Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Neurosci ; 38(35): 7562-7584, 2018 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-30012696

RESUMO

Membrane contacts between endoplasmic reticulum (ER) and plasma membrane (PM), or ER-PM junctions, are ubiquitous in eukaryotic cells and are platforms for lipid and calcium signaling and homeostasis. Recent studies have revealed proteins crucial to the formation and function of ER-PM junctions in non-neuronal cells, but little is known of the ER-PM junctions prominent in aspiny regions of mammalian brain neurons. The Kv2.1 voltage-gated potassium channel is abundantly clustered at ER-PM junctions in brain neurons and is the first PM protein that functions to organize ER-PM junctions. However, the molecular mechanism whereby Kv2.1 localizes to and remodels these junctions is unknown. We used affinity immunopurification and mass spectrometry-based proteomics on brain samples from male and female WT and Kv2.1 KO mice and identified the resident ER vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as prominent Kv2.1-associated proteins. Coexpression with Kv2.1 or its paralog Kv2.2 was sufficient to recruit VAPs to ER-PM junctions. Multiplex immunolabeling revealed colocalization of Kv2.1 and Kv2.2 with endogenous VAPs at ER-PM junctions in brain neurons from male and female mice in situ and in cultured rat hippocampal neurons, and KO of VAPA in mammalian cells reduces Kv2.1 clustering. The association of VAPA with Kv2.1 relies on a "two phenylalanines in an acidic tract" (FFAT) binding domain on VAPA and a noncanonical phosphorylation-dependent FFAT motif comprising the Kv2-specific clustering or PRC motif. These results suggest that Kv2.1 localizes to and organizes neuronal ER-PM junctions through an interaction with VAPs.SIGNIFICANCE STATEMENT Our study identified the endoplasmic reticulum (ER) proteins vesicle-associated membrane protein-associated proteins isoforms A and B (VAPA and VAPB) as proteins copurifying with the plasma membrane (PM) Kv2.1 ion channel. We found that expression of Kv2.1 recruits VAPs to ER-PM junctions, specialized membrane contact sites crucial to distinct aspects of cell function. We found endogenous VAPs at Kv2.1-mediated ER-PM junctions in brain neurons and other mammalian cells and that knocking out VAPA expression disrupts Kv2.1 clustering. We identified domains of VAPs and Kv2.1 necessary and sufficient for their association at ER-PM junctions. Our study suggests that Kv2.1 expression in the PM can affect ER-PM junctions via its phosphorylation-dependent association to ER-localized VAPA and VAPB.


Assuntos
Proteínas de Transporte/fisiologia , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/fisiologia , Neurônios/metabolismo , Canais de Potássio Shab/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Citoesqueleto/química , Feminino , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/ultraestrutura , Fosforilação , Processamento de Proteína Pós-Traducional , Ratos , Ratos Sprague-Dawley , Proteínas Recombinantes/metabolismo , Canais de Potássio Shab/deficiência , Canais de Potássio Shab/genética , Proteínas de Transporte Vesicular
2.
J Neurosci ; 33(21): 9113-21, 2013 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-23699522

RESUMO

The central auditory brainstem provides an efferent projection known as the medial olivocochlear (MOC) system, which regulates the cochlear amplifier and mediates protection on exposure to loud sound. It arises from neurons of the ventral nucleus of the trapezoid body (VNTB), so control of neuronal excitability in this pathway has profound effects on hearing. The VNTB and the medial nucleus of the trapezoid body are the only sites of expression for the Kv2.2 voltage-gated potassium channel in the auditory brainstem, consistent with a specialized function of these channels. In the absence of unambiguous antagonists, we used recombinant and transgenic methods to examine how Kv2.2 contributes to MOC efferent function. Viral gene transfer of dominant-negative Kv2.2 in wild-type mice suppressed outward K(+) currents, increasing action potential (AP) half-width and reducing repetitive firing. Similarly, VNTB neurons from Kv2.2 knock-out mice (Kv2.2KO) also showed increased AP duration. Control experiments established that Kv2.2 was not expressed in the cochlea, so any changes in auditory function in the Kv2.2KO mouse must be of central origin. Further, in vivo recordings of auditory brainstem responses revealed that these Kv2.2KO mice were more susceptible to noise-induced hearing loss. We conclude that Kv2.2 regulates neuronal excitability in these brainstem nuclei by maintaining short APs and enhancing high-frequency firing. This safeguards efferent MOC firing during high-intensity sounds and is crucial in the mediation of protection after auditory overexposure.


Assuntos
Vias Auditivas/fisiologia , Cóclea/fisiologia , Perda Auditiva/prevenção & controle , Ruído/efeitos adversos , Núcleo Olivar/fisiologia , Canais de Potássio Shab/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Perda Auditiva/etiologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Mutação/genética , Neuroblastoma/patologia , Técnicas de Patch-Clamp , Canais de Potássio Shab/deficiência , Canais de Potássio Shaw/metabolismo , Transfecção
3.
Neuron ; 71(2): 291-305, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21791288

RESUMO

Activity-dependent changes in synaptic strength are well established as mediating long-term plasticity underlying learning and memory, but modulation of target neuron excitability could complement changes in synaptic strength and regulate network activity. It is thought that homeostatic mechanisms match intrinsic excitability to the incoming synaptic drive, but evidence for involvement of voltage-gated conductances is sparse. Here, we show that glutamatergic synaptic activity modulates target neuron excitability and switches the basis of action potential repolarization from Kv3 to Kv2 potassium channel dominance, thereby adjusting neuronal signaling between low and high activity states, respectively. This nitric oxide-mediated signaling dramatically increases Kv2 currents in both the auditory brain stem and hippocampus (>3-fold) transforming synaptic integration and information transmission but with only modest changes in action potential waveform. We conclude that nitric oxide is a homeostatic regulator, tuning neuronal excitability to the recent history of excitatory synaptic inputs over intervals of minutes to hours.


Assuntos
Potenciais de Ação/fisiologia , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Análise de Variância , Animais , Animais Recém-Nascidos , Biofísica , Tronco Encefálico/citologia , Interações Medicamentosas , Estimulação Elétrica/métodos , Inibidores Enzimáticos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Hipocampo/citologia , Hidrazinas/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Óxido Nítrico/deficiência , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , Nitroprussiato/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , RNA Mensageiro/metabolismo , Canais de Potássio Shab/deficiência , Canais de Potássio Shab/metabolismo , Canais de Potássio Shaw/deficiência , Canais de Potássio Shaw/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Tetraetilamônio/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA