Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 53(2): 194-200, 2024 Apr 25.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38268403

RESUMO

OBJECTIVES: To isolate a potassium ion channel Kv4.1 inhibitor from centipede venom, and to determine its sequence and structure. METHODS: Ion-exchange chromatography and reversed-phase high-performance liquid chromatography were performed to separate and purify peptide components of centipede venom, and their inhibiting effect on Kv4.1 channel was determined by whole-cell patch clamp recording. The molecular weight of isolated peptide Kv4.1 channel inhibitor was identified with matrix assisted laser desorption ionization-time-of-flight mass spectrometry; its primary sequence was determined by Edman degradation sequencing and two-dimensional mass spectrometry; its structure was established based on iterative thread assembly refinement online analysis. RESULTS: A peptide SsTx-P2 was separated from centipede venom with the molecular weight of 6122.8, and its primary sequence consists of 53 amino acid residues NH2-ELTWDFVRTCCKLFPDKSECTKACATEFTGGDESRLKDVWPRKLRSGDSRLKD-OH. Peptide SsTx-P2 potently inhibited the current of Kv4.1 channel transiently transfected in HEK293 cell, with 1.0 µmol/L SsTx-P2 suppressing 95% current of Kv4.1 channel. Its structure showed that SsTx-P2 shared a conserved helical structure. CONCLUSIONS: The study has isolated a novel peptide SsTx-P2 from centipede venom, which can potently inhibit the potassium ion channel Kv4.1 and displays structural conservation.


Assuntos
Sequência de Aminoácidos , Venenos de Artrópodes , Canais de Potássio Shal , Animais , Venenos de Artrópodes/química , Canais de Potássio Shal/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Bloqueadores dos Canais de Potássio/isolamento & purificação , Bloqueadores dos Canais de Potássio/química , Peptídeos/farmacologia , Peptídeos/isolamento & purificação , Peptídeos/química , Humanos , Dados de Sequência Molecular
2.
Am J Physiol Cell Physiol ; 321(4): C684-C693, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34432539

RESUMO

Transient outward, or "A-type," currents are rapidly inactivating voltage-gated potassium currents that operate at negative membrane potentials. A-type currents have not been reported in the gastric fundus, a tonic smooth muscle. We used whole cell voltage clamp to identify and characterize A-type currents in smooth muscle cells (SMCs) isolated from murine fundus. A-type currents were robust in these cells with peak amplitudes averaging 1.5 nA at 0 mV. Inactivation was rapid with a time constant of 71 ms at 0 mV; recovery from inactivation at -80 mV was similarly rapid with a time constant of 75 ms. A-type currents in fundus were blocked by 4-aminopyridine (4-AP), flecainide, and phrixotoxin-1 (PaTX1). Remaining currents after 4-AP and PaTX1 displayed half-activation potentials that were shifted to more positive potentials and showed incomplete inactivation. Currents after tetraethylammonium (TEA) displayed half inactivation at -48.1 ± 1.0 mV. Conventional microelectrode and contractile experiments on intact fundus muscles showed that 4-AP depolarized membrane potential and increased tone under conditions in which enteric neurotransmission was blocked. These data suggest that A-type K+ channels in fundus SMCs are likely active at physiological membrane potentials, and sustained activation of A-type channels contributes to the negative membrane potentials of this tonic smooth muscle. Quantitative analysis of Kv4 expression showed that Kcnd3 was dominantly expressed in fundus SMCs. These data were confirmed by immunohistochemistry, which revealed Kv4.3-like immunoreactivity within the tunica muscularis. These observations indicate that Kv4 channels likely form the A-type current in murine fundus SMCs.


Assuntos
Fundo Gástrico/metabolismo , Motilidade Gastrointestinal , Contração Muscular , Músculo Liso/metabolismo , Potássio/metabolismo , Canais de Potássio Shal/metabolismo , 4-Aminopiridina/farmacologia , Animais , Fundo Gástrico/efeitos dos fármacos , Motilidade Gastrointestinal/efeitos dos fármacos , Cinética , Masculino , Potenciais da Membrana , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Liso/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética , Venenos de Aranha/metabolismo
3.
Eur J Pharmacol ; 899: 174026, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33722592

RESUMO

Riluzole is an anticonvulsant drug also used to treat the amyotrophic lateral sclerosis and major depressive disorder. This compound has antiglutamatergic activity and is an important multichannel blocker. However, little is known about its actions on the Kv4.2 channels, the molecular correlate of the A-type K+ current (IA) and the fast transient outward current (Itof). Here, we investigated the effects of riluzole on Kv4.2 channels transiently expressed in HEK-293 cells. Riluzole inhibited Kv4.2 channels with an IC50 of 190 ± 14 µM and the effect was voltage- and frequency-independent. The activation rate of the current (at +50 mV) was not affected by the drug, nor the voltage dependence of channel activation, but the inactivation rate was accelerated by 100 and 300 µM riluzole. When Kv4.2 channels were maintained at the closed state, riluzole incubation induced a tonic current inhibition. In addition, riluzole significantly shifted the voltage dependence of inactivation to hyperpolarized potentials without affecting the recovery from inactivation. In the presence of the drug, the closed-state inactivation was significantly accelerated, and the percentage of inactivated channels was increased. Altogether, our findings indicate that riluzole inhibits Kv4.2 channels mainly affecting the closed and closed-inactivated states.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Riluzol/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Células HEK293 , Humanos , Ativação do Canal Iônico , Potenciais da Membrana , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo
4.
J Neurophysiol ; 124(6): 1727-1742, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32997557

RESUMO

The rostral nucleus of the solitary tract (rNST) serves as the first central relay in the gustatory system. In addition to synaptic interactions, central processing is also influenced by the ion channel composition of individual neurons. For example, voltage-gated K+ channels such as outward K+ current (IA) can modify the integrative properties of neurons. IA currents are prevalent in rNST projection cells but are also found to a lesser extent in GABAergic interneurons. However, characterization of the kinetic properties of IA, the molecular basis of these currents, as well as the consequences of IA on spiking properties of identified rNST cells is lacking. Here, we show that IA in rNST GABAergic (G+) and non-GABAergic (G-) neurons share a common molecular basis. In both cell types, there was a reduction in IA following treatment with the specific Kv4 channel blocker AmmTx3. However, the kinetics of activation and inactivation of IA in the two cell types were different with G- neurons having significantly more negative half-maximal activation and inactivation values. Likewise, under current clamp, G- cells had significantly longer delays to spike initiation in response to a depolarizing stimulus preceded by a hyperpolarizing prepulse. Computational modeling and dynamic clamp suggest that differences in the activation half-maximum may account for the differences in delay. We further observed evidence for a window current under both voltage clamp and current clamp protocols. We speculate that the location of Kv4.3 channels on dendrites, together with a window current for IA at rest, serves to regulate excitatory afferent inputs.NEW & NOTEWORTHY Here, we demonstrate that the transient outward K+ current IA occurs in both GABAergic and non-GABAergic neurons via Kv4.3 channels in the rostral (gustatory) solitary nucleus. Although found in both cell types, IA is more prevalent in non-GABAergic cells; a larger conductance at more negative potentials leads to a greater impact on spike initiation compared with GABAergic neurons. An IA window current further suggests that IA can regulate excitatory afferent input to the nucleus.


Assuntos
Fenômenos Eletrofisiológicos/fisiologia , Neurônios GABAérgicos/fisiologia , Interneurônios/fisiologia , Canais de Potássio Shal/metabolismo , Núcleo Solitário/fisiologia , Percepção Gustatória/fisiologia , Animais , Feminino , Neurônios GABAérgicos/metabolismo , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Canais de Potássio Shal/antagonistas & inibidores , Núcleo Solitário/metabolismo
5.
Eur J Pharmacol ; 880: 173159, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32360350

RESUMO

Transient outward K+ current, Ito, contributes to cardiac action potential generation and is primarily carried by Kv4.3 (KCND3) channels. Two Kv4.3 isoforms are expressed in human ventricle and show differential remodeling in heart failure (HF). Lidocaine and mexiletine may be applied in selected patients to suppress ventricular arrhythmias, without effects on sudden cardiac death or mortality. Isoform-dependent effects of antiarrhythmic drugs on Kv4.3 channels and potential implications for remodeling-based antiarrhythmic management have not been assessed to date. We sought to test the hypotheses that Kv4.3 channels are targeted by lidocaine and mexiletine, and that drug sensitivity is determined in isoform-specific manner. Expression of KCND3 isoforms was quantified using qRT-PCR in left ventricular samples of patients with HF due to either ischemic or dilated cardiomyopathies (ICM or DCM). Long (Kv4.3-L) and short (Kv4.3-S) isoforms were heterologously expressed in Xenopus laevis oocytes to study drug sensitivity and effects on biophysical characteristics activation, deactivation, inactivation, and recovery from inactivation. In the present HF patient cohort KCND3 isoform expression did not differ between ICM and DCM. In vitro, lidocaine (IC50-Kv4.3-L: 0.8 mM; IC50-Kv4.3-S: 1.2 mM) and mexiletine (IC50-Kv4.3-L: 146 µM; IC50-Kv4.3-S: 160 µM) inhibited Kv4.3 with different sensitivity. Biophysical analyses identified accelerated and enhanced inactivation combined with delayed recovery from inactivation as primary biophysical mechanisms underlying Kv4.3 current reduction. In conclusion, differential effects on Kv4.3 isoforms extend the electropharmacological profile of lidocaine and mexiletine. Patient-specific remodeling of Kv4.3 isoforms may determine individual drug responses and requires consideration during clinical application of compounds targeting Kv4.3.


Assuntos
Antiarrítmicos/farmacologia , Lidocaína/farmacologia , Mexiletina/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Animais , Feminino , Ventrículos do Coração/metabolismo , Humanos , Masculino , Oócitos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia , Xenopus laevis
6.
Eur J Pharmacol ; 853: 74-83, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30880181

RESUMO

The inhibition of transient outward potassium current (Ito) is the major ionic mechanism for quinidine to treat Brugada syndrome; however, quinidine is inaccessible in many countries. The present study compared the inhibitory effect of the nonselective ß-adrenergic blocker carvedilol with quinidine on human Kv4.3 (hKv4.3, encoding for Ito) channel and action potential notch using a whole-cell patch technique in HEK 293 cell line expressing KCND3 as well as in ventricular epicardial myocytes of rabbit hearts. It was found that carvedilol and quinidine inhibited hKv4.3 current in a concentration-dependent manner. The IC50 of carvedilol was 1.2 µM for inhibiting hKv4.3 charge area, while the IC50 of quinidine was 2.9 µM (0.2 Hz). Both carvedilol and quinidine showed typical open channel blocking properties (i.e. decreasing the time to peak of activation and increasing the inactivation of hKv4.3), negatively shifted the V1/2 of activation and inactivation, and slowed the recovery from inactivation of the channel. Although carvedilol had weaker in use- and rate-dependent inhibition of hKv4.3 peak current than quinidine, its reduction of the charge area was more than quinidine at all frequencies (0.2-3.3 Hz). Moreover, the inhibitory effect of carvedilol on action potential notch was greater than quinidine. These results provide the novel information that carvedilol, like quinidine, significantly inhibits hKv4.3 and action potential notch, suggesting that carvedilol is likely an alternative drug for preventing malignant ventricular arrhythmias in patients with Brugada syndrome in countries where quinidine is unavailable.


Assuntos
Carvedilol/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Quinidina/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética , Potenciais de Ação/efeitos dos fármacos , Animais , Expressão Gênica , Células HEK293 , Ventrículos do Coração/citologia , Humanos , Concentração Inibidora 50 , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Masculino , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estabilidade Proteica/efeitos dos fármacos , Coelhos , Canais de Potássio Shal/metabolismo
7.
Biosci Biotechnol Biochem ; 83(2): 202-211, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30392457

RESUMO

Oxytocin is produced by neurons in the paraventricular nucleus (PVN) and the supraoptic nucleus in the hypothalamus. Various ion channels are considered to regulate the excitability of oxytocin neurons and its secretion. A-type currents of voltage-gated potassium channels (Kv channels), generated by Kv4.2/4.3 channels, are known to be involved in the regulation of neuron excitability. However, it is unclear whether the Kv4.2/4.3 channels participate in the regulation of excitability in PVN oxytocin neurons. Here, we investigated the contribution of the Kv4.2/4.3 channels to PVN oxytocin neuron excitability. By using transgenic rat brain slices with the oxytocin-monomeric red fluorescent protein 1 fusion transgene, we examined the excitability of oxytocin neurons by electrophysiological technique. In some oxytocin neurons, the application of Kv4.2/4.3 channel blocker increased firing frequency and membrane potential with extended action potential half-width. Our present study indicates the contribution of Kv4.2/4.3 channels to PVN oxytocin neuron excitability regulation. Abbreviation: PVN, paraventricular nucleus; Oxt-mRFP1, Oxt-monometric red fluorescent protein 1; PaTx-1, Phrixotoxin-1; TEA, Tetraethylammonium Chloride; TTX, tetrodotoxin; aCSF, artificial cerebrospinal fluid;PBS, phosphate buffered saline 3v, third ventricle.


Assuntos
Ativação do Canal Iônico , Neurônios/fisiologia , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Canais de Potássio Shal/metabolismo , Potenciais de Ação/efeitos dos fármacos , Animais , Feminino , Imuno-Histoquímica , Proteínas Luminescentes/genética , Masculino , Potenciais da Membrana/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Transgênicos , Ratos Wistar , Canais de Potássio Shal/antagonistas & inibidores , Venenos de Aranha/farmacologia , Proteína Vermelha Fluorescente
8.
Neuropharmacology ; 140: 86-99, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30009837

RESUMO

A-type K+ channels restrain the spread of incoming signals in tufted and apical dendrites of pyramidal neurons resulting in strong compartmentalization. However, the exact subunit composition and functional significance of K+ channels expressed in small diameter proximal dendrites remain poorly understood. We focus on A-type K+ channels expressed in basal and oblique dendrites of cortical layer 3 pyramidal neurons, in ex vivo brain slices from young adult mice. Blocking putative Kv4 subunits with phrixotoxin-2 enhances depolarizing potentials elicited by uncaging RuBi-glutamate at single dendritic spines. A concentration of 4-aminopyridine reported to block Kv1 has no effect on such responses. 4-aminopyridine and phrixotoxin-2 increase supralinear summation of glutamatergic potentials evoked by synchronous activation of clustered spines. The effect of 4-aminopyridine on glutamate responses is simulated in a computational model where the dendritic A-type conductance is distributed homogeneously or in a linear density gradient. Thus, putative Kv4-containing channels depress excitatory inputs at single synapses. The additional recruitment of Kv1 subunits might require the synchronous activation of multiple inputs to regulate the gain of signal integration.


Assuntos
Ácido Glutâmico/fisiologia , Neocórtex/citologia , Células Piramidais/fisiologia , Canais de Potássio Shal/fisiologia , 4-Aminopiridina/farmacologia , Potenciais de Ação/fisiologia , Animais , Dendritos/fisiologia , Espinhas Dendríticas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Ácido Glutâmico/análogos & derivados , Ácido Glutâmico/farmacologia , Masculino , Camundongos , Modelos Neurológicos , Neocórtex/fisiologia , Compostos Organometálicos/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Venenos de Aranha/farmacologia
9.
J Pharmacol Exp Ther ; 363(2): 184-195, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28864468

RESUMO

Voltage clamp recordings of macroscopic currents were made from rat potassium-gated potassium 4.2(Kv4.2) channels expressed in human embryonic kidney (HEK293) cells with the main goals of quantifying the concentration, time, and voltage dependence of the block and to generate a state model that replicates the features of the block. When applied either externally or internally, the block of Kv4.2 currents by 4-aminopyridine (4AP) occurs at the holding potential (-80 mV), is affected by the stimulus frequency, and is relieved by membrane depolarization. The Kd for the tonic block at -80 mV was 0.9 ± 0.07 mM and was consistent with 1:1 binding. Relief of block during a step to 50 mV was well fitted by a single exponential with a time constant of ∼40 milliseconds. At -80 mV, the association rate constant was 0.08 mM-1 s-1, and the off-rate was 0.08 s-1 The state model replicates the features of the experimental data reasonably well by assuming that 4AP binds only to closed states, that 4AP binding and inactivation are mutually exclusive processes, and that the activation of closed-bound channels is the same as for closed channels. Since the open channel has a very low or no affinity for 4AP, channel opening promotes the unbinding of 4AP, which accounts for the reverse use dependence of the block.


Assuntos
4-Aminopiridina/farmacologia , Modelos Biológicos , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/fisiologia , Animais , Relação Dose-Resposta a Droga , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Xenopus
10.
Toxicon ; 119: 244-52, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27346450

RESUMO

The venom from the scorpion Tityus serrulatus (Ts) has been extensively studied mainly because of its rich cocktail of neurotoxins. Neurotoxins are the major and the most known components based on their modulation of voltage-gated ion channels. Until now, electrophysiological studies demonstrated that the Ts venom comprises toxins that affect Nav and Kv channels. However, although many studies have been conducted in this field, many peptides from Ts venom await further studies, including Ts8 toxin. Here we report the isolation and electrophysiological study of Ts8. The toxin Ts19 Frag-II was used as negative control. Ts8 demonstrates, among 20 tested channels, to be a selective modulator of Kv4.2 channels. Based on studies investigating the involvement of Kv4.2 on controlling nociception, we further investigated the modulation of pain by Ts8. Using intraplantar injections, Ts8 induced overt nociception (licking and lifting behaviors) and decreased the mechanical nociceptive threshold (hyperalgesia). Furthermore, the hyperalgesia was prolonged when intrathecal injections were performed. Independent of the severity, most of the victims stung by Ts scorpions report an intense and persistent pain as the major manifestation. The new role of Ts8 on nociception could explain, at least partially, this phenomenon. Additionally, our study also stresses the involvement of toxins specific to Nav channels and inflammatory mediators on the Ts painful sting. This work provides useful insights for a better understanding of the prolonged and intense pain associated with Ts envenoming for the development of specific therapies.


Assuntos
Bloqueadores dos Canais de Potássio/toxicidade , Venenos de Escorpião/química , Canais de Potássio Shal/antagonistas & inibidores , Toxinas Biológicas/toxicidade , Sequência de Aminoácidos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade/efeitos dos fármacos , Venenos de Escorpião/isolamento & purificação , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/química
11.
Toxicol Appl Pharmacol ; 288(2): 203-12, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26216464

RESUMO

The antimalarial drug mefloquine, is known to be a potassium channel blocker, although its mechanism of action has not being elucidated and its effects on the transient outward current (Ito) and the molecular correlate, the Kv4.3 channel has not being studied. Here, we describe the mefloquine-induced inhibition of the rat ventricular Ito and of CHO cells co-transfected with human Kv4.3 and its accessory subunit hKChIP2C by whole-cell voltage-clamp. Mefloquine inhibited rat Ito and hKv4.3+KChIP2C currents in a concentration-dependent manner with a limited voltage dependence and similar potencies (IC50=8.9µM and 10.5µM for cardiac myocytes and Kv4.3 channels, respectively). In addition, mefloquine did not affect the activation of either current but significantly modified the hKv4.3 steady-state inactivation and recovery from inactivation. The effects of this drug was compared with that of 4-aminopyridine (4-AP), a well-known potassium channel blocker and its binding site does not seem to overlap with that of 4-AP.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antimaláricos/toxicidade , Ativação do Canal Iônico/efeitos dos fármacos , Mefloquina/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Bloqueadores dos Canais de Potássio/toxicidade , Canais de Potássio Shal/antagonistas & inibidores , 4-Aminopiridina/farmacologia , Animais , Antimaláricos/metabolismo , Sítios de Ligação , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Mefloquina/metabolismo , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Potássio/metabolismo , Bloqueadores dos Canais de Potássio/metabolismo , Ligação Proteica , Ratos Wistar , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
12.
Sheng Li Xue Bao ; 67(3): 248-54, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109297

RESUMO

Voltage-gated potassium channels (Kv4.1, Kv4.2 and Kv4.3) encoded by the members of the KCND/Kv4 (Shal) channel family mediate the native, fast inactivating (A-type) K(+) current (IA) described both in heart and neurons. This IA current is specifically blocked by short scorpion toxins that belong to the α-KTx15 subfamily and which act as pore blockers, a different mode of action by comparison to spider toxins known as gating modifiers. This review summarizes our present chemical and pharmacological knowledge on the α-KTx15 toxins.


Assuntos
Bloqueadores dos Canais de Potássio/química , Venenos de Escorpião/química , Canais de Potássio Shal/antagonistas & inibidores , Animais , Escorpiões
13.
Toxicology ; 333: 107-117, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25917026

RESUMO

4-Aminopyridine (4-AP) is a potassium channel blocker used for the treatment of neuromuscular disorders. Otherwise, it has been described to produce a large number of adverse effects among them cell death mediated mainly by blockage of K(+) channels. However, a protective effect against cell death has also been described. On the other hand, Kv channel interacting protein 1 (KChIP1) is a neuronal calcium sensor protein that is predominantly expressed at GABAergic synapses and it has been related with modulation of K(+) channels, GABAergic transmission and cell death. According to this KChIP1 could play a key role in the protective or toxic effects induced by 4-AP. We evaluated, in wild type and KChIP1 silenced primary hippocampal neurons, the effect of 4-AP (0.25µM to 2mM) with or without semicarbazide (0.3M) co-treatment after 24h and after 14 days 4-AP alone exposure on cell viability, the effect of 4-AP (0.25µM to 2mM) on KChIP1 and Kv 4.3 potassium channels gene expression and GABAergic transmission after 24h treatment or after 14 days exposure to 4-AP (0.25µM to1µM). 4-AP induced cell death after 24h (from 1mM) and after 14 days treatment. We observed that 4-AP modulates KChIP1 which regulate Kv 4.3 channels expression and GABAergic transmission. Our study suggests that KChIP1 is a key gene that has a protective effect up to certain concentration after short-term treatment with 4-AP against induced cell injury; but this protection is erased after long term exposure, due to KChIP1 down-regulation predisposing cell to 4-AP induced damages. These data might help to explain protective and toxic effects observed after overdose and long term exposure.


Assuntos
4-Aminopiridina/farmacologia , Hipocampo/efeitos dos fármacos , Proteínas Interatuantes com Canais de Kv/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , 4-Aminopiridina/toxicidade , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção , Relação Dose-Resposta a Droga , Hipocampo/embriologia , Hipocampo/metabolismo , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Fármacos Neuroprotetores/toxicidade , Bloqueadores dos Canais de Potássio/toxicidade , Cultura Primária de Células , Interferência de RNA , Ratos Wistar , Semicarbazidas/farmacologia , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Fatores de Tempo , Transfecção
14.
Antioxid Redox Signal ; 23(2): 129-47, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-25756524

RESUMO

AIMS: The mechanisms underlying numerous biological roles of hydrogen sulfide (H2S) remain largely unknown. We have previously reported an inhibitory role of H2S in the L-type calcium channels in cardiomyocytes. This prompts us to examine the mechanisms underlying the potential regulation of H2S on the ion channels. RESULTS: H2S showed a novel inhibitory effect on Ito potassium channels, and this effect was blocked by mutation at the Cys320 and/or Cys529 residues of the Kv4.2 subunit. H2S broke the disulfide bridge between a pair of oxidized cysteine residues; however, it did not modify single cysteine residues. H2S extended action potential duration in epicardial myocytes and regularized fatal arrhythmia in a rat model of myocardial infarction. H2S treatment significantly increased survival by ∼1.4-fold in the critical 2-h time window after myocardial infarction with a protection against ventricular premature beats and fatal arrhythmia. However, H2S did not change the function of other ion channels, including IK1 and INa. INNOVATION AND CONCLUSION: H2S targets the Cys320/Cys529 motif in Kv4.2 to regulate the Ito potassium channels. H2S also shows a potent regularizing effect against fatal arrhythmia in a rat model of myocardial infarction. The study provides the first piece of evidence for the role of H2S in regulating Ito potassium channels and also the specific motif in an ion channel labile for H2S regulation.


Assuntos
Motivos de Aminoácidos/efeitos dos fármacos , Arritmias Cardíacas/metabolismo , Cisteína/metabolismo , Sulfeto de Hidrogênio/farmacologia , Infarto do Miocárdio/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Arritmias Cardíacas/tratamento farmacológico , Dissulfetos/metabolismo , Células HEK293 , Humanos , Sulfeto de Hidrogênio/uso terapêutico , Masculino , Mutação , Infarto do Miocárdio/tratamento farmacológico , Miócitos Cardíacos/metabolismo , Ratos , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética
15.
Br J Pharmacol ; 172(13): 3370-82, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25752739

RESUMO

BACKGROUND AND PURPOSE: A-type potassium channels (IA) are important proteins for modulating neuronal membrane excitability. The expression and activity of Kv 4.2 channels are critical for neurological functions and pharmacological inhibitors of Kv 4.2 channels may have therapeutic potential for Fragile X syndrome. While screening various compounds, we identified tyrphostin AG879, a tyrosine kinase inhibitor, as a Kv 4.2 inhibitor from. In the present study we characterized the effect of AG879 on cloned Kv 4.2/Kv channel-interacting protein 2 (KChIP2) channels. EXPERIMENTAL APPROACH: To screen the library of pharmacologically active compounds, the thallium flux assay was performed on HEK-293 cells transiently-transfected with Kv 4.2 cDNA using the Maxcyte transfection system. The effects of AG879 were further examined on CHO-K1 cells expressing Kv 4.2/KChIP2 channels using a whole-cell patch-clamp technique. KEY RESULTS: Tyrphostin AG879 selectively and dose-dependently inhibited Kv 4.2 and Kv 4.3 channels. In Kv 4.2/KChIP2 channels, AG879 induced prominent acceleration of the inactivation rate, use-dependent block and slowed the recovery from inactivation. AG879 induced a hyperpolarizing shift in the voltage-dependence of the steady-state inactivation of Kv 4.2 channels without apparent effect on the V1/2 of the voltage-dependent activation. The blocking effect of AG879 was enhanced as channel inactivation increased. Furthermore, AG879 significantly inhibited the A-type potassium currents in the cultured hippocampus neurons. CONCLUSION AND IMPLICATIONS: AG879 was identified as a selective and potent inhibitor the Kv 4.2 channel. AG879 inhibited Kv 4.2 channels by preferentially interacting with the open state and further accelerating their inactivation.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Tirfostinas/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células HEK293 , Hipocampo/citologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/parasitologia , Ratos Sprague-Dawley , Canais de Potássio Shal/fisiologia
16.
Pflugers Arch ; 467(8): 1663-76, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25231973

RESUMO

Raloxifene is widely used for the treatment and prevention of postmenopausal osteoporosis. We examined the effects of raloxifene on the Kv4.3 currents expressed in Chinese hamster ovary (CHO) cells using the whole-cell patch-clamp technique and on the long-term modulation of Kv4.3 messenger RNA (mRNA) by real-time PCR analysis. Raloxifene decreased the Kv4.3 currents with an IC50 of 2.0 µM and accelerated the inactivation and activation kinetics in a concentration-dependent manner. The inhibitory effects of raloxifene on Kv4.3 were time-dependent: the association and dissociation rate constants for raloxifene were 9.5 µM(-1) s(-1) and 23.0 s(-1), respectively. The inhibition by raloxifene was voltage-dependent (δ = 0.13). Raloxifene shifted the steady-state inactivation curves in a hyperpolarizing direction and accelerated the closed-state inactivation of Kv4.3. Raloxifene slowed the time course of recovery from inactivation, thus producing a use-dependent inhibition of Kv4.3. ß-Estradiol and tamoxifen had little effect on Kv4.3. A preincubation of ICI 182,780, an estrogen receptor antagonist, for 1 h had no effect on the inhibitory effect of raloxifene on Kv4.3. The metabolites of raloxifene, raloxifene-4'-glucuronide and raloxifene-6'-glucuronide, had little or no effect on Kv4.3. Coexpression of KChIP2 subunits did not alter the drug potency and steady-state inactivation of Kv4.3 channels. Long-term exposure to raloxifene (24 h) significantly decreased the expression level of Kv4.3 mRNA. This effect was not abolished by the coincubation with ICI 182,780. Raloxifene inhibited Kv4.3 channels by interacting with their open state during depolarization and with the closed state at subthreshold potentials. This effect was not mediated via an estrogen receptor.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Cloridrato de Raloxifeno/farmacologia , Receptores de Estrogênio , Canais de Potássio Shal/antagonistas & inibidores , Animais , Células CHO , Clonagem Molecular , Cricetulus , Relação Dose-Resposta a Droga , Regulação para Baixo , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Proteínas Interatuantes com Canais de Kv/genética , Proteínas Interatuantes com Canais de Kv/metabolismo , Potenciais da Membrana , Técnicas de Patch-Clamp , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo , Tamoxifeno/farmacologia , Transfecção
17.
Behav Pharmacol ; 26(1-2): 91-100, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25356731

RESUMO

The striatum, a major input structure of basal ganglia, integrates glutamatergic cortical and thalamic inputs to control psychomotor behaviors. Nigrostriatal dopamine (DA) neurodegeneration in Parkinson's disease causes a loss of spinal and glutamatergic synapses in the striatal medium spiny neurons (MSNs). Adaptive responses, a form of homeostatic plasticity, to these changes are caused by a decrease in a potassium Kv4 channel-dependent inactivating A-type potassium (KIA) current that increases the intrinsic excitability of MSNs. Nevertheless, the functional outcome of these compensatory mechanisms does not allow adequate behavioral recovery in vivo. We thus addressed the question of whether further blockade of Kv4 activity could enhance the striatal responsiveness of MSNs to DA depletion and restore normal function in vivo. To test this hypothesis, we examined the effects of a selective blocker of Kv4 channels, AmmTX3, on the motor, cognitive, and emotional symptoms produced by 6-hydroxydopamine lesions of the nigrostriatal DA pathway in rats. Striatal infusion of AmmTX3 (0.2-0.4 µg) reduced motor deficits, decreased anxiety, and restored short-term social and spatial memories. These results underlie the importance of Kv4 channels as players in the homeostatic responses, and, more importantly, provide a potential target for adjunctive therapies for Parkinson's disease.


Assuntos
Transtornos Parkinsonianos/tratamento farmacológico , Bloqueadores dos Canais de Potássio/farmacologia , Venenos de Escorpião/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Animais , Antiparkinsonianos/administração & dosagem , Antiparkinsonianos/farmacologia , Cognição/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Relação Dose-Resposta a Droga , Masculino , Oxidopamina/toxicidade , Transtornos Parkinsonianos/fisiopatologia , Bloqueadores dos Canais de Potássio/administração & dosagem , Ratos , Ratos Wistar , Venenos de Escorpião/administração & dosagem , Canais de Potássio Shal/metabolismo
18.
Neurosci Lett ; 578: 159-64, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24993295

RESUMO

Trifluoperazine, a trifluoro-methyl phenothiazine derivative, is widely used in the management of schizophrenia and related psychotic disorders. We studied the effects of trifluoperazine on Kv4.3 currents expressed in CHO cells using the whole-cell patch-clamp technique. Trifluoperazine blocked Kv4.3 in a concentration-dependent manner with an IC50 value of 8.0±0.4 µM and a Hill coefficient of 2.1±0.1. Trifluoperazine also accelerated the inactivation and activation (time-to-peak) kinetics in a concentration-dependent manner. The effects of trifluoperazine on Kv4.3 were completely reversible after washout. The effects of trifluoperazine were not affected by the pretreatment of KN93, which is another CaMKII inhibitor. In addition, the inclusion of CaMKII inhibitory peptide 281-309 in the pipette solution did not modify the effect of trifluoperazine on Kv4.3. Trifluoperazine shifted the activation curve of Kv4.3 in a hyperpolarizing direction but did not affect the slope factor. The block of Kv4.3 by trifluoperazine was voltage-dependent with a steep increase across the voltage range of channel activation. Voltage dependence was also observed over the full range of activation (δ=0.18). Trifluoperazine slowed the time course for recovery from inactivation of Kv4.3. Our results indicated that trifluoperazine blocked Kv4.3 by preferentially binding to the open state of the channel. This effect was not mediated via the inhibition of CaMKII activity.


Assuntos
Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/metabolismo , Trifluoperazina/farmacologia , Animais , Antipsicóticos/farmacologia , Células CHO , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cricetulus , Potenciais da Membrana/efeitos dos fármacos
19.
Eur J Pharmacol ; 740: 1-8, 2014 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24998874

RESUMO

Haloperidol is commonly used in clinical practice to treat acute and chronic psychosis, but it also has been associated with adverse cardiovascular events. We investigated the effects of haloperidol on Kv4.3 currents stably expressed in CHO cells using a whole-cell patch-clamp technique. Haloperidol did not significantly inhibit the peak amplitude of Kv4.3, but accelerated the decay rate of inactivation of Kv4.3 in a concentration-dependent manner. Thus, the effects of haloperidol on Kv4.3 were estimated from the integral of the Kv4.3 currents during the depolarization pulse. The Kv4.3 was decreased by haloperidol in a concentration-dependent manner with an IC50 value of 3.6 µM. Haloperidol accelerated the decay rate of Kv4.3 inactivation and activation kinetics in a concentration-dependent manner, thereby decreasing the time-to-peak. Haloperidol shifted the voltage dependence of the steady-state activation and inactivation of Kv4.3 in a hyperpolarizing direction. Haloperidol also caused an acceleration of the closed-state inactivation of Kv4.3. Haloperidol produced a use-dependent block of Kv4.3, which was accompanied by a slowing of recovery from the inactivation of Kv4.3. These results suggest that haloperidol blocks Kv4.3 by both interacting with the open state of Kv4.3 channels during depolarization and accelerating the closed-state inactivation at subthreshold membrane potentials.


Assuntos
Antipsicóticos/farmacologia , Haloperidol/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Animais , Células CHO , Cricetulus , Canais de Potássio Shal/genética , Canais de Potássio Shal/fisiologia
20.
Circ Res ; 115(4): 460-9, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24963029

RESUMO

RATIONALE: Semaphorin 3A (SEMA3A)-encoded semaphorin is a chemorepellent that disrupts neural patterning in the nervous and cardiac systems. In addition, SEMA3A has an amino acid motif that is analogous to hanatoxin, an inhibitor of voltage-gated K(+) channels. SEMA3A-knockout mice exhibit an abnormal ECG pattern and are prone to ventricular arrhythmias and sudden cardiac death. OBJECTIVE: Our aim was to determine whether SEMA3A is a naturally occurring protein inhibitor of Kv4.3 (Ito) channels and its potential contribution to Brugada syndrome. METHODS AND RESULTS: Kv4.3, Nav1.5, Cav1.2, or Kv4.2 were coexpressed or perfused with SEMA3A in HEK293 cells, and electrophysiological properties were examined via whole-cell patch clamp technique. SEMA3A selectively altered Kv4.3 by significantly reducing peak current density without perturbing Kv4.3 cell surface protein expression. SEMA3A also reduced Ito current density in cardiomyocytes derived from human-induced pluripotent stem cells. Disruption of a putative toxin binding domain on Kv4.3 was used to assess physical interactions between SEMA3A and Kv4.3. These findings in combination with coimmunoprecipitations of SEMA3A and Kv4.3 revealed a potential direct binding interaction between these proteins. Comprehensive mutational analysis of SEMA3A was performed on 198 unrelated SCN5A genotype-negative patients with Brugada syndrome, and 2 rare SEMA3A missense mutations were identified. The SEMA3A mutations disrupted SEMA3A's ability to inhibit Kv4.3 channels, resulting in a significant gain of Kv4.3 current compared with wild-type SEMA3A. CONCLUSIONS: This study is the first to demonstrate SEMA3A as a naturally occurring protein that selectively inhibits Kv4.3 and SEMA3A as a possible Brugada syndrome susceptibility gene through a Kv4.3 gain-of-function mechanism.


Assuntos
Síndrome de Brugada/metabolismo , Miócitos Cardíacos/metabolismo , Semaforina-3A/metabolismo , Canais de Potássio Shal/metabolismo , Adulto , Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatologia , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Masculino , Potenciais da Membrana , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Miócitos Cardíacos/efeitos dos fármacos , Fenótipo , Bloqueadores dos Canais de Potássio/farmacologia , Ligação Proteica , Semaforina-3A/genética , Semaforina-3A/farmacologia , Canais de Potássio Shal/antagonistas & inibidores , Canais de Potássio Shal/genética , Transdução de Sinais , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA