Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.306
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731855

RESUMO

The thermo- and pain-sensitive Transient Receptor Potential Melastatin 3 and 8 (TRPM3 and TRPM8) ion channels are functionally associated in the lipid rafts of the plasma membrane. We have already described that cholesterol and sphingomyelin depletion, or inhibition of sphingolipid biosynthesis decreased the TRPM8 but not the TRPM3 channel opening on cultured sensory neurons. We aimed to test the effects of lipid raft disruptors on channel activation on TRPM3- and TRPM8-expressing HEK293T cells in vitro, as well as their potential analgesic actions in TRPM3 and TRPM8 channel activation involving acute pain models in mice. CHO cell viability was examined after lipid raft disruptor treatments and their effects on channel activation on channel expressing HEK293T cells by measurement of cytoplasmic Ca2+ concentration were monitored. The effects of treatments were investigated in Pregnenolone-Sulphate-CIM-0216-evoked and icilin-induced acute nocifensive pain models in mice. Cholesterol depletion decreased CHO cell viability. Sphingomyelinase and methyl-beta-cyclodextrin reduced the duration of icilin-evoked nocifensive behavior, while lipid raft disruptors did not inhibit the activity of recombinant TRPM3 and TRPM8. We conclude that depletion of sphingomyelin or cholesterol from rafts can modulate the function of native TRPM8 receptors. Furthermore, sphingolipid cleavage provided superiority over cholesterol depletion, and this method can open novel possibilities in the management of different pain conditions.


Assuntos
Cricetulus , Modelos Animais de Doenças , Esfingomielina Fosfodiesterase , Canais de Cátion TRPM , beta-Ciclodextrinas , Animais , Esfingomielina Fosfodiesterase/metabolismo , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Camundongos , Humanos , Células CHO , beta-Ciclodextrinas/farmacologia , Células HEK293 , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Dor/tratamento farmacológico , Dor/metabolismo , Colesterol/metabolismo , Masculino , Analgésicos/farmacologia , Analgésicos/uso terapêutico , Pregnenolona/farmacologia , Sobrevivência Celular/efeitos dos fármacos
2.
Nucleic Acids Res ; 52(8): 4409-4421, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587197

RESUMO

Gene fusions and their chimeric products are commonly linked with cancer. However, recent studies have found chimeric transcripts in non-cancer tissues and cell lines. Large-scale efforts to annotate structural variations have identified gene fusions capable of generating chimeric transcripts even in normal tissues. In this study, we present a bottom-up approach targeting population-specific chimeric RNAs, identifying 58 such instances in the GTEx cohort, including notable cases such as SUZ12P1-CRLF3, TFG-ADGRG7 and TRPM4-PPFIA3, which possess distinct patterns across different ancestry groups. We provide direct evidence for an additional 29 polymorphic chimeric RNAs with associated structural variants, revealing 13 novel rare structural variants. Additionally, we utilize the All of Us dataset and a large cohort of clinical samples to characterize the association of the SUZ12P1-CRLF3-causing variant with patient phenotypes. Our study showcases SUZ12P1-CRLF3 as a representative example, illustrating the identification of elusive structural variants by focusing on those producing population-specific fusion transcripts.


Assuntos
Fusão Gênica , Humanos , Proteínas de Neoplasias/genética , Polimorfismo Genético , Proteínas de Fusão Oncogênica/genética , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , RNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Canais de Cátion TRPM/genética , Neoplasias/genética
3.
Cell Calcium ; 120: 102886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631163

RESUMO

Neurodevelopment, a complex and highly regulated process, plays a foundational role in shaping the structure and function of the nervous system. The transient receptor potential melastatin 7 (TRPM7), a divalent cation channel with an α-kinase domain, mediates a wide range of cellular functions, including proliferation, migration, cell adhesion, and survival, all of which are essential processes in neurodevelopment. The global knockout of either TRPM7 or TRPM7-kinase is embryonically lethal, highlighting the crucial role of TRPM7 in development in vivo. Subsequent research further revealed that TRPM7 is indeed involved in various key processes throughout neurodevelopment, from maintaining pluripotency during embryogenesis to regulating gastrulation, neural tube closure, axonal outgrowth, synaptic density, and learning and memory. Moreover, a discrepancy in TRPM7 expression and/or function has been associated with neuropathological conditions, including ischemic stroke, Alzheimer's disease, and Parkinson's disease. Understanding the mechanisms of proper neurodevelopment may provide us with the knowledge required to develop therapeutic interventions that can overcome the challenges of regeneration in CNS injuries and neurodegenerative diseases. Considering that ion channels are the third-largest class targeted for drug development, TRPM7's dual roles in development and degeneration emphasize its therapeutic potential. This review provides a comprehensive overview of the current literature on TRPM7 in various aspects of neurodevelopment. It also discusses the links between neurodevelopment and neurodegeneration, and highlights TRPM7 as a potential therapeutic target for neurodegenerative disorders, with a focus on repair and regeneration.


Assuntos
Doenças Neurodegenerativas , Canais de Cátion TRPM , Humanos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Animais , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurogênese , Proteínas Serina-Treonina Quinases/metabolismo
4.
Neurosci Lett ; 828: 137763, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38574849

RESUMO

The role of the hypothalamic cold-sensitive ion channels - transient receptor potential melastatin 8 (TRPM8) and transient receptor potential ankyrin 1 (TRPA1) in homeostatic systems of thermoregulation and water-salt balance - is not clear. The interaction of homeostatic systems of thermoregulation and water-salt balance without additional temperature load did not receive due attention, too. On the models of water-balance disturbance, we tried to elucidate some aspect of these problems. Body temperature (Tbody), O2 consumption, CO2 excretion, electrical muscle activity (EMA), temperature of tail skin (Ttail), plasma osmolality, as well as gene expression of hypothalamic TRPM8 and TRPA1 have been registered in rats of 3 groups: control; water-deprived (3 days under dry-eating); and hyperhydrated (6 days without dry food, drinking liquid 4 % sucrose). No relationship was observed between plasma osmolality and gene expression of Trpm8 and Trpa1. In water-deprived rats, the constriction of skin vessels, increased fat metabolism by 10 % and increased EMA by 48 % allowed the animals to maintain Tbody unchanged. The hyperhydrated rats did not develop sufficient mechanisms, and their Tbody decreased by 0.8 °C. The development of reactions was correlated with the expression of genes of thermosensitive ion channels in the anterior hypothalamus. Ttail had a direct correlation with the expression of the Trpm8 gene, whereas EMA directly correlated with the expression of the Trpa1 gene in water-deprived group. The obtained data attract attention from the point of view of management and correction of physiological functions by modulating the ion channel gene expression.


Assuntos
Canais de Cátion TRPM , Canais de Potencial de Receptor Transitório , Ratos , Animais , Canais de Potencial de Receptor Transitório/metabolismo , Temperatura , Canais de Cátion TRPM/metabolismo , Canal de Cátion TRPA1/metabolismo , Temperatura Baixa , Regulação da Temperatura Corporal , Proteínas do Citoesqueleto/metabolismo
5.
Ecotoxicol Environ Saf ; 276: 116318, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626609

RESUMO

Perfluorooctane sulfonate (PFOS), an officially listed persistent organic pollutant, is a widely distributed perfluoroalkyl substance. Epidemiological studies have shown that PFOS is intimately linked to the occurrence of insulin resistance (IR). However, the detailed mechanism remains obscure. In previous studies, we found that mitochondrial calcium overload was concerned with hepatic IR induced by PFOS. In this study, we found that PFOS exposure noticeably raised lysosomal calcium in L-02 hepatocytes from 0.5 h. In the PFOS-cultured L-02 cells, inhibiting autophagy alleviated lysosomal calcium overload. Inhibition of mitochondrial calcium uptake aggravated the accumulation of lysosomal calcium, while inhibition of lysosomal calcium outflowing reversed PFOS-induced mitochondrial calcium overload and IR. Transient receptor potential mucolipin 1 (TRPML1), the calcium output channel of lysosomes, interacted with voltage-dependent anion channel 1 (VDAC1), the calcium intake channel of mitochondria, in the PFOS-cultured cells. Moreover, we found that ATP synthase F1 subunit beta (ATP5B) interacted with TRPML1 and VDAC1 in the L-02 cells and the liver of mice under PFOS exposure. Inhibiting ATP5B expression or restraining the ATP5B on the plasma membrane reduced the interplay between TRPML1 and VDAC1, reversed the mitochondrial calcium overload and deteriorated the lysosomal calcium accumulation in the PFOS-cultured cells. Our research unveils the molecular regulation of the calcium crosstalk between lysosomes and mitochondria, and explains PFOS-induced IR in the context of activated autophagy.


Assuntos
Ácidos Alcanossulfônicos , Autofagia , Cálcio , Fluorocarbonos , Resistência à Insulina , Fígado , Lisossomos , Mitocôndrias , ATPases Mitocondriais Próton-Translocadoras , Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Animais , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Camundongos , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Poluentes Ambientais/toxicidade , Canais de Cátion TRPM/metabolismo , Camundongos Endogâmicos C57BL
6.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38565288

RESUMO

Excitotoxicity and the concurrent loss of inhibition are well-defined mechanisms driving acute elevation in excitatory/inhibitory (E/I) balance and neuronal cell death following an ischemic insult to the brain. Despite the high prevalence of long-term disability in survivors of global cerebral ischemia (GCI) as a consequence of cardiac arrest, it remains unclear whether E/I imbalance persists beyond the acute phase and negatively affects functional recovery. We previously demonstrated sustained impairment of long-term potentiation (LTP) in hippocampal CA1 neurons correlating with deficits in learning and memory tasks in a murine model of cardiac arrest/cardiopulmonary resuscitation (CA/CPR). Here, we use CA/CPR and an in vitro ischemia model to elucidate mechanisms by which E/I imbalance contributes to ongoing hippocampal dysfunction in male mice. We reveal increased postsynaptic GABAA receptor (GABAAR) clustering and function in the CA1 region of the hippocampus that reduces the E/I ratio. Importantly, reduced GABAAR clustering observed in the first 24 h rebounds to an elevation of GABAergic clustering by 3 d postischemia. This increase in GABAergic inhibition required activation of the Ca2+-permeable ion channel transient receptor potential melastatin-2 (TRPM2), previously implicated in persistent LTP and memory deficits following CA/CPR. Furthermore, we find Ca2+-signaling, likely downstream of TRPM2 activation, upregulates Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity, thereby driving the elevation of postsynaptic inhibitory function. Thus, we propose a novel mechanism by which inhibitory synaptic strength is upregulated in the context of ischemia and identify TRPM2 and CaMKII as potential pharmacological targets to restore perturbed synaptic plasticity and ameliorate cognitive function.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Camundongos Endogâmicos C57BL , Transdução de Sinais , Canais de Cátion TRPM , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Masculino , Camundongos , Canais de Cátion TRPM/metabolismo , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Região CA1 Hipocampal/metabolismo , Receptores de GABA-A/metabolismo , Hipocampo/metabolismo , Inibição Neural/fisiologia , Neurônios GABAérgicos/metabolismo , Parada Cardíaca/complicações , Parada Cardíaca/metabolismo
7.
Cancer Biol Ther ; 25(1): 2338955, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38680092

RESUMO

Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.


•TRPM channels are widely expressed in the human body and play an important role in gliomas.• Abnormal expression of TRPM2, 3, 7, and 8 channels in gliomas is associated with disease severity and prognosis.•TRPM2, 3, 7, and 8 channels are effective targets in glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Canais de Cátion TRPM , Humanos , Glioma/metabolismo , Glioma/patologia , Glioma/genética , Glioma/tratamento farmacológico , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Transdução de Sinais , Animais
8.
Int Immunopharmacol ; 132: 111933, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38581988

RESUMO

Transient receptor potential melastatin 7 (TRPM7) is a cation channel that plays a role in the progression of rheumatoid arthritis (RA), yet its involvement in synovial hyperplasia and inflammation has not been determined. We previously reported that TRPM7 affects the destruction of articular cartilage in RA. Herein, we further confirmed the involvement of TRPM7 in fibroblast-like synoviocyte (FLS) proliferation, metastasis and inflammation. We observed increased TRPM7 expression in FLSs derived from human RA patients. Pharmacological inhibition of TRPM7 protected primary RA-FLSs from proliferation, metastasis and inflammation. Furthermore, we found that TRPM7 contributes to RA-FLS proliferation, metastasis and inflammation by increasing the intracellular Ca2+ concentration. Mechanistically, the PKCα-HuR axis was demonstrated to respond to Ca2+ influx, leading to TRPM7-mediated RA-FLS proliferation, metastasis and inflammation. Moreover, HuR was shown to bind to IL-6 mRNA after nuclear translocation, which could be weakened by TRPM7 channel inhibition. Additionally, adeno-associated virus 9-mediated TRPM7 silencing is highly effective at alleviating synovial hyperplasia and inflammation in adjuvant-induced arthritis rats. In conclusion, our findings unveil a novel regulatory mechanism involved in the pathogenesis of RA and suggest that targeting TRPM7 might be a potential strategy for the prevention and treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Proliferação de Células , Interleucina-6 , Proteína Quinase C-alfa , Sinoviócitos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Artrite Reumatoide/patologia , Artrite Reumatoide/metabolismo , Animais , Sinoviócitos/metabolismo , Sinoviócitos/patologia , Humanos , Interleucina-6/metabolismo , Interleucina-6/genética , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Artrite Experimental/patologia , Artrite Experimental/metabolismo , Masculino , Ratos , Fibroblastos/metabolismo , Fibroblastos/patologia , Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 1/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Células Cultivadas , Inflamação/metabolismo , Inflamação/patologia , Ratos Sprague-Dawley , Feminino , Transdução de Sinais
9.
Cell Rep ; 43(4): 114108, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38615321

RESUMO

TRP channels are implicated in various diseases, but high structural similarity between them makes selective pharmacological modulation challenging. Here, we study the molecular mechanism underlying specific inhibition of the TRPM7 channel, which is essential for cancer cell proliferation, by the anticancer agent CCT128930 (CCT). Using cryo-EM, functional analysis, and MD simulations, we show that CCT binds to a vanilloid-like (VL) site, stabilizing TRPM7 in the closed non-conducting state. Similar to other allosteric inhibitors of TRPM7, NS8593 and VER155008, binding of CCT is accompanied by displacement of a lipid that resides in the VL site in the apo condition. Moreover, we demonstrate the principal role of several residues in the VL site enabling CCT to inhibit TRPM7 without impacting the homologous TRPM6 channel. Hence, our results uncover the central role of the VL site for the selective interaction of TRPM7 with small molecules that can be explored in future drug design.


Assuntos
1-Naftilamina/análogos & derivados , Antineoplásicos , Canais de Cátion TRPM , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/antagonistas & inibidores , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Células HEK293 , Simulação de Dinâmica Molecular , Sítios de Ligação , Ligação Proteica , Microscopia Crioeletrônica
10.
J Nat Prod ; 87(4): 783-797, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38537009

RESUMO

Waixenicin A, a xenicane diterpene from the octocoral Sarcothelia edmondsoni, is a selective, potent inhibitor of the TRPM7 ion channel. To study the structure-activity relationship (SAR) of waixenicin A, we isolated and assayed related diterpenes from S. edmondsoni. In addition to known waixenicins A (1) and B (2), we purified six xenicane diterpenes, 7S,8S-epoxywaixenicins A (3) and B (4), 12-deacetylwaixenicin A (5), waixenicin E (6), waixenicin F (7), and 20-acetoxyxeniafaraunol B (8). We elucidated the structures of 3-8 by NMR and MS analyses. Compounds 1, 2, 3, 4, and 6 inhibited TRPM7 activity in a cell-based assay, while 5, 7, and 8 were inactive. A preliminary SAR emerged showing that alterations to the nine-membered ring of 1 did not reduce activity, while the 12-acetoxy group, in combination with the dihydropyran, appears to be necessary for TRPM7 inhibition. The bioactive compounds are proposed to be latent electrophiles by formation of a conjugated oxocarbenium ion intermediate. Whole-cell patch-clamp experiments demonstrated that waixenicin A inhibition is irreversible, consistent with a covalent inhibitor, and showed nanomolar potency for waixenicin B (2). Conformational analysis (DFT) of 1, 3, 7, and 8 revealed insights into the conformation of waixenicin A and congeners and provided information regarding the stabilization of the proposed pharmacophore.


Assuntos
Acetatos , Antozoários , Diterpenos , Proteínas Serina-Treonina Quinases , Canais de Cátion TRPM , Animais , Humanos , Antozoários/química , Diterpenos/farmacologia , Diterpenos/química , Diterpenos/isolamento & purificação , Conformação Molecular , Estrutura Molecular , Relação Estrutura-Atividade , Canais de Cátion TRPM/antagonistas & inibidores
11.
Int J Biol Macromol ; 266(Pt 1): 130998, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38521332

RESUMO

Although calcium­magnesium phosphate cements (CMPCs) have been widely applied to treating critical-size bone defects, their repair efficiency is unsatisfactory owing to their weak surface bioactivity and uncontrolled ion release. In this study, we lyophilized alginate sodium (AS) as a coating onto HAp/K-struvite (H@KSv) to develop AS/HAp/K-struvite (AH@KSv), which promotes bone regeneration. The compressive strength and hydrophilicity of AH@KSv significantly improved, leading to enhanced cell adhesion in vitro. Importantly, the SA coating enables continuous ions release of Mg2+ and Ca2+, finally leading to enhanced osteogenesis in vitro/vivo and different patterns of new bone ingrowth in vivo. Furthermore, these composites increased the expression levels of biomarkers of the TRPM7/PI3K/Akt signaling pathway via an equilibrium effect of Mg2+ to Ca2+. In conclusion, our study provides novel insights into the mechanisms of Mg-based biomaterials for bone regeneration.


Assuntos
Alginatos , Cimentos Ósseos , Regeneração Óssea , Fosfatos , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Canais de Cátion TRPM , Regeneração Óssea/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Alginatos/química , Alginatos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Fosfatos/química , Fosfatos/farmacologia , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Adesão Celular/efeitos dos fármacos , Propriedades de Superfície , Camundongos , Ratos , Força Compressiva
12.
Exp Neurol ; 376: 114748, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38458310

RESUMO

BACKGROUND: The pathogenesis of vascular dementia (VD) is complex, and currently, no effective treatments have been recommended. Floralozone is a colorless liquid first discovered in Lagotis Gaertn. Recently, its medicinal value has been increasingly recognized. Our previous study has demonstrated that Floralozone can improve cognitive dysfunction in rats with VD by regulating the transient receptor potential melastatin 2 (TRPM2) and N-methyl-D-aspartate receptor (NMDAR) signaling pathways. However, the mechanism by which Floralozone regulates TRPM2 and NMDAR to improve VD remains unclear. AMP-activated protein kinase (AMPK) is an energy regulator in vivo; however, its role of AMPK activation in stroke remains controversial. MiR-7a-5p has been identified to be closely related to neuronal function. PURPOSE: To explore whether Floralozone can regulate the miR-7a-5p level in vivo through AMPKα2 activation, affect the TRPM2 and NR2B expression levels, and improve VD symptoms. METHODS: The VD model was established by a modified bilateral occlusion of the common carotid arteries (2-VO) of Sprague-Dawley (SD) rats and AMPKα2 KO transgenic (AMPKα2-/-) mice. Primary hippocampal neurons were modeled using oxygen and glucose deprivation (OGD). Morris water maze (MWM) test, hematoxylin-eosin staining (HE staining), and TUNEL staining were used to investigate the effects of Floralozone on behavior and hippocampal morphology in rats. Minichromosome maintenance complex component 2(MCM2) positive cells were used to investigate the effect of Floralozone on neurogenesis. Immunofluorescence staining, qRT-PCR, and western blot analysis were used to investigate the effect of Floralozone on the expression levels of AMPKα2, miR-7a-5p, TRPM2, and NR2B. RESULTS: The SD rat experiment revealed that Floralozone improved spatial learning and memory, improved the morphology and structure of hippocampal neurons, reduced apoptosis of hippocampal neurons and promoted neurogenesis in VD rats. Floralozone could increase the miR-7a-5p expression level, activate AMPKα2 and NR2B expressions, and inhibit TRPM2 expression in hippocampal neurons of VD rats. The AMPKα2 KO transgenic (AMPKα2-/-) mice experiment demonstrated that Floralozone could regulate miR-7a-5p, TRPM2, and NR2B expression levels through AMPKα2 activation. The cell experiment revealed that the TRPM2 and NR2B expression levels were regulated by miR-7a-5p, whereas the AMPKα2 expression level was not. CONCLUSION: Floralozone could regulate miR-7a-5p expression level by activating the protein expression of AMPKα2, control the protein expression of TRPM2 and NR2B, improve the morphology and structure of hippocampus neurons, reduce the apoptosis of hippocampus neurons, promote neurogenesis and improve the cognitive dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Disfunção Cognitiva , Demência Vascular , MicroRNAs , Ratos Sprague-Dawley , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos , Demência Vascular/genética , Demência Vascular/tratamento farmacológico , Demência Vascular/metabolismo , Ratos , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/genética , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Camundongos Knockout , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo
13.
BMC Nephrol ; 25(1): 79, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443846

RESUMO

BACKGROUND: Sepsis is a life-threatening, systemic inflammatory disease that can lead to a variety of conditions, including septic acute kidney injury (AKI). Recently, multiple circular Rnas (circRNAs) have been implicated in the development of this disease. METHODS: In this study, we aimed to elucidate the role of circ-Gatad1 in sepsis induced AKI and its potential mechanism of action. High-throughput sequencing was used to investigate abnormal expression of circRNA in AKI and healthy volunteer. Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. HK2 cells were treated with lipopolysaccharide (LPS) to establish septic AKI cell model. HK2 cells were employ to analysis the ROS, inflammatory cytokines expression, proliferation and apoptosis under LPS condition. RESULTS: The result show that the expression of circ-Gatad1 was increased in septic acute kidney patients. Downregulation circ-Gatad1 suppressed LPS-treated induced HK2 cells injury including apoptosis, proliferation ability, ROS and inflammatory cytokines level. Bioinformatics and luciferase report analysis confirmed that both miR-22-3p and TRPM7 were downstream targets of circ-Gatad1. Overexpression of TRPM7 or downregulation of miR-22-3p reversed the protective effect of si-circ-Gatad1 to HK2 after exposure to LPS (5 µg/ml) microenvironment. CONCLUSION: In conclusion, knockdown of circ-Gatad1 alleviates LPS induced HK2 cell injury via targeting miR-22-3p/TRPM7 axis in septic acute kidney.


Assuntos
Injúria Renal Aguda , MicroRNAs , Nefrite , Sepse , Canais de Cátion TRPM , Humanos , Injúria Renal Aguda/genética , Citocinas , Rim , Lipopolissacarídeos/toxicidade , Luciferases , MicroRNAs/genética , Proteínas Serina-Treonina Quinases , Espécies Reativas de Oxigênio , RNA Circular/genética , Sepse/genética
14.
Commun Biol ; 7(1): 369, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538847

RESUMO

Transient receptor potential melastatin 5 (TRPM5) is a calcium-activated monovalent-specific ion channel involved in insulin secretion and taste transduction, making it an attractive target for drug development in various pathologies. While TRPM5 activation involves ligand binding to Gq/G-protein coupled receptors (GPCR) and subsequent elevation of intracellular calcium levels, recent reports suggest the need for additional molecular determinants. Hence, the mechanism of TRPM5 activation remains to be elucidated. Here, we show that PKC phosphorylation and the elevation of intracellular Ca2+ levels are required for TRPM5 activation, with PKC phosphorylation being crucial for channel-evoked currents, primarily at physiological membrane potentials. In contrast, physiological relevant calcium levels alone only induce TRPM5 activation at positive voltages. Our findings highlight the necessity of coordinated intracellular calcium release and PKC phosphorylation for TRPM5 activation. Thus, our results suggest that regulation of PKC activity could be a promising therapeutic target for diseases associated with TRPM5 modulation.


Assuntos
Cálcio , Canais de Cátion TRPM , Cálcio/metabolismo , Fosforilação , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Potenciais da Membrana , Canais de Cálcio/metabolismo
15.
PLoS One ; 19(3): e0289395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38437228

RESUMO

The detection of temperature by the human sensory system is life-preserving and highly evolutionarily conserved. Platelets are sensitive to temperature changes and are activated by a decrease in temperature, akin to sensory neurons. However, the molecular mechanism of this temperature-sensing ability is unknown. Yet, platelet activation by temperature could contribute to numerous clinical sequelae, most importantly to reduced quality of ex vivo-stored platelets for transfusion. In this multidisciplinary study, we present evidence for the expression of the temperature-sensitive ion channel transient receptor potential cation channel subfamily member 8 (TRPM8) in human platelets and precursor cells. We found the TRPM8 mRNA and protein in MEG-01 cells and platelets. Inhibition of TRPM8 prevented temperature-induced platelet activation and shape change. However, chemical agonists of TRPM8 did not seem to have an acute effect on platelets. When exposing platelets to below-normal body temperature, we detected a cytosolic calcium increase which was independent of TRPM8 but was completely dependent on the calcium release from the endoplasmic reticulum. Because of the high interindividual variability of TRPM8 expression, a population-based approach should be the focus of future studies. Our study suggests that the cold response of platelets is complex and TRPM8 appears to play a role in early temperature-induced activation of platelets, while other mechanisms likely contribute to later stages of temperature-mediated platelet response.


Assuntos
Cálcio , Canais de Cátion TRPM , Humanos , Temperatura Baixa , Cálcio da Dieta , Retículo Endoplasmático , Células Receptoras Sensoriais , Canais de Cátion TRPM/genética , Proteínas de Membrana
16.
J Biotechnol ; 385: 49-57, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38442841

RESUMO

The transient receptor potential melastatin 2 (TRPM2) channel plays a central role in connecting redox state with calcium signaling in living cells. This coupling makes TRPM2 essential for physiological functions such as pancreatic insulin secretion or cytokine production, but also allows it to contribute to pathological processes, including neuronal cell death or ischemia-reperfusion injury. Genetic deletion of the channel, albeit not lethal, alters physiological functions in mice. In humans, population genetic studies and whole-exome sequencing have identified several common and rare genetic variants associated with mental disorders and neurodegenerative diseases, including single nucleotide variants (SNVs) in exonic regions. In this review, we summarize available information on the four best-documented SNVs: one common (rs1556314) and three rare genetic variants (rs139554968, rs35288229, and rs145947009), manifested in amino acid substitutions D543E, R707C, R755C, and P1018L respectively. We discuss existing evidence supporting or refuting the associations between SNVs and disease. Furthermore, we aim to interpret the molecular impacts of these amino acid substitutions based on recently published structures of human TRPM2. Finally, we formulate testable hypotheses and suggest means to investigate them. Studying the function of proteins with rare mutations might provide insight into disease etiology and delineate new drug targets.


Assuntos
Doenças Neurodegenerativas , Canais de Cátion TRPM , Humanos , Camundongos , Animais , Canais de Cátion TRPM/genética , Canais de Cátion TRPM/metabolismo , Insulina/metabolismo , Secreção de Insulina , Oxirredução , Cálcio/metabolismo
17.
Am J Case Rep ; 25: e942498, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528672

RESUMO

BACKGROUND Familial hypomagnesemia with secondary hypocalcemia (HSH) is a rare autosomal recessive disorder (OMIM# 602014) caused by mutations in the gene encoding transient receptor potential melastatin 6 (TRPM6)) on chromosome 9q22, a channel involved in epithelial magnesium resorption. While a plethora of studies have delineated various clinical manifestations pertinent to this mutation, the literature is devoid of connections between TRPM6 mutations and bleeding diathesis, or sudden infant death syndrome (SIDS). This report presents a case of familial HSH associated with the novel homozygous TRPM6 gene variant c.5281C>G p. (Arg1761Gly) chr9: 77354845. CASE REPORT This report details a 26-day-old neonate, born full term with optimal Apgar scores, who experienced an abrupt emergence of apnea, cyanosis, bilateral nasal bleeding, and diminished alertness. Despite the neonate's initially unremarkable clinical birth indicators, a meticulous assessment unveiled a pronounced family history of SIDS, including a sibling previously diagnosed with hypomagnesemia. Laboratory examination of the infant demonstrated severe hypomagnesemia and hypocalcemia, conditions which were promptly ameliorated following intravenous administration of magnesium and calcium. Whole-exome sequencing identified a homozygous TRPM6 gene mutation c.5281C>G p. (Arg1761Gly) at chr9: 77354845. This gene is crucial for magnesium regulation. The mutation involves a cytosine-to-guanine shift, resulting in an arginine to glycine amino acid substitution at position 1761 of the TRPM6 protein. CONCLUSIONS This report has highlighted that infantile hypomagnesemia may be associated with symptoms and signs that can mimic infection, or it can present with seizures. Although familial HSH is a rare genetic disorder that can be identified by genetic testing, correction of hypomagnesemia is the most important and immediate clinical management strategy.


Assuntos
Hipocalcemia , Deficiência de Magnésio , Deficiência de Magnésio/congênito , Morte Súbita do Lactente , Canais de Cátion TRPM , Lactente , Recém-Nascido , Humanos , Magnésio , Hipocalcemia/genética , Hipocalcemia/complicações , Hipocalcemia/diagnóstico , Deficiência de Magnésio/complicações , Deficiência de Magnésio/diagnóstico , Deficiência de Magnésio/genética , Canais de Cátion TRPM/genética
18.
Mol Cancer ; 23(1): 65, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38532427

RESUMO

BACKGROUND: Abnormal angiogenesis is crucial for gallbladder cancer (GBC) tumor growth and invasion, highlighting the importance of elucidating the mechanisms underlying this process. LncRNA (long non-coding RNA) is widely involved in the malignancy of GBC. However, conclusive evidence confirming the correlation between lncRNAs and angiogenesis in GBC is lacking. METHODS: LncRNA sequencing was performed to identify the differentially expressed lncRNAs. RT-qPCR, western blot, FISH, and immunofluorescence were used to measure TRPM2-AS and NOTCH1 signaling pathway expression in vitro. Mouse xenograft and lung metastasis models were used to evaluate the biological function of TRPM2-AS during angiogenesis in vivo. EDU, transwell, and tube formation assays were used to detect the angiogenic ability of HUVECs. RIP, RAP, RNA pull-down, dual-luciferase reporter system, and mass spectrometry were used to confirm the interaction between TRPM2-AS, IGF2BP2, NUMB, and PABPC1. RESULTS: TRPM2-AS was upregulated in GBC tissues and was closely related to angiogenesis and poor prognosis in patients with GBC. The high expression level and stability of TRPM2-AS benefited from m6A modification, which is recognized by IGF2BP2. In terms of exerting pro-angiogenic effects, TRPM2-AS loaded with exosomes transported from GBC cells to HUVECs enhanced PABPC1-mediated NUMB expression inhibition, ultimately promoting the activation of the NOTCH1 signaling pathway. PABPC1 inhibited NUMB mRNA expression through interacting with AGO2 and promoted miR-31-5p and miR-146a-5p-mediated the degradation of NUMB mRNA. The NOTCH signaling pathway inhibitor DAPT inhibited GBC tumor angiogenesis, and TRPM2-AS knockdown enhanced this effect. CONCLUSIONS: TRPM2-AS is a novel and promising biomarker for GBC angiogenesis that promotes angiogenesis by facilitating the activation of the NOTCH1 signaling pathway. Targeting TRPM2-AS opens further opportunities for future GBC treatments.


Assuntos
Carcinoma in Situ , Neoplasias da Vesícula Biliar , MicroRNAs , RNA Longo não Codificante , Canais de Cátion TRPM , Humanos , Animais , Camundongos , Neoplasias da Vesícula Biliar/genética , RNA Longo não Codificante/genética , MicroRNAs/genética , Canais de Cátion TRPM/metabolismo , Angiogênese , Linhagem Celular Tumoral , Transdução de Sinais , RNA Mensageiro , Proliferação de Células , Receptor Notch1/metabolismo , Proteínas de Ligação a RNA/metabolismo
19.
Orphanet J Rare Dis ; 19(1): 101, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448886

RESUMO

BACKGROUND: Congenital stationary night blindness (CSNB) is an inherited retinal disorder. Most of patients have myopia. This study aims to describe the clinical and genetic characteristics of fifty-nine patients with CSNB and investigate myopic progression under genetic cause. RESULTS: Sixty-five variants were detected in the 59 CSNB patients, including 32 novel and 33 reported variants. The most frequently involved genes were NYX, CACNA1F, and TRPM1. Myopia (96.61%, 57/59) was the most common clinical finding, followed by nystagmus (62.71%, 37/59), strabismus (52.54%, 31/59), and nyctalopia (49.15%, 29/59). An average SE of -7.73 ± 3.37 D progressed to -9.14 ± 2.09 D in NYX patients with myopia, from - 2.24 ± 1.53 D to -4.42 ± 1.43 D in those with CACNA1F, and from - 5.21 ± 2.89 D to -9.24 ± 3.16 D in those with TRPM1 during the 3-year follow-up; the TRPM1 group showed the most rapid progression. CONCLUSIONS: High myopia and strabismus are distinct clinical features of CSNB that are helpful for diagnosis. The novel variants identified in this study will further expand the knowledge of variants in CSNB and help explore the molecular mechanisms of CSNB.


Assuntos
Oftalmopatias Hereditárias , Doenças Genéticas Ligadas ao Cromossomo X , Miopia , Cegueira Noturna , Estrabismo , Canais de Cátion TRPM , Humanos , Cegueira Noturna/genética , Miopia/genética , Retina , Canais de Cátion TRPM/genética
20.
Nat Commun ; 15(1): 2120, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459012

RESUMO

As testicular mesenchymal stromal cells, stem Leydig cells (SLCs) show great promise in the treatment of male hypogonadism. The therapeutic functions of mesenchymal stromal cells are largely determined by their reciprocal regulation by immune responses. However, the immunoregulatory properties of SLCs remain unclear. Here, we observe that SLCs transplantation restore male fertility and testosterone production in an ischemia‒reperfusion injury mouse model. SLCs prevent inflammatory cascades through mitochondrial transfer to macrophages. Reactive oxygen species (ROS) released from activated macrophages inducing mitochondrial transfer from SLCs to macrophages in a transient receptor potential cation channel subfamily member 7 (TRPM7)-mediated manner. Notably, knockdown of TRPM7 in transplanted SLCs compromised therapeutic outcomes in both testicular ischemia‒reperfusion and testicular aging mouse models. These findings reveal a new mechanism of SLCs transplantation that may contribute to preserve testis function in male patients with hypogonadism related to immune disorders.


Assuntos
Hipogonadismo , Canais de Cátion TRPM , Humanos , Masculino , Camundongos , Animais , Células Intersticiais do Testículo , Testículo/fisiologia , Testosterona , Hipogonadismo/terapia , Macrófagos , Proteínas Serina-Treonina Quinases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA