Longevidade , Resposta a Proteínas não Dobradas , Animais , Caenorhabditis elegans/metabolismo , Cílios/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Intestinos/citologia , Transdução de Sinais , Neurônios/metabolismo , Retículo Endoplasmático/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mucosa Intestinal/metabolismo
13.
Plant Cell ; 36(10): 4356-4371, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38875155

RESUMO

Plants respond to cold stress at multiple levels, including increasing cytosolic calcium (Ca2+) influx and triggering the expression of cold-responsive genes. In this study, we show that the Ca2+-permeable channel CYCLIC NUCLEOTIDE-GATED CHANNEL20 (CNGC20) positively regulates freezing tolerance in Arabidopsis (Arabidopsis thaliana) by mediating cold-induced Ca2+ influx. Moreover, we demonstrate that the leucine-rich repeat receptor-like kinase PLANT PEPTIDE CONTAINING SULFATED TYROSINE1 RECEPTOR (PSY1R) is activated by cold, phosphorylating and enhancing the activity of CNGC20. The psy1r mutant exhibits decreased cold-evoked Ca2+ influx and freezing tolerance. Conversely, COLD-RESPONSIVE PROTEIN KINASE1 (CRPK1), a protein kinase that negatively regulates cold signaling, phosphorylates and facilitates the degradation of CNGC20 under prolonged periods of cold treatment, thereby attenuating freezing tolerance. This study thus identifies PSY1R and CRPK1 kinases that regulate CNGC20 activity and stability, respectively, thereby antagonistically modulating freezing tolerance in plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cálcio , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Congelamento , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Cálcio/metabolismo , Regulação da Expressão Gênica de Plantas
14.
Ophthalmic Res ; 67(1): 301-310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705136

RESUMO

INTRODUCTION: Retinitis pigmentosa (RP), a heterogeneous inherited retinal disorder causing gradual vision loss, affects over 1 million people worldwide. Pathogenic variants in CNGA1 and CNGB1 genes, respectively, accounting for 1% and 4% of cases, impact the cyclic nucleotide-gated channel in rod photoreceptor cells. The aim of this study was to describe and compare genotypic and clinical characteristics of a cohort of patients with CNGA1- or CNGB1-related RP and to explore potential genotype-phenotype correlations. METHODS: The following data from patients with CNGA1- or CNGB1-related RP, followed in five Italian inherited retinal degenerations services, were retrospectively collected: genetic variants in CNGA1 and CNGB1, best-corrected visual acuity (BCVA), ellipsoid zone (EZ) width, fundus photographs, and short-wavelength fundus autofluorescence (SW-AF) images. Comparisons and correlation analyses were performed by first dividing the cohort in two groups according to the gene responsible for the disease (CNGA1 and CNGB1 groups). In parallel, the whole cohort of RP patients was divided into two other groups, according to the expected impact of the variants at protein level (low and high group). RESULTS: In total, 29 patients were recruited, 11 with CNGA1- and 18 with CNGB1-related RP. In both CNGA1 and CNGB1, 5 novel variants in CNGA1 and 5 in CNGB1 were found. BCVA was comparable between CNGA1 and CNGB1 groups, as well as between low and high groups. CNGA1 group had a larger mean EZ width compared to CNGB1 group, albeit not statistically significant, while EZ width did not differ between low and high groups A statistically significant correlation between EZ width and BCVA as well as between EZ width and age were observed in the whole cohort of RP patients. Fundus photographs of all patients in the cohort showed classic RP pattern, and in SW-AF images an hyperautofluorescent ring was observed in 14/21 patients. CONCLUSION: Rod CNG channel-associated RP was demonstrated to be a slowly progressive disease in both CNGA1- and CNGB1-related forms, making it an ideal candidate for gene augmentation therapies.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Genótipo , Fenótipo , Retinose Pigmentar , Acuidade Visual , Humanos , Retinose Pigmentar/genética , Retinose Pigmentar/diagnóstico , Retinose Pigmentar/fisiopatologia , Masculino , Feminino , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estudos Retrospectivos , Pessoa de Meia-Idade , Adulto , Adulto Jovem , Adolescente , Eletrorretinografia , Tomografia de Coerência Óptica/métodos , Idoso , Mutação , Criança , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Angiofluoresceinografia/métodos , Estudos de Associação Genética , Análise Mutacional de DNA , Linhagem , DNA/genética
15.
Plant Sci ; 345: 112111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38734143

RESUMO

Cyclic Nucleotide-Gated Channels (CNGCs) serve as Ca2+ permeable cation transport pathways, which are involved in the regulation of various biological functions such as plant cell ion selective permeability, growth and development, responses to biotic and abiotic stresses. At the present study, a total of 31 CNGC genes were identified and bioinformatically analyzed in kenaf. Among these genes, HcCNGC21 characterized to localize at the plasma membrane, with the highest expression levels in leaves, followed by roots. In addition, HcCNGC21 could be significantly induced under salt or drought stress. Virus-induced gene silencing (VIGS) of HcCNGC21 in kenaf caused notable growth inhibition under salt or drought stress, characterized by reductions in plant height, stem diameter, leaf area, root length, root surface area, and root tip number. Meanwhile, the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were significantly decreased, accompanied by reduced levels of osmoregulatory substances and total chlorophyll content. However, ROS accumulation and Na+ content increased. The expression of stress-responsive genes, such as HcSOD, HcPOD, HcCAT, HcERF3, HcNAC29, HcP5CS, HcLTP, and HcNCED, was significantly downregulated in these silenced lines. However, under salt or drought stress, the physiological performance and expression of stress-related genes in transgenic Arabidopsis thaliana plants overexpressing HcCNGC21 were diametrically opposite to those of TRV2-HcCNGC21 kenaf line. Yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HcCNGC21 interacts with HcAnnexin D1. These findings collectively underscore the positive role of HcCNGC21 in plant resistance to salt and drought stress.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Hibiscus , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hibiscus/genética , Hibiscus/fisiologia , Hibiscus/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética
16.
ACS Chem Neurosci ; 15(8): 1652-1668, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579109

RESUMO

In treating retinitis pigmentosa, a genetic disorder causing progressive vision loss, selective inhibition of rod cyclic nucleotide-gated (CNG) channels holds promise. Blocking the increased Ca2+-influx in rod photoreceptors through CNG channels can potentially delay disease progression and improve the quality of life for patients. To find inhibitors for rod CNG channels, we investigated the impact of 16 cGMP analogues on both rod and cone CNG channels using the patch-clamp technique. Although modifications at the C8 position of the guanine ring did not change the ligand efficacy, modifications at the N1 and N2 positions rendered cGMP largely ineffective in activating retinal CNG channels. Notably, PET-cGMP displayed selective potential, favoring rod over cone, whereas Rp-cGMPS showed greater efficiency in activating cone over rod CNG channels. Ligand docking and molecular dynamics simulations on cyclic nucleotide-binding domains showed comparable binding energies and binding modes for cGMP and its analogues in both rod and cone CNG channels (CNGA1 vs CNGA3 subunits). Computational experiments on CNGB1a vs CNGB3 subunits showed similar binding modes albeit with fewer amino acid interactions with cGMP due to an inactivated conformation of their C-helix. In addition, no clear correlation could be observed between the computational scores and the CNG channel efficacy values, suggesting additional factors beyond binding strength determining ligand selectivity and potency. This study highlights the importance of looking beyond the cyclic nucleotide-binding domain and toward the gating mechanism when searching for selective modulators. Future efforts in developing selective modulators for CNG channels should prioritize targeting alternative channel domains.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Qualidade de Vida , Humanos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ligantes , Retina/metabolismo , Nucleotídeos Cíclicos , GMP Cíclico/metabolismo
17.
Biophys J ; 123(14): 2176-2184, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38678368

RESUMO

Ion channels of the cyclic nucleotide-binding domain (CNBD) family play a crucial role in the regulation of key biological processes, such as photoreception and pacemaking activity in the heart. These channels exhibit high sequence and structural similarity but differ greatly in their functional responses to membrane potential. The CNBD family includes hyperpolarization-activated ion channels and depolarization-activated ether-à-go-go channels. Structural and functional studies show that the differences in the coupling interface between these two subfamilies' voltage-sensing domain and pore domain may underlie their differential response to membrane polarity. However, other structural components may also contribute to defining the polarity differences in activation. Here, we focus on the role of the C-terminal domain, which interacts with elements in both the pore and voltage-sensing domains. By generating a series of chimeras involving the C-terminal domain derived from distant members of the CNBD family, we find that the nature of the C-termini profoundly influences the gating polarity of these ion channels. Scanning mutagenesis of the C-linker region, a helix-turn-helix motif connecting the pore helix to the CNBD, reveals that residues at the intersubunit interface between the C-linkers are crucial for hyperpolarization-dependent activation. These findings highlight the unique and unexpected role of the intersubunit interface of the C-linker region in regulating the gating polarity of voltage-gated ion channels.


Assuntos
Ativação do Canal Iônico , Domínios Proteicos , Animais , Sequência de Aminoácidos , Humanos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética
18.
Plant Physiol Biochem ; 210: 108593, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615446

RESUMO

Cyclic nucleotide-gated ion channels (CNGCs), as non-selective cation channels, play essential roles in plant growth and stress responses. However, they have not been identified in Qingke (Hordeum vulgare L.). Here, we performed a comprehensive genome-wide identification and function analysis of the HvCNGC gene family to determine its role in drought tolerance. Phylogenetic analysis showed that 27 HvCNGC genes were divided into four groups and unevenly located on seven chromosomes. Transcription analysis revealed that two closely related members of HvCNGC3 and HvCNGC16 were highly induced and the expression of both genes were distinctly different in two extremely drought-tolerant materials. Transient expression revealed that the HvCNGC3 and HvCNGC16 proteins both localized to the plasma membrane and karyotheca. Overexpression of HvCNGC3 and HvCNGC16 in Arabidopsis thaliana led to impaired seed germination and seedling drought tolerance, which was accompanied by higher hydrogen peroxide (H2O2), malondialdehyde (MDA), proline accumulation and increased cell damage. In addition, HvCNGC3 and HvCNGC16-overexpression lines reduced ABA sensitivity, as well as lower expression levels of some ABA biosynthesis and stress-related gene in transgenic lines. Furthermore, Yeast two hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays revealed that HvCNGC3 and HvCNGC16 interacted with calmodulin/calmodulin-like proteins (CaM/CML), which, as calcium sensors, participate in the perception and decoding of intracellular calcium signaling. Thus, this study provides information on the CNGC gene family and provides insight into the function and potential regulatory mechanism of HvCNGC3 and HvCNGC16 in drought tolerance in Qingke.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Resistência à Seca , Hordeum , Ácido Abscísico/metabolismo , Arabidopsis/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Hordeum/genética , Hordeum/fisiologia
19.
Invest Ophthalmol Vis Sci ; 65(3): 10, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38466291

RESUMO

Purpose: This study aimed to investigate the role of the long non-coding RNA (lncRNA) NEAT1 in corneal epithelial wound healing in mice. Methods: The central corneal epithelium of wild-type (WT), MALAT1 knockout (M-KO), NEAT1 knockout (N-KO), and NEAT1 knockdown (N-KD) mice was scraped to evaluate corneal epithelial and nerve regeneration rates. RNA sequencing of the corneal epithelium from WT and N-KO mice was performed 24 hours after debridement to determine the role of NEAT1. Quantitative PCR (qPCR) and ELISA were used to confirm the bioinformatic analysis. The effects of the cAMP signaling pathway were evaluated in N-KO and N-KD mice using SQ22536, an adenylate cyclase inhibitor. Results: Central corneal epithelial debridement in N-KO mice significantly promoted epithelial and nerve regeneration rates while suppressing inflammatory cell infiltration. Furthermore, the expression of Atp1a2, Ppp1r1b, Calm4, and Cngb1, which are key components of the cAMP signaling pathway, was upregulated in N-KO mice, indicative of its activation. Furthermore, the cAMP pathway inhibitor SQ22536 reversed the accelerated corneal epithelial wound healing in both N-KO and N-KD mice. Conclusions: NEAT1 deficiency contributes to epithelial repair during corneal wound healing by activating the cAMP signaling pathway, thereby highlighting a potential therapeutic strategy for corneal epithelial diseases.


Assuntos
Doenças da Córnea , Lesões da Córnea , Epitélio Corneano , Animais , Camundongos , Córnea , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Proteínas do Tecido Nervoso , ATPase Trocadora de Sódio-Potássio , Cicatrização
20.
Plant Physiol Biochem ; 208: 108522, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38493663

RESUMO

In staple crops, such as rice (Oryza sativa L.), pollen plays a crucial role in seed production. However, the molecular mechanisms underlying rice pollen germination and tube growth remain underexplored. Notably, we recently uncovered the redundant expression and mutual interaction of two rice genes encoding cyclic nucleotide-gated channels (CNGCs), OsCNGC4 and OsCNGC5, in mature pollen. Building on these findings, the current study focused on clarifying the functional roles of these two genes in pollen germination and tube growth. To overcome functional redundancy, we produced gene-edited rice plants with mutations in both genes using the CRISPR-Cas9 system. The resulting homozygous OsCNGC4 and OsCNGC5 gene-edited mutants (oscngc4/5) exhibited significantly lower pollen germination rates than the wild type (WT), along with severely reduced fertility. Transcriptome analysis of the double oscngc4/5 mutant revealed downregulation of genes related to receptor kinases, transporters, and cell wall metabolism. To identify the direct regulators of OsCNGC4, which form a heterodimer with OsCNGC5, we screened a yeast two-hybrid library containing rice cDNAs from mature anthers. Subsequently, we identified two calmodulin isoforms (CaM1-1 and CaM1-2), NETWORKED 2 A (NET2A), and proline-rich extension-like receptor kinase 13 (PERK13) proteins as interactors of OsCNGC4, suggesting its roles in regulating Ca2+ channel activity and F-actin organization. Overall, our results suggest that OsCNGC4 and OsCNGC5 may play critical roles in pollen germination and elongation by regulating the Ca2+ gradient in growing pollen tubes.


Assuntos
Oryza , Oryza/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Germinação/genética , Pólen/metabolismo , Tubo Polínico/genética , Calmodulina/genética , Calmodulina/metabolismo , Fosfotransferases , Nucleotídeos Cíclicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA