Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurophysiol ; 117(4): 1690-1701, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28123009

RESUMO

Knowledge of the molecular mechanisms underlying signaling of mechanical stimuli by muscle spindles remains incomplete. In particular, the ionic conductances that sustain tonic firing during static muscle stretch are unknown. We hypothesized that tonic firing by spindle afferents depends on sodium persistent inward current (INaP) and tested for the necessary presence of the appropriate voltage-gated sodium (NaV) channels in primary sensory endings. The NaV1.6 isoform was selected for both its capacity to produce INaP and for its presence in other mechanosensors that fire tonically. The present study shows that NaV1.6 immunoreactivity (IR) is concentrated in heminodes, presumably where tonic firing is generated, and we were surprised to find NaV1.6 IR strongly expressed also in the sensory terminals, where mechanotransduction occurs. This spatial pattern of NaV1.6 IR distribution was consistent for three mammalian species (rat, cat, and mouse), as was tonic firing by primary spindle afferents. These findings meet some of the conditions needed to establish participation of INaP in tonic firing by primary sensory endings. The study was extended to two additional NaV isoforms, selected for their sensitivity to TTX, excluding TTX-resistant NaV channels, which alone are insufficient to support firing by primary spindle endings. Positive immunoreactivity was found for NaV1.1, predominantly in sensory terminals together with NaV1.6 and for NaV1.7, mainly in preterminal axons. Differential distribution in primary sensory endings suggests specialized roles for these three NaV isoforms in the process of mechanosensory signaling by muscle spindles.NEW & NOTEWORTHY The molecular mechanisms underlying mechanosensory signaling responsible for proprioceptive functions are not completely elucidated. This study provides the first evidence that voltage-gated sodium channels (NaVs) are expressed in the spindle primary sensory ending, where NaVs are found at every site involved in transduction or encoding of muscle stretch. We propose that NaVs contribute to multiple steps in sensory signaling by muscle spindles as it does in other types of slowly adapting sensory neurons.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Músculo Esquelético/citologia , Terminações Nervosas/fisiologia , Células Receptoras Sensoriais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Potenciais de Ação/fisiologia , Vias Aferentes/efeitos dos fármacos , Vias Aferentes/fisiologia , Animais , Anticorpos/farmacologia , Gatos , Gânglios Espinais/citologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteína Básica da Mielina/metabolismo , Terminações Nervosas/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Ratos , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/imunologia , Canais de Sódio Disparados por Voltagem/metabolismo
2.
Peptides ; 87: 34-40, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27871874

RESUMO

A previously undescribed toxic peptide named Cl13 was purified from the venom of the Mexican scorpion Centruroides limpidus. It contains 66 amino acid residues, including four disulfide bonds. The physiological effects assayed in 7 different subtypes of voltage gated Na+-channels, showed that it belongs to the ß-scorpion toxin type. The most notorious effects were observed in subtypes Nav1.4, Nav1.5 and Nav1.6. Although having important sequence similarities with two other lethal toxins from this scorpion species (Cll1m and Cll2), the recently developed single chain antibody fragments (scFv) of human origin were not capable of protecting against Cl13. At the amino acid sequence level, in 3 stretches of peptide Cl13 (positions 7-9, 30-38 and 62-66) some differences with respect to other similar toxins are observed. Some of these differences coincide with contact points with the human antibody fragments.


Assuntos
Peptídeos/imunologia , Venenos de Escorpião/imunologia , Canais de Sódio Disparados por Voltagem/imunologia , Sequência de Aminoácidos/genética , Animais , Humanos , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Venenos de Escorpião/genética , Venenos de Escorpião/metabolismo , Escorpiões/química , Escorpiões/genética , Escorpiões/imunologia , Alinhamento de Sequência , Anticorpos de Cadeia Única/imunologia , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA