Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Med Mycol ; 62(6)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38935900

RESUMO

The World Health Organization (WHO) in 2022 developed a fungal priority pathogen list. Candida auris was ultimately ranked as a critical priority pathogen. PubMed and Web of Science were used to find studies published from 1 January 2011 to 18 February 2021, reporting on predefined criteria including: mortality, morbidity (i.e., hospitalization and disability), drug resistance, preventability, yearly incidence, and distribution/emergence. Thirty-seven studies were included in the final analysis. The overall and 30-day mortality rates associated with C. auris candidaemia ranged from 29% to 62% and 23% to 67%, respectively. The median length of hospital stay was 46-68 days, ranging up to 140 days. Late-onset complications of C. auris candidaemia included metastatic septic complications. Resistance rates to fluconazole were as high as 87%-100%. Susceptibility to isavuconazole, itraconazole, and posaconazole varied with MIC90 values of 0.06-1.0 mg/l. Resistance rates to voriconazole ranged widely from 28% to 98%. Resistance rates ranged between 8% and 35% for amphotericin B and 0%-8% for echinocandins. Over the last ten years, outbreaks due to C. auris have been reported in in all WHO regions. Given the outbreak potential of C. auris, the emergence and spread of MDR strains, and the challenges associated with its identification, and eradication of its environmental sources in healthcare settings, prevention and control measures based on the identified risk factors should be evaluated for their effectiveness and feasibility. Global surveillance studies could better inform the incidence rates and distribution patterns to evaluate the global burden of C. auris infections.


Assuntos
Antifúngicos , Candida auris , Candidíase , Farmacorresistência Fúngica , Organização Mundial da Saúde , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candidíase/microbiologia , Candidíase/epidemiologia , Candidíase/tratamento farmacológico , Candida auris/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Candidemia/epidemiologia , Candidemia/microbiologia , Candidemia/tratamento farmacológico , Surtos de Doenças , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação , Incidência
2.
Planta Med ; 90(7-08): 588-594, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38843798

RESUMO

Antimicrobial photodynamic therapy (aPDT) is an evolving treatment strategy against human pathogenic microbes such as the Candida species, including the emerging pathogen C. auris. Using a modified EUCAST protocol, the light-enhanced antifungal activity of the natural compound parietin was explored. The photoactivity was evaluated against three separate strains of five yeasts, and its molecular mode of action was analysed via several techniques, i.e., cellular uptake, reactive electrophilic species (RES), and singlet oxygen yield. Under experimental conditions (λ = 428 nm, H = 30 J/cm2, PI = 30 min), microbial growth was inhibited by more than 90% at parietin concentrations as low as c = 0.156 mg/L (0.55 µM) for C. tropicalis and Cryptococcus neoformans, c = 0.313 mg/L (1.10 µM) for C. auris, c = 0.625 mg/L (2.20 µM) for C. glabrata, and c = 1.250 mg/L (4.40 µM) for C. albicans. Mode-of-action analysis demonstrated fungicidal activity. Parietin targets the cell membrane and induces cell death via ROS-mediated lipid peroxidation after light irradiation. In summary, parietin exhibits light-enhanced fungicidal activity against all Candida species tested (including C. auris) and Cryptococcus neoformans, covering three of the four critical threats on the WHO's most recent fungal priority list.


Assuntos
Antifúngicos , Cryptococcus neoformans , Testes de Sensibilidade Microbiana , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/efeitos da radiação , Candida auris/efeitos dos fármacos , Luz , Candida/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Fotoquimioterapia/métodos , Antraquinonas/farmacologia , Fármacos Fotossensibilizantes/farmacologia
3.
Mycoses ; 67(6): e13752, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38880933

RESUMO

BACKGROUND: Candida auris is an emerging multidrug-resistant yeast, frequently causing outbreaks in health care facilities. The pathogen persistently colonises human skin and inanimate surfaces such as catheters, aiding to its spread. Moreover, colonisation is a risk factor to develop invasive infection. OBJECTIVES: We investigated 61 C. auris strains isolated from non-sterile human body sites (n = 53) and the hospital environment (n = 8), originating from four different centres in a single Brazilian state. MATERIALS AND METHODS: Antifungal susceptibility testing (AFST) against common antifungals was performed, and resistance-associated genes were evaluated. Genetic relatedness was investigated with short tandem repeat (STR) genotyping and validated with whole-genome sequencing (WGS) single nucleotide polymorphism (SNP) analysis. RESULTS: Antifungal susceptibility testing demonstrated that all isolates were susceptible to azoles, echinocandins and amphotericin B. No mutations were detected in ERG11 and FKS1 genes. With STR typing, isolates were allocated to clade IV and appeared closely related. This was confirmed by WGS SNP analysis of 6 isolates, which demonstrated a maximal difference of only 41 SNPs between these strains. Furthermore, the Brazilian isolates formed a distinct autochthonous branch within clade IV, excluding recent introductions from outside the country. A molecular clock analysis of clade IV isolates from various countries suggests that early in the previous century there was a unique event causing environmental spread of a C. auris ancestor throughout the Latin-American continent, followed by human introduction during the last decades. CONCLUSION: We report the emergence of C. auris patient colonisation in multiple centres by fluconazole-susceptible clade IV close-related strains in Pernambuco State, Brazil.


Assuntos
Antifúngicos , Azóis , Candida auris , Candidíase , Surtos de Doenças , Testes de Sensibilidade Microbiana , Polimorfismo de Nucleotídeo Único , Humanos , Brasil/epidemiologia , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/epidemiologia , Azóis/farmacologia , Candida auris/genética , Candida auris/efeitos dos fármacos , Sequenciamento Completo do Genoma , Genótipo , Feminino , Masculino , Farmacorresistência Fúngica/genética , Adulto , Pessoa de Meia-Idade , Candidíase Invasiva
4.
Infect Immun ; 92(6): e0010324, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38722168

RESUMO

Candida auris is an opportunistic fungal pathogen with high mortality rates which presents a clear threat to public health. The risk of C. auris infection is high because it can colonize the body, resist antifungal treatment, and evade the immune system. The genetic mechanisms for these traits are not well known. Identifying them could lead to new targets for new treatments. To this end, we present an analysis of the genetics and gene expression patterns of C. auris carbon metabolism, drug resistance, and macrophage interaction. We chose to study two C. auris isolates simultaneously, one drug sensitive (B11220 from Clade II) and one drug resistant (B11221 from Clade III). Comparing the genomes, we confirm the previously reported finding that B11220 was missing a 12.8 kb region on chromosome VI. This region contains a gene cluster encoding proteins related to alternative sugar utilization. We show that B11221, which has the gene cluster, readily assimilates and utilizes D-galactose and L-rhamnose as compared to B11220, which harbors the deletion. B11221 exhibits increased adherence and drug resistance compared to B11220 when grown in these sugars. Transcriptomic analysis of both isolates grown on glucose or galactose showed that the gene cluster was upregulated when grown on D-galactose. These findings reinforce growing evidence of a link between metabolism and drug tolerance. B11221 resists phagocytosis by macrophages and exhibits decreased ß-1,3-glucan exposure, a key determinant that allows Candida to evade the host immune system, as compared to B11220. In a transcriptomic analysis of both isolates co-cultured with macrophages, we find upregulation of genes associated with transport and transcription factors in B11221. Our studies show a positive correlation between membrane composition and immune evasion, alternate sugar utilization, and drug tolerance in C. auris.


Assuntos
Antifúngicos , Candida auris , Virulência/genética , Candida auris/genética , Candida auris/efeitos dos fármacos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candidíase/imunologia , Farmacorresistência Fúngica/genética , Genoma Fúngico , Humanos , Macrófagos/microbiologia , Macrófagos/imunologia , Regulação Fúngica da Expressão Gênica , Perfilação da Expressão Gênica , Animais
6.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38771623

RESUMO

The emergent fungal pathogen Candida auris is increasingly recognised as an important cause of healthcare-associated infections globally. It is highly transmissible, adaptable, and persistent, resulting in an organism with significant outbreak potential that risks devastating consequences. Progress in the ability to identify C. auris in clinical specimens is encouraging, but laboratory diagnostic capacity and surveillance systems are lacking in many countries. Intrinsic resistance to commonly used antifungals, combined with the ability to rapidly acquire resistance to therapy, substantially restricts treatment options and novel agents are desperately needed. Despite this, outbreaks can be interrupted, and mortality avoided or minimised, through the application of rigorous infection prevention and control measures with an increasing evidence base. This review provides an update on epidemiology, the impact of the COVID-19 pandemic, risk factors, identification and typing, resistance profiles, treatment, detection of colonisation, and infection prevention and control measures for C. auris. This review has informed a planned 2024 update to the United Kingdom Health Security Agency (UKHSA) guidance on the laboratory investigation, management, and infection prevention and control of Candida auris. A multidisciplinary response is needed to control C. auris transmission in a healthcare setting and should emphasise outbreak preparedness and response, rapid contact tracing and isolation or cohorting of patients and staff, strict hand hygiene and other infection prevention and control measures, dedicated or single-use equipment, appropriate disinfection, and effective communication concerning patient transfers and discharge.


Assuntos
Antifúngicos , COVID-19 , Candida auris , Candidíase , Controle de Infecções , Humanos , Candidíase/prevenção & controle , Candidíase/epidemiologia , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Controle de Infecções/métodos , Candida auris/efeitos dos fármacos , COVID-19/prevenção & controle , COVID-19/epidemiologia , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Inglaterra/epidemiologia , Infecção Hospitalar/prevenção & controle , Infecção Hospitalar/epidemiologia , Infecção Hospitalar/microbiologia , SARS-CoV-2 , Farmacorresistência Fúngica , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação , Surtos de Doenças/prevenção & controle
7.
J Med Microbiol ; 73(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38743468

RESUMO

Introduction. Innovative antifungal therapies are of crucial importance to combat the potentially life-threatening infections linked to the multidrug-resistant fungal pathogen Candida auris. Induction of regulated cell death, apoptosis, could provide an outline for future therapeutics. Human antimicrobial peptides (AMPs), well-known antifungal compounds, have shown the ability to induce apoptosis in pathogenic fungi.Hypothesis/Gap Statement . Although it is known that AMPs possess antifungal activity against C. auris, their ability to induce apoptosis requires further investigations.Aim. This study evaluated the effects of AMPs on the induction of apoptosis in C. auris.Methods. Human neutrophil peptide-1 (HNP-1), human ß-Defensins-3 (hBD-3) and human salivary histatin 5 (His 5) were assessed against two clinical C. auris isolates. Apoptosis hallmarks were examined using FITC-Annexin V/PI double labelling assay and terminal deoxynucleotidyl transferase deoxynucleotidyl transferase nick-end labelling (TUNEL) to detect phosphatidylserine externalization and DNA fragmentation, respectively. Then, several intracellular triggers were studied using JC-10 staining, spectrophotometric assay and 2',7'-dichlorofluorescin diacetate staining to measure the mitochondrial membrane potential, cytochrome-c release and reactive oxygen species (ROS) production, respectively.Results and conclusion. FITC-Annexin V/PI staining and TUNEL analysis revealed that exposure of C. auris cells to HNP-1 and hBD-3 triggered both early and late apoptosis, while His 5 caused significant necrosis. Furthermore, HNP-1 and hBD-3 induced significant mitochondrial membrane depolarization, which resulted in substantial cytochrome c release. In contrast to His 5, which showed minimal mitochondrial depolarization and no cytochrome c release. At last, all peptides significantly increased ROS production, which is related to both types of cell death. Therefore, these peptides represent promising and effective antifungal agents for treating invasive infections caused by multidrug-resistant C. auris.


Assuntos
Antifúngicos , Apoptose , Candida auris , Histatinas , Espécies Reativas de Oxigênio , Apoptose/efeitos dos fármacos , Humanos , Antifúngicos/farmacologia , Histatinas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Candida auris/efeitos dos fármacos , beta-Defensinas/farmacologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , alfa-Defensinas/farmacologia , Testes de Sensibilidade Microbiana , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Citocromos c/metabolismo , Fragmentação do DNA/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candidíase/microbiologia
8.
Nanotechnology ; 35(33)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38749415

RESUMO

Candida auris, a rapidly emerging multidrug-resistant fungal pathogen, poses a global health threat, with cases reported in over 47 countries. Conventional detection methods struggle, and the increasing resistance ofC. auristo antifungal agents has limited treatment options. Nanoparticle-based therapies, utilizing materials like silver, carbon, zinc oxide, titanium dioxide, polymer, and gold, show promise in effectively treating cutaneous candidiasis. This review explores recent advancements in nanoparticle-based therapies, emphasizing their potential to revolutionize antifungal therapy, particularly in combatingC. aurisinfections. The discussion delves into mechanisms of action, combinations of nanomaterials, and their application against multidrug-resistant fungal pathogens, offering exciting prospects for improved clinical outcomes and reduced mortality rates. The aim is to inspire further research, ushering in a new era in the fight against multidrug-resistant fungal infections, paving the way for more effective and targeted therapeutic interventions.


Assuntos
Antifúngicos , Candidíase , Farmacorresistência Fúngica Múltipla , Nanopartículas , Humanos , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Nanopartículas/química , Nanopartículas/uso terapêutico , Candida auris/efeitos dos fármacos , Animais , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico
9.
Emerg Microbes Infect ; 13(1): 2356144, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38742537

RESUMO

The study investigates the potential of lansoprazole, a proton pump inhibitor, to interfere with fungal respiration and enhance the antifungal activity of amphotericin B against multidrug-resistant Candida auris. The authors administered lansoprazole at concentrations significantly higher than typical therapeutic doses, which demonstrated promising results but also raised concerns about potential toxicity. We suggest incorporating a control group, monitoring toxicity indicators, performing pathological examinations, and conducting cellular assays to improve the study's rigor and reliability. We also highlight the need for further research into the mechanisms of lansoprazole's antifungal activity, its long-term effects on amphotericin B resistance, and potential drug-drug interactions with amphotericin B. Addressing these concerns is crucial for the clinical translation of lansoprazole as an adjuvant to amphotericin B.


Assuntos
Anfotericina B , Antifúngicos , Candida auris , Farmacorresistência Fúngica Múltipla , Sinergismo Farmacológico , Lansoprazol , Testes de Sensibilidade Microbiana , Lansoprazol/farmacologia , Anfotericina B/farmacologia , Antifúngicos/farmacologia , Humanos , Candida auris/efeitos dos fármacos , Candida auris/genética , Candidíase/tratamento farmacológico , Candidíase/microbiologia , Inibidores da Bomba de Prótons/farmacologia
10.
Indian J Med Microbiol ; 49: 100594, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38636843

RESUMO

PURPOSE: Candida auris is increasingly being isolated from patients all over the world. It has five clades. In this study, it was aimed to compare the results of biochemical tests obtained using different methods and the antifungal susceptibility profiles of C. auris strains isolated from the first seven cases reported in Türkiye, and evaluate whether this information could be useful as preliminary data in determining the clade of strains in centers that lack the opportunity to apply molecular methods. METHODS: Identification test results obtained using API ID 32 C, API 20 C AUX, VITEK-2 YST, and MALDI-TOF MS; colony color and morphology on Chromagar Candida, CHROMagar Candida Plus media, and cornmeal-Tween 80 agar; susceptibility to antifungals were tested and compared. Antifungal susceptibility test was studied using microdilution method according to the recommendations of EUCAST. Additionally, a pilot study was conducted to investigate the value of CHROMagar Candida Plus. RESULTS: All seven strains were identified as Lachancea kluyveri with API ID 32 C, Rhodotorula glutinis; Cryptococcus neoformans with API 20 C AUX, and C. auris with both VITEK-2 YST and MALDI-TOF MS. MIC values for fluconazole were very high (≥64 mg/L) for all seven strains. It was observed that 11 (37.9%) of 29 Candida parapsilosis strains formed colonies with morphology similar to C. auris on CHROMagar Candida Plus medium, leading to false positivity. CONCLUSIONS: Although there have been many isolations of C. auris in our country in recent years, clade distribution of only a small number of strains is known yet. In this study, when the biochemical properties and antifungal susceptibility profiles of the seven strains were evaluated, it was concluded that they exhibited some characteristics compatible with clade I. It was also observed that strains 1 and 2 may belong to a different clade.


Assuntos
Antifúngicos , Candida auris , Candidíase , Testes de Sensibilidade Microbiana , Humanos , Antifúngicos/farmacologia , Candidíase/microbiologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Turquia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Técnicas de Tipagem Micológica/métodos , Candida/efeitos dos fármacos , Candida/classificação , Candida/isolamento & purificação , Masculino , Feminino
11.
J Ethnopharmacol ; 330: 118240, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-38677574

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Candida auris poses a severe global health threat, with many strains resistant to antifungal treatments, complicating therapy. Exploring natural compounds alongside conventional drugs offers promising therapeutic avenues. The antifungal potential of the ethanolic extract from Caryocar brasiliense (Cb-EE), a plant native to the Brazilian cerrado and renowned for its medicinal properties, was investigated against C. auris. AIM OF THE STUDY: The study examined the chemical composition, antifungal activity, mechanisms of action, and in vivo effects of Cb-EE. MATERIALS AND METHODS: Leaves of C. brasiliense were processed to extract ethanolic extract, which was evaluated for phenolic compounds, flavonoids, and tannins. The antifungal capacity was determined through broth microdilution and checkerboard methods, assessing interaction with conventional antifungals. RESULTS: Cb-EE demonstrated fungistatic activity against various Candida species and Cryptococcus neoformans. Synergy with fluconazole and additive effects with other drugs were observed. Cb-EE inhibited C. auris growth, with the combination of fluconazole extending inhibition. Mechanistic studies revealed interference with fungal membranes, confirmed by sorbitol protection assays, cellular permeability tests, and scanning electron microscopy (SEM). Hemocompatibility and in vivo toxicity tests on Tenebrio molitor showed safety. CONCLUSION: Cb-EE, alone or in combination with fluconazole, effectively treated C. auris infections in vitro and in vivo, suggesting its prospective role as an antifungal agent against this emerging pathogen.


Assuntos
Antifúngicos , Farmacorresistência Fúngica Múltipla , Testes de Sensibilidade Microbiana , Extratos Vegetais , Folhas de Planta , Antifúngicos/farmacologia , Antifúngicos/isolamento & purificação , Animais , Extratos Vegetais/farmacologia , Folhas de Planta/química , Candida auris/efeitos dos fármacos , Candida auris/isolamento & purificação , Fluconazol/farmacologia , Tenebrio , Sinergismo Farmacológico , Brasil , Candida/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos
13.
J Clin Microbiol ; 61(4): e0176722, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36975998

RESUMO

Candida auris is a multidrug-resistant yeast pathogen causing outbreaks in health care facilities worldwide, and the emergence of echinocandin-resistant C. auris is a concern. Currently used Clinical and Laboratory Standards Institute (CLSI) and commercial antifungal susceptibility tests (AFST) are phenotype-based, slow, and not scalable, limiting their effectiveness in the surveillance of echinocandin-resistant C. auris. The urgent need for accurate and rapid methods of assessment of echinocandin resistance cannot be overstated, as this class of antifungal drugs is preferred for patient management. We report the development and validation of a TaqMan chemistry probe-based fluorescence melt curve analysis (FMCA) following asymmetric polymerase chain reaction (PCR) to assess mutations within the hot spot one (HS1) region of FKS1, the gene responsible for encoding 1,3-ß-d-glucan synthase that is a target for echinocandins. The assay correctly identified F635C, F635Y, F635del, F635S, S639F or S639Y, S639P, and D642H/R645T mutations. Of these mutations, F635S and D642H/R645T were not involved in echinocandin resistance, while the rest were, as confirmed by AFST. Of 31 clinical cases, the predominant mutation conferring echinocandin resistance was S639F/Y (20 cases) followed by S639P (4 cases), F635del (4 cases), F635Y (2 cases), and F635C (1 case). The FMCA assay was highly specific and did not cross-react with closely and distantly related Candida and other yeast and mold species. Structural modeling of the Fks1 protein, its mutants, and docked conformations of three echinocandin drugs suggest a plausible Fks1 binding orientation for echinocandins. These findings lay the groundwork for future evaluations of additional FKS1 mutations and their impact on the development of drug resistance. The TaqMan chemistry probe-based FMCA would allow rapid, high throughput, and accurate detection of FKS1 mutations conferring echinocandin resistance in C. auris.


Assuntos
Antifúngicos , Candida auris , Farmacorresistência Fúngica Múltipla , Equinocandinas , Proteínas Fúngicas , Glucosiltransferases , Reação em Cadeia da Polimerase em Tempo Real , Candida auris/efeitos dos fármacos , Candida auris/genética , Candida auris/isolamento & purificação , Equinocandinas/farmacologia , Antifúngicos/farmacologia , Sondas Moleculares/química , Farmacorresistência Fúngica Múltipla/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Desnaturação de Ácido Nucleico , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Glucosiltransferases/química , Glucosiltransferases/genética , Conformação Proteica em alfa-Hélice/genética , Mutação , Candidíase Invasiva/diagnóstico , Candidíase Invasiva/microbiologia , Fluorescência , Análise Mutacional de DNA/métodos
14.
Methods Mol Biol ; 2517: 73-85, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674946

RESUMO

The paradoxical growth effect (PGE; also known as Eagle effect) is an in vitro phenomenon observed during antifungal susceptibility testing (AFST). In PGE, some fungal isolates grow in medium containing high concentrations of an echinocandin, above the minimal inhibitory concentration (MIC), despite being fully susceptible at lower concentrations. The presence of PGE complicates the assignment of isolates to susceptible or resistant category, especially in the case of newly emerged pathogens like Candida auris, for which susceptibility breakpoints are not established.Here we describe a protocol aiding in the determination of whether a given C. auris isolate is echinocandin-resistant or echinocandin-susceptible but exhibiting paradoxical growth.


Assuntos
Antifúngicos , Candida auris , Equinocandinas , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Farmacorresistência Fúngica , Equinocandinas/farmacologia , Testes de Sensibilidade Microbiana
15.
mSphere ; 7(3): e0012422, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35473297

RESUMO

Candida auris is an urgent threat to human health due to its rapid spread in health care settings and its repeated development of multidrug resistance. Diseases that increase risk for C. auris infection, such as diabetes, kidney failure, or immunocompromising conditions, are associated with elevated levels of methylglyoxal (MG), a reactive dicarbonyl compound derived from several metabolic processes. In other Candida species, expression of MG reductase enzymes that catabolize and detoxify MG are controlled by Mrr1, a multidrug resistance-associated transcription factor, and MG induces Mrr1 activity. Here, we used transcriptomics and genetic assays to determine that C. auris MRR1a contributes to MG resistance, and that the main Mrr1a targets are an MG reductase and MDR1, which encodes a drug efflux protein. The C. auris Mrr1a regulon is smaller than Mrr1 regulons described in other species. In addition to MG, benomyl (BEN), a known Mrr1 stimulus, induces C. auris Mrr1 activity, and characterization of the MRR1a-dependent and -independent transcriptional responses revealed substantial overlap in genes that were differentially expressed in response to each compound. Additionally, we found that an MRR1 allele specific to one C. auris phylogenetic clade, clade III, encodes a hyperactive Mrr1 variant, and this activity correlated with higher MG resistance. C. auris MRR1a alleles were functional in Candida lusitaniae and were inducible by BEN, but not by MG, suggesting that the two Mrr1 inducers act via different mechanisms. Together, the data presented in this work contribute to the understanding of Mrr1 activity and MG resistance in C. auris. IMPORTANCE Candida auris is a fungal pathogen that has spread since its identification in 2009 and is of concern due to its high incidence of resistance against multiple classes of antifungal drugs. In other Candida species, the transcription factor Mrr1 plays a major role in resistance against azole antifungals and other toxins. More recently, Mrr1 has been recognized to contribute to resistance to methylglyoxal (MG), a toxic metabolic product that is often elevated in different disease states. MG can activate Mrr1 and its induction of Mdr1 which can protect against diverse challenges. The significance of this work lies in showing that MG is also an inducer of Mrr1 in C. auris, and that one of the major pathogenic C. auris lineages has an activating Mrr1 mutation that confers protection against MG.


Assuntos
Antifúngicos , Benomilo , Candida auris , Fluconazol , Aldeído Pirúvico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/farmacologia , Benomilo/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Oxirredutases/metabolismo , Filogenia , Aldeído Pirúvico/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Microbiol Spectr ; 10(3): e0060122, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35471056

RESUMO

There is an urgent unmet need for novel antifungals. In this study, we searched for novel antifungal activities in the Pandemic Response Box, a collection of 400 structurally diverse compounds in various phases of drug discovery. We identified five molecules which could control the growth of Cryptococcus neoformans, Cryptococcus deuterogattii, and the emerging global threat Candida auris. After eliminating compounds which demonstrated paradoxical antifungal effects or toxicity to mammalian macrophages, we selected compound MMV1593537 as a nontoxic, fungicidal molecule for further characterization of antifungal activity. Scanning electron microscopy revealed that MMV1593537 affected cellular division in all three pathogens. In Cryptococcus, MMV1593537 caused a reduction in capsular dimensions. Treatment with MMV1593537 resulted in increased detection of cell wall chitooligomers in these three species. Since chitooligomers are products of the enzymatic hydrolysis of chitin, we investigated whether surface chitinase activity was altered in response to MMV1593537 exposure. We observed peaks of enzyme activity in C. neoformans and C. deuterogattii in response to MMV1593537. We did not detect any surface chitinase activity in C. auris. Our results suggest that MMV1593537 is a promising, nontoxic fungicide whose mechanism of action, at least in Cryptococcus spp, requires chitinase-mediated hydrolysis of chitin. IMPORTANCE The development of novel antifungals is a matter of urgency. In this study, we evaluated antifungal activities in a collection of 400 molecules, using highly lethal fungal pathogens as targets. One of these molecules, namely, MMV1593537, was not toxic to host cells and controlled the growth of isolates of Cryptococcus neoformans, C. deuterogattii, C. gattii, Candida auris, C. albicans, C. parapsilosis, and C. krusei. We tested the mechanisms of antifungal action of MMV1593537 in the Cryptococcus and C. auris models and concluded that the compound affects the cell wall, a structure which is essential for fungal life. At least in Cryptococcus, this effect involved chitinase, an enzyme which is required for remodeling the cell wall. Our results suggest that MMV1593537 is a candidate for future antifungal development.


Assuntos
Antifúngicos , Candida auris , Quitinases , Cryptococcus gattii , Cryptococcus neoformans , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Parede Celular , Quitina , Quitinases/metabolismo , Cryptococcus gattii/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Macrófagos , Testes de Sensibilidade Microbiana
17.
Microbiologyopen ; 11(1): e1261, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35212481

RESUMO

Candida auris is an emerging fungal superbug of worldwide interest. It is associated with high mortality rates and exhibits increased resistance to antifungals. Ultraviolet subtype C (UVC) light can be used to disinfect surfaces to mitigate its spread. The objectives of this study were (1) To investigate UVC disinfection performances and wavelength sensitivity of C. auris. (2) To evaluate the UVC dose required for the prevention of biofilm formation on stainless-steel, plastic (polystyrene), and poly-cotton fabric surfaces. C. auris was grown following standard procedures. The study utilized six different UVC LED arrays with wavelengths between 252 and 280 nm. Arrays were set at similar intensities, to obtain doses of 5-40 mJ cm-2 and similar irradiation time. Disinfection performance for each array was determined using log reduction value (LRV) and percentage reduction by comparing the controls against the irradiated treatments. Evaluation of the ability of 267 nm UVC LEDs to prevent C. auris biofilm formation was investigated using stainless-steel, plastic coupons, and poly-cotton fabric. Peak sensitivity to UVC disinfection was between 267 and 270 nm. With 20 mJ cm-2 , the study obtained ≥LRV3. On stainless-steel coupons, 30 mJ cm-2 was sufficient to prevent biofilm formation, while on plastic, this required 10 mJ cm-2 . A dose of 60 mJ cm-2 reduced biofilms on poly-cotton fabric significantly (R2 = 0.9750, p = 0.0002). The study may allow for the design and implementation of disinfection systems.


Assuntos
Biofilmes/crescimento & desenvolvimento , Candida auris/efeitos dos fármacos , Candida auris/efeitos da radiação , Raios Ultravioleta , Biofilmes/efeitos da radiação , Candida auris/patogenicidade , Candida auris/fisiologia , Resistência a Múltiplos Medicamentos/efeitos da radiação , Raios Ultravioleta/classificação
18.
ACS Infect Dis ; 8(3): 584-595, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35179882

RESUMO

Candida auris is an emerging multidrug-resistant fungal pathogen. With high mortality rates, there is an urgent need for new antifungals to combat C. auris. Possible antifungal targets include Cu-only superoxide dismutases (SODs), extracellular SODs that are unique to fungi and effectively combat the superoxide burst of host immunity. Cu-only SODs are essential for the virulence of diverse fungal pathogens; however, little is understood about these enzymes in C. auris. We show here that C. auris secretes an enzymatically active Cu-only SOD (CaurSOD4) when cells are starved for Fe, a condition mimicking host environments. Although predicted to attach to cell walls, CaurSOD4 is detected as a soluble extracellular enzyme and can act at a distance to remove superoxide. CaurSOD4 selectively binds Cu and not Zn, and Cu binding is labile compared to bimetallic Cu/Zn SODs. Moreover, CaurSOD4 is susceptible to inhibition by various metal-binding drugs that are without effect on mammalian Cu/Zn SODs. Our studies highlight CaurSOD4 as a potential antifungal target worthy of consideration.


Assuntos
Antifúngicos , Candida auris , Farmacorresistência Fúngica Múltipla , Superóxido Dismutase , Animais , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/enzimologia , Candida auris/metabolismo , Candida auris/patogenicidade , Cobre/metabolismo , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Farmacorresistência Fúngica Múltipla/fisiologia , Mamíferos/metabolismo , Superóxido Dismutase/metabolismo , Virulência/fisiologia , Zinco/metabolismo
19.
Microbiol Spectr ; 10(1): e0171721, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196811

RESUMO

We determined the susceptibility of South African Candida auris bloodstream surveillance isolates to manogepix, a novel antifungal, and several registered antifungal agents. C. auris isolates were submitted to a reference laboratory between 2016 and 2017. Species identification was confirmed by phenotypic methods. We determined MICs for amphotericin B, anidulafungin, caspofungin, micafungin, itraconazole, posaconazole, voriconazole, fluconazole, and flucytosine using Sensititre YeastOne and manogepix using a modified Clinical and Laboratory Standards Institute broth microdilution method. Clade distribution was determined for a subset of isolates using whole-genome sequencing. Of 394 tested isolates, 357 were resistant to at least 1 antifungal class. The manogepix MIC range was 0.002 to 0.06 µg/mL for 335 isolates with fluconazole monoresistance. Nineteen isolates were resistant to both fluconazole and amphotericin B yet still had low manogepix MICs (range, 0.004 to 0.03 µg/mL). Two isolates from the same patient were panresistant but had manogepix MICs of 0.004 µg/mL and 0.008 µg/mL. Comparing MIC50 values, manogepix was >3-fold more potent than azoles, 4-fold more potent than echinocandins, and 9-fold more potent than amphotericin B. Of 84 sequenced isolates, the manogepix MIC range for 70 clade III isolates was 0.002 to 0.031 µg/mL, for 13 clade I isolates was 0.008 to 0.031 µg/mL, and for one clade IV isolate, 0.016 µg/mL. Manogepix exhibited potent activity against all isolates, including those resistant to more than one antifungal agent and in three different clades. These data support manogepix as a promising candidate for treatment of C. auris infections. IMPORTANCE Since C. auris was first detected in South Africa in 2012, health care-associated transmission events and large outbreaks have led to this pathogen accounting for more than 1 in 10 cases of candidemia. A large proportion of South African C. auris isolates are highly resistant to fluconazole but variably resistant to amphotericin B and echinocandins. There is also an emergence of pandrug-resistant C. auris isolates, limiting treatment options. Therefore, the development of new antifungal agents such as fosmanogepix or the use of new combinations of antifungal agents is imperative to the continued effective treatment of C. auris infections. Manogepix, the active moiety of fosmanogepix, has shown excellent activity against C. auris isolates. With the emergence of C. auris isolates that are pandrug-resistant in South Africa, our in vitro susceptibility data support manogepix as a promising new drug candidate for treatment of C. auris and difficult-to-treat C. auris infections.


Assuntos
Aminopiridinas/uso terapêutico , Antifúngicos/uso terapêutico , Candida auris/efeitos dos fármacos , Isoxazóis/uso terapêutico , Sepse/tratamento farmacológico , Aminopiridinas/farmacologia , Antifúngicos/farmacologia , Candida auris/isolamento & purificação , Candidemia/tratamento farmacológico , Farmacorresistência Fúngica Múltipla , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/farmacologia , Isoxazóis/farmacologia , Testes de Sensibilidade Microbiana , Sepse/microbiologia , África do Sul
20.
Antimicrob Agents Chemother ; 66(1): e0162421, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633842

RESUMO

ERG11 sequencing of 28 Candida auris clade III isolates revealed the presence of concomitant V125A and F126L substitutions. Heterologous expression of Erg11-V125A/F126L in Saccharomyces cerevisiae led to reduced fluconazole and voriconazole susceptibilities. Generation of single substitution gene variants through site-directed mutagenesis uncovered that F126L primarily contributes to the elevated triazole MICs. A similar yet diminished pattern of reduced susceptibility was observed with the long-tailed triazoles posaconazole and itraconazole for the V125A/F126L, F126L, Y132F, and K143R alleles.


Assuntos
Candida auris , Farmacorresistência Fúngica , Substituição de Aminoácidos , Antifúngicos/farmacologia , Candida auris/efeitos dos fármacos , Candida auris/genética , Farmacorresistência Fúngica/genética , Fluconazol/farmacologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Triazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA