Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.509
Filtrar
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731449

RESUMO

Cannabis sativa L. (hemp) is a herbaceous plant rich in cannabinoids with a long history of use in pain treatment. The most well-characterized cannabinoids, cannabidiol (CBD) and Δ9-tetrahydrocannabinol (Δ9-THC), garnered much attention in chemotherapy-induced peripheral neuropathy (CIPN) treatment. However, few studies have investigated the biological benefits and mechanism of hemp extract on CIPN. In the present study, hemp extract (JG) rich in cannabinoids was extracted by supercritical fluid carbon dioxide extraction (SFCE). The antinociceptive efficacy was evaluated using a paclitaxel-induced peripheral neuropathy (PIPN) rat model based on behavioral tests. Further omics-based approaches were applied to explore the potential mechanisms. The results showed that JG decreased mechanical allodynia, thermal hyperalgesia, and inflammatory cytokines in PIPN rats significantly. Transcriptome analysis identified seven key genes significantly regulated by JG in PIPN model rats, mainly related to the neuroactive ligand-receptor interaction pathway, PPAR signaling pathway, and cAMP signaling pathway. In metabolomic analysis, a total of 39 significantly altered metabolites were identified, mainly correlated with pentose and glucuronate interconversions and the glycerophospholipid metabolism pathway. Gut microbiota analysis suggested that increased community Lachnoclostridium and Lachnospiraceae_UCG-006 in PIPN rats can be reversed significantly by JG. In conclusion, hemp extract exhibited antinociceptive effects on PIPN. The analgesic mechanism was probably related to the regulation of inflammation, neuroactive ligand-receptor interaction pathway, sphingolipid metabolism, etc. This study provides novel insights into the functional interactions of Cannabis sativa L. extract on PIPN.


Assuntos
Analgésicos , Cannabis , Neuralgia , Paclitaxel , Extratos Vegetais , Animais , Cannabis/química , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Ratos , Analgésicos/farmacologia , Analgésicos/química , Paclitaxel/efeitos adversos , Masculino , Metabolômica , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Canabinoides/farmacologia , Multiômica
2.
Sci Rep ; 14(1): 11053, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744900

RESUMO

This study investigated the influence of polyunsaturated fatty acid composition and vitamin E supplementation on oxidative status and immune responses in weanling piglets pre- and post-E. coli challenge. Suckling piglets (n = 24) were randomly selected from two litters for an oral supplementation (1 mL/day) with fish oil or hemp oil and vitamin E supplementation (60 mg natural vitamin E/mL oil) from day 10 to 28 of age. At day 29 and 30 of age, each piglet was orally inoculated with 6.7 × 108 and 3.96 × 108 CFU of F4 and F18 E. coli, respectively. Blood was sampled from all piglets on day 28 before E. coli challenge and on day 35 of age to investigate immunological and oxidative stress markers in plasma. One week after weaning and exposure to E. coli, a general reduction in the α-tocopherol concentration and activity of GPX1 was obtained. Vitamin E supplementation lowered the extent of lipid peroxidation and improved the antioxidative status and immune responses after E. coli challenge. Hemp oil had the greatest effect on antioxidant enzyme activity. Provision of hemp oil and vitamin E to suckling piglets may reduce the incidence of post-weaning diarrhea.


Assuntos
Cannabis , Suplementos Nutricionais , Infecções por Escherichia coli , Escherichia coli , Óleos de Peixe , Oxirredução , Vitamina E , Animais , Vitamina E/farmacologia , Suínos , Óleos de Peixe/farmacologia , Óleos de Peixe/administração & dosagem , Cannabis/química , Oxirredução/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/prevenção & controle , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Desmame , Peroxidação de Lipídeos/efeitos dos fármacos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/tratamento farmacológico
3.
PLoS One ; 19(5): e0298487, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781174

RESUMO

Cannabis sativa (Hemp) seeds are used widely for cosmetic and therapeutic applications, and contain peptides with substantial therapeutic potential. Two key peptides, WVYY and PSLPA, extracted from hemp seed proteins were the focal points of this study. These peptides have emerged as pivotal contributors to the various biological effects of hemp seed extracts. Consistently, in the present study, the biological effects of WVYY and PSLPA were explored. We confirmed that both WVYY and PSLPA exert antioxidant and antibacterial effects and promote wound healing. We hypothesized the involvement of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway in these observed effects, given that Nrf2 is reported to be a central player in the regulation of these observed effects. Molecular-level investigations unequivocally confirmed the role of the Nrf2 signaling pathway in the observed effects of WVYY and PSLPA, specifically their antioxidant effects. Our study highlights the therapeutic potential of hemp seed-derived peptides WVYY and PSLPA, particularly with respect to their antioxidant effects, and provides a nuanced understanding of their effects. Further, our findings can facilitate the investigation of targeted therapeutic applications and also underscore the broader significance of hemp extracts in biological contexts.


Assuntos
Antioxidantes , Cannabis , Queratinócitos , Fator 2 Relacionado a NF-E2 , Peptídeos , Sementes , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Cannabis/química , Humanos , Transdução de Sinais/efeitos dos fármacos , Sementes/química , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Peptídeos/farmacologia , Peptídeos/química , Proteínas de Plantas/farmacologia , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
4.
J Pharm Biomed Anal ; 245: 116181, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38723555

RESUMO

Hemp-sprouts are emerging as a new class of attractive functional food due to their numerous health benefits when compared to other sprout species. Indeed, the high content of beneficial components including polyphenols and flavonoids makes this type of food a promising and successful market. However, the available literature on this topic is limited and often conflicting as regards to the content of phytocannabinoids. High-performance liquid chromatography coupled to high-resolution mass spectrometry (HPLC-HRMS) was applied in an untargeted metabolomics fashion to extracts of hemp seeds, sprouts and microgreens of nine different genotypes. Both unsupervised and supervised multivariate statistical analysis was performed to reveal variety-specific profiles of phytocannabinoids with surprisingly remarkable levels of phytocannabinoids even in chemotype V samples. Furthermore, a targeted HPLC-HRMS analysis was carried out for the quantitative determination of the major phytocannabinoids including CBDA, CBD, CBGA, CBG, CBCA, CBC, THCA, and trans-Δ9-THC. The last part of the study was focused on the evaluation of the enantiomeric composition of CBCA in hemp seeds, sprouts and microgreens in the different varieties by HPLC-CD (HPLC with online circular dichroism). Chiral analysis of CBCA showed a wide variability of its enantiomeric composition in the different varieties, thus contributing to the understanding of the intriguing stereochemical behavior of this compound in an early growth stage. However, further investigation is needed to determine the genetic factors responsible for the low enantiopurity of this compound.


Assuntos
Cannabis , Sementes , Cannabis/química , Cannabis/crescimento & desenvolvimento , Sementes/química , Cromatografia Líquida de Alta Pressão/métodos , Canabinoides/análise , Canabinoides/química , Extratos Vegetais/química , Extratos Vegetais/análise , Espectrometria de Massas/métodos , Metabolômica/métodos , Estereoisomerismo , Dicroísmo Circular/métodos
5.
J Agric Food Chem ; 72(19): 10862-10878, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38712687

RESUMO

Bama County is a world-famous longevity county in the Guangxi Province, China. Bama hemp is a traditional seed used in hemp cultivation in the Bama County. The seeds contain abundant unsaturated fatty acids, particularly linoleic acid (LA) and linolenic acid in the golden ratio. These two substances have been proven to be related to human health and the prevention of various diseases. However, the seed development and seed oil accumulation mechanisms remain unclear. This study employed a combined analysis of physiological, transcriptomic, and metabolomic parameters to elucidate the fatty acid formation patterns in Bama hemp seeds throughout development. We found that seed oil accumulated at a late stage in embryo development, with seed oil accumulation following an "S″-shaped growth curve, and positively correlated with seed size, sugar content, protein content, and starch content. Transcriptome analysis identified genes related to the metabolism of LA, α-linolenic acid (ALA), and jasmonic acid (JA). We found that the FAD2 gene was upregulated 165.26 folds and the FAD3 gene was downregulated 6.15 folds at day 21. Metabolomic changes in LA, ALA, and JA compounds suggested a competitive relationship among these substances. Our findings indicate that the peak period of substance accumulation and nutrient accumulation in Bama hemp seeds occurs during the midstage of seed development (day 21) rather than in the late stage (day 40). The results of this research will provide a theoretical basis for local cultivation and deep processing of Bama hemp.


Assuntos
Cannabis , Regulação da Expressão Gênica de Plantas , Ácido Linoleico , Metabolômica , Proteínas de Plantas , Sementes , Transcriptoma , Ácido alfa-Linolênico , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/genética , Sementes/química , Ácido alfa-Linolênico/metabolismo , Cannabis/genética , Cannabis/crescimento & desenvolvimento , Cannabis/metabolismo , Cannabis/química , Ácido Linoleico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , China , Perfilação da Expressão Gênica
6.
PLoS One ; 19(5): e0292336, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38753807

RESUMO

BACKGROUND: In October 2019, cannabis edibles were legalized for sale in Canada for non-medical use. This move was intended to improve public safety by regulating contents (including a maximum 10 mg tetrahydrocannabinol (THC) per package) and packaging to prevent accidental ingestion or over consumption. This study aimed to explore consumer preferences for cannabis edibles to inform cannabis policy. METHODS: We explored the relative importance and trade-offs consumers make for attributes of cannabis edibles using a discrete choice experiment. Attributes included type of edible, price, THC content, cannabis taste, package information, product consistency, product recommendations, and Health Canada regulation. Participants lived in Canada, were 19 years of age or older, and purchased a cannabis edible in the last 12 months. A multinomial logit (MNL) model was used for the base model, and latent class analysis to assess preference sub-groups. This study was approved by the institutional ethics committee. RESULTS: Among 684 participants, the MNL model showed that potency was the most relevant attribute, followed by edible type. A two-group latent class model revealed two very distinct preference patterns. Preferences for group 1 (~65% of sample) were driven primarily by edible type, while for group 2 (~35% of sample) were driven almost entirely by THC potency. CONCLUSION: This study found that consumer preferences for ~65% of consumers of cannabis edibles are being met through regulated channels. The remaining ~35% are driven by THC potency at levels that are not currently available on the licensed market. Attracting this market segment will require reviewing the risks and benefits of restricting THC package content.


Assuntos
Cannabis , Comportamento de Escolha , Comportamento do Consumidor , Dronabinol , Humanos , Masculino , Adulto , Feminino , Cannabis/química , Canadá , Adulto Jovem , Pessoa de Meia-Idade , Política de Saúde , Saúde Pública
7.
Molecules ; 29(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38731588

RESUMO

Hemp (Cannabis sativa L.) has experienced a significant resurgence in popularity, and global interest in diversifying its use in various industries, including the food industry, is growing. Therefore, due to their exceptional nutritional value, hemp seeds have recently gained increasing interest as a valuable ingredient for obtaining high-quality foods and dietary supplements. Hemp seeds stand out for their remarkable content of quality proteins, including edestin and albumin, two distinct types of proteins that contribute to exceptional nutritional value. Hemp seeds are also rich in healthy lipids with a high content of polyunsaturated fatty acids, such as linoleic acid (omega-6), alpha-linolenic acid (omega-3), and some vitamins (vitamins E, D, and A). Polyphenols and terpenoids, in particular, present in hemp seeds, provide antimicrobial, antioxidant, and anti-inflammatory properties. This review examines the scientific literature regarding hemp seeds' physicochemical and nutritional characteristics. The focus is on those characteristics that allow for their use in the food industry, aiming to transform ordinary food products into functional foods, offering additional benefits for the body's health. Innovating opportunities to develop healthy, nutritionally superior food products are explored by integrating hemp seeds into food processes, promoting a balanced and sustainable diet.


Assuntos
Cannabis , Alimento Funcional , Sementes , Cannabis/química , Sementes/química , Alimento Funcional/análise , Valor Nutritivo , Antioxidantes/farmacologia , Antioxidantes/química , Humanos , Extratos Vegetais/química
8.
Anal Chim Acta ; 1306: 342621, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692790

RESUMO

BACKGROUND: In vivo solid-phase microextraction (SPME) is a minimally invasive, non-exhaustive sample-preparation technique that facilitates the direct isolation of low molecular weight compounds from biological matrices in living systems. This technique is especially useful for the analysis of phytocannabinoids (PCs) in plant material, both for forensic purposes and for monitoring the PC content in growing Cannabis spp. plants. In contrast to traditional extraction techniques, in vivo SPME enables continuous tracking of the changes in the level of PCs during plant growth without the need for plant material collection. In this study, in vivo SPME utilizing biocompatible C18 probes and liquid-chromatography coupled to quadrupole time-of flight mass spectrometry (LC-Q-TOF-MS) is proposed as a novel strategy for the extraction and analysis of the acidic forms of five PCs in growing medicinal cannabis plants. RESULTS: The SPME method was optimized by testing various parameters, including the extraction phase (coating), extraction and desorption times, and the extraction temperature. The proposed method was validated with satisfactory analytical performance regarding linearity (10-3000 ng/mL), limits of quantification, and precision (relative standard deviations below 5.5 %). The proposed method was then successfully applied for the isolation of five acidic forms of PCs, which are main components of growing medicinal cannabis plants. As a proof-of-concept, SPME probes were statically inserted into the inflorescences of two varieties of Cannabis spp. plants (i.e., CBD-dominant and Δ9-THC-dominant) cultivated under controlled conditions for 30 min extraction of tetrahydrocannabinolic acid (Δ9-THCA), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabiviarinic acid (CBVA), and tetrahydrocannabivarinic acid (THCVA). SIGNIFICANCE AND NOVELTY: The results confirmed that the developed SPME-LC-Q-TOF-MS method is a precise and efficient tool that enables direct and rapid isolation and analysis of PCs under in vivo conditions. The proposed methodology is highly appealing option for monitoring the metabolic pathways and compositions of multiple PCs in medicinal cannabis at different stages of plant growth.


Assuntos
Canabinoides , Cannabis , Espectrometria de Massa com Cromatografia Líquida , Microextração em Fase Sólida , Canabinoides/análise , Cannabis/química , Espectrometria de Massa com Cromatografia Líquida/métodos , Microextração em Fase Sólida/métodos
9.
J Nat Prod ; 87(5): 1368-1375, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38708937

RESUMO

Cannabidiol (CBD), one of the main Cannabis sativa bioactive compounds, is utilized in the treatment of major epileptic syndromes. Its efficacy can be attributed to a multimodal mechanism of action that includes, as potential targets, several types of ion channels. In the brain, CBD reduces the firing frequency in rat hippocampal neurons, partly prolonging the duration of action potentials, suggesting a potential blockade of voltage-operated K+ channels. We postulate that this effect might involve the inhibition of the large-conductance voltage- and Ca2+-operated K+ channel (BK channel), which plays a role in the neuronal action potential's repolarization. Thus, we assessed the impact of CBD on the BK channel activity, heterologously expressed in HEK293 cells. Our findings, using the patch-clamp technique, revealed that CBD inhibits BK channel currents in a concentration-dependent manner with an IC50 of 280 nM. The inhibition is through a direct interaction, reducing both the unitary conductance and voltage-dependent activation of the channel. Additionally, the cannabinoid significantly delays channel activation kinetics, indicating stabilization of the closed state. These effects could explain the changes induced by CBD in action potential shape and duration, and they may contribute to the observed anticonvulsant activity of this cannabinoid.


Assuntos
Canabidiol , Cannabis , Canais de Potássio Ativados por Cálcio de Condutância Alta , Canabidiol/farmacologia , Cannabis/química , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/efeitos dos fármacos , Células HEK293 , Animais , Técnicas de Patch-Clamp , Canabinoides/farmacologia , Ratos , Estrutura Molecular
10.
J Photochem Photobiol B ; 254: 112902, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38569457

RESUMO

The effect of low artificial Ultraviolet (UV) on the DNA methylation remains controversial. This study addresses how differential photoperiods of UV radiation affect the biochemical and molecular behaviors of Cannabis indica cell suspension cultures. The cell suspensions were illuminated with the compact fluorescent lamps (CFL), emitting a combination of 10% UVB, 30% UVA, and the rest visible wavelengths for 0, 4, 8, and 16 h. The applied photoperiods influenced cell morphological characteristics. The 4 h photoperiod was the most effective treatment for improving biomass, growth index and cell viability percentage while these indices remained non-significant in the 16 h treatment. The methylation-sensitive amplified polymorphism (MASP) assay revealed that the UV radiation was epigenetically accompanied by DNA hypermethylation. The light-treated cells significantly displayed higher relative expression of the cannabidiolic| acid synthase (CBDAS) and delta9-tetrahydrocannabinolic acid synthase (THCAS) genes about 4-fold. The expression of the olivetolic acid cyclase (OAC) and olivetol synthase (OLS) genes exhibited an upward trend in response to the UV radiation. The light treatments also enhanced the proline content and protein concentration. The 4 h illumination was significantly capable of improving the cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC) concentrations, in contrast with 16 h. By increasing the illumination exposure time, the activity of the phenylalanine ammonia-lyase (PAL) enzyme linearly upregulated. The highest amounts of the phenylpropanoid derivatives were observed in the cells cultured under the radiation for 4 h. Taken collective, artificial UV radiation can induce DNA methylation modifications and impact biochemical and molecular differentiation in the cell suspensions in a photoperiod-dependent manner.


Assuntos
Canabinoides , Cannabis , Cannabis/genética , Cannabis/química , Canabinoides/farmacologia , Dronabinol/farmacologia , Metilação de DNA , Raios Ultravioleta , Proliferação de Células
11.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673788

RESUMO

Phytocannabinoids, a diverse group of naturally occurring compounds extracted from the Cannabis plant, have attracted interest due to their potential pharmacological effects and medicinal uses. This comprehensive review presents the intricate pharmacological profiles of phytocannabinoids while exploring the diverse impacts these substances have on biological systems. From the more than one hundred cannabinoids which were identified in the Cannabis plant so far, cannabidiol (CBD) and tetrahydrocannabinol (THC) are two of the most extensively studied phytocannabinoids. CBD is a non-psychoactive compound, which exhibits potential anti-inflammatory, neuroprotective, and anxiolytic properties, making it a promising candidate for a wide array of medical conditions. THC, known for its psychoactive effects, possesses analgesic and antiemetic properties, contributing to its therapeutic potential. In addition to THC and CBD, a wide range of additional phytocannabinoids have shown intriguing pharmacological effects, including cannabichromene (CBC), cannabigerol (CBG), and cannabinol (CBN). The endocannabinoid system, made up of the enzymes involved in the production and breakdown of endocannabinoids, cannabinoid receptors (CB1 and CB2), and endogenous ligands (endocannabinoids), is essential for preserving homeostasis in several physiological processes. Beyond their effects on the endocannabinoid system, phytocannabinoids are studied for their ability to modify ion channels, neurotransmitter receptors, and anti-oxidative pathways. The complex interaction between phytocannabinoids and biological systems offers hope for novel treatment approaches and lays the groundwork for further developments in the field of cannabinoid-based medicine. This review summarizes the state of the field, points out information gaps, and emphasizes the need for more studies to fully realize the therapeutic potential of phytocannabinoids.


Assuntos
Canabinoides , Humanos , Canabinoides/uso terapêutico , Canabinoides/farmacologia , Animais , Cannabis/química , Endocanabinoides/metabolismo , Endocanabinoides/uso terapêutico , Canabidiol/uso terapêutico , Canabidiol/farmacologia , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia , Dronabinol/uso terapêutico , Dronabinol/farmacologia
12.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38674023

RESUMO

Cisplatin and other platinum-derived chemotherapy drugs have been used for the treatment of cancer for a long time and are often combined with other medications. Unfortunately, tumours often develop resistance to cisplatin, forcing scientists to look for alternatives or synergistic combinations with other drugs. In this work, we attempted to find a potential synergistic effect between cisplatin and cannabinoid delta-9-THC, as well as the high-THC Cannabis sativa extract, for the treatment of HT-29, HCT-116, and LS-174T colorectal cancer cell lines. However, we found that combinations of the high-THC cannabis extract with cisplatin worked antagonistically on the tested colorectal cancer cell lines. To elucidate the mechanisms of drug interactions and the distinct impacts of individual treatments, we conducted a comprehensive transcriptomic analysis of affected pathways within the colorectal cancer cell line HT-29. Our primary objective was to gain a deeper understanding of the underlying molecular mechanisms associated with each treatment modality and their potential interactions. Our findings revealed an antagonistic interaction between cisplatin and high-THC cannabis extract, which could be linked to alterations in gene transcription associated with cell death (BCL2, BAD, caspase 10), DNA repair pathways (Rad52), and cancer pathways related to drug resistance.


Assuntos
Cannabis , Cisplatino , Neoplasias Colorretais , Dronabinol , Extratos Vegetais , Transcriptoma , Humanos , Cisplatino/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Dronabinol/farmacologia , Cannabis/química , Extratos Vegetais/farmacologia , Transcriptoma/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células HT29 , Perfilação da Expressão Gênica/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Apoptose/efeitos dos fármacos
13.
Phytochemistry ; 222: 114076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570005

RESUMO

The high value of fiber-type Cannabis sativa L. (hemp) due to its phytochemicals has yet to be fully recognized and leveraged. Besides cannabidiol (CBD), which is the most prevalent non-psychoactive cannabinoid, hemp contains numerous other cannabinoids with unexplored bioactivities, in addition to various compound classes. Previous works have aimed to correlate chemical profiles of C. sativa inflorescences with important parameters, mostly based on experiments under controlled conditions. However, mapping studies that explore the phytochemical diversity of hemp in a more realistic context are crucial to guide decisions at multiple levels, especially in areas where hemp cultivation was recently re-authorized, including Mediterranean countries. In this work, a powerful strategy was followed to map the phytochemical diversity of cultivated hemp in Greece, being the first study of its kind for this environment. A panel of 98 inflorescence samples, covering two harvesting years, eleven geographical regions and seven commonly used EU varieties, were studied using a combination of targeted and untargeted approaches. Quantitative results based on UPLC-PDA revealed relatively constant CBD/THC (total) ratios, while profiling by LC-HRMS effectively probed the phytochemical variability of samples, and led to the annotation of 88 metabolites, including a multitude of minor cannabinoids. Multivariate analysis substantiated a strong effect of harvesting year in sample discrimination and related biomarkers were revealed, belonging to fatty acids and flavonoids. The effect of geographical region and, especially, variety on chemical variation patterns was more intricate to interpret. The results of this work are envisioned to enhance our understanding of the real-world phytochemical complexity of C. sativa (hemp), with a view to maximized utilization of hemp for the promotion of human well-being.


Assuntos
Cannabis , Compostos Fitoquímicos , Cannabis/química , Grécia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Canabinoides/química , Canabinoides/análise
14.
Scand J Clin Lab Invest ; 84(2): 125-132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619215

RESUMO

This study investigated the effects of hexahydrocannabinol (HHC) and other unclassified cannabinoids, which were recently introduced to the recreational drug market, on cannabis drug testing in urine and oral fluid samples. After the appearance of HHC in Sweden in 2022, the number of posts about HHC on an online drug discussion forum increased significantly in the spring of 2023, indicating increased interest and use. In parallel, the frequency of false positive screening tests for tetrahydrocannabinol (THC) in oral fluid, and for its carboxy metabolite (THC-COOH) in urine, rose from <2% to >10%. This suggested that HHC cross-reacted with the antibodies in the immunoassay screening, which was confirmed in spiking experiments with HHC, HHC-COOH, HHC acetate (HHC-O), hexahydrocannabihexol (HHC-H), hexahydrocannabiphorol (HHC-P), and THC-P. When HHC and HHC-P were classified as narcotics in Sweden on 11 July 2023, they disappeared from the online and street shops market and were replaced by other unregulated variants (e.g. HHC-O and THC-P). In urine samples submitted for routine cannabis drug testing, HHC-COOH concentrations up to 205 (mean 60, median 27) µg/L were observed. To conclude, cannabis drug testing cannot rely on results from immunoassay screening, as it cannot distinguish between different tetra- and hexahydrocannabinols, some being classified but others unregulated. The current trend for increased use of unregulated cannabinols will likely increase the proportion of positive cannabis screening results that need to be confirmed with mass spectrometric methods. However, the observed cross-reactivity also means a way to pick up use of new cannabinoids that otherwise risk going undetected.


Assuntos
Drogas Ilícitas , Detecção do Abuso de Substâncias , Humanos , Detecção do Abuso de Substâncias/métodos , Drogas Ilícitas/urina , Drogas Ilícitas/análise , Suécia , Dronabinol/urina , Dronabinol/análise , Dronabinol/análogos & derivados , Cannabis/química , Saliva/química , Canabinoides/urina , Canabinoides/análise , Canabinol/análise , Canabinol/urina , Reações Cruzadas , Imunoensaio/métodos
15.
Bioresour Technol ; 400: 130684, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614146

RESUMO

Advancements in biochar activating persulfate advanced oxidation processes (PS-AOP), have gained significant attention. However, the understanding of biochar-based catalysts in activating PS remains limited. Herein, biochar (BC) and N-doped biochar (NBC) were synthesized from hemp for activating PS to treat tetracycline (TC) wastewater and analyzed their mechanisms separately. Surprisingly, N-doped in biochar leads to a change in the activation mechanism of PS. The BC-PS system operates mainly through a radical pathway, advantageous for treating soil organic pollution (68%) with pH adaptability (less than 10% variation). Nevertheless, the NBC-PS system primarily employs an electron transfer non-radical pathway, demonstrating stability (only 7% performance degradation over four cycles) and enhanced resistance to anionic interference (less than 10% variation) in organic wastewater treatment. This study provides a technical reference and theoretical foundation for enhancing biochar activation of PS in the removal of organic pollutants from aquatic and terrestrial environments.


Assuntos
Cannabis , Carvão Vegetal , Sulfatos , Tetraciclina , Águas Residuárias , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Águas Residuárias/química , Tetraciclina/química , Cannabis/química , Sulfatos/química , Poluentes Químicos da Água/química , Catálise , Purificação da Água/métodos , Oxirredução , Concentração de Íons de Hidrogênio
16.
Bioresour Technol ; 401: 130728, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657827

RESUMO

This study investigated a lignin-first approach to produce furan-modified lignin from sugarcane bagasse (SB), rice hull (RH), and sunn hemp biomass (SHB) using 5 methylfurfural (MF) and 5 methul-2-furanmethanol (MFM). The reaction time (5 h) was selected based on the delignification of SB using methanol and Ru/C catalyst which yielded the highest hydroxyl content. Delignification of SB with various MF weight ratios (1:1, 1:2, 1:3, 2:1, and 3:1) revealed that 1:1 and 2:1 ratios produced the highest hydroxyl content (7.7 mmol/g) and bio-oil yield (23.2 % wt% total weight). Further exploration identified that RH and MF at 1:1 ratio and SHB and MF at a 2:1 ratio produced the highest hydroxyl content (13.0 mmol/g) and bio-oil yield (31.6 % wt% tot. weight). This study developed a one-step method to extract and modify lignin with furan compounds simultaneously while opening new avenues for developing value-added products.


Assuntos
Furanos , Lignina , Lignina/química , Furanos/química , Biomassa , Agricultura , Oryza/química , Celulose/química , Saccharum/química , Biocombustíveis , Resíduos , Cannabis/química
17.
Pak J Biol Sci ; 27(3): 119-124, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38686733

RESUMO

<b>Background and Objective:</b> A new strain of cannabis, <i>Cannabis sativa</i> L. Tanao Si Kan Dang RD1, has been approved and registered by the Rajamangala University of Technology Isan, Thailand. The <i>C. sativa</i> is acknowledged for its medicinal properties which demonstrated various therapeutic properties, such as anti-cancer and antibacterial activities. This study aimed to investigate the antibacterial activity of ethanolic extracts from the stems and leaves of the Tanao Si Kan Dang RD1 strain against seven antibiotic-resistant bacteria. <b>Materials and Methods:</b> The primary antibacterial activity of ethanolic Tanao Si Kan Dang RD1 extracts were determined using the disc diffusion method, while the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using the broth microdilution method. <b>Results:</b> The largest inhibition zone, measuring 12 mm, was observed in leaf extracts against <i>Pseudomonas aeruginosa</i> 101. The lowest MIC, at 0.78 mg/mL, was obtained from stem extracts against <i>Stenotrophomonas maltophilia</i>. The lowest MBCs, at 12.5 mg/mL, were observed in leaf extracts against <i>Enterococcus faecalis</i>, <i>Acinetobacter baumannii</i>, multidrug-resistant <i>Klebsiella</i> <i>pneumoniae</i>, <i>Stenotrophomonas maltophilia</i> and <i>Pseudomonas aeruginosa</i> 101 and stem extracts against <i>Acinetobacter baumannii</i>, multidrug-resistant <i>Klebsiella pneumoniae</i>, <i>Stenotrophomonas maltophilia</i> and <i>Pseudomonas aeruginosa</i> 101. <b>Conclusion:</b> This study presents a novel finding regarding the antibacterial activity of ethanolic extracts from the leaves and stems of Tanao Si Kan Dang RD1 against antibiotic-resistant bacteria. The potential application of these cannabis plant extracts in the development of antibiotics capable of combating antibiotic-resistant pathogenic bacteria represents a promising strategy to address a significant global health concern.


Assuntos
Antibacterianos , Cannabis , Testes de Sensibilidade Microbiana , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Cannabis/química , Humanos , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Folhas de Planta/química , Etanol/química , Farmacorresistência Bacteriana/efeitos dos fármacos , Caules de Planta/química
18.
Artigo em Inglês | MEDLINE | ID: mdl-38588664

RESUMO

To investigate cannabinoid content and profiles, 16 cannabinoids were quantified in 30 commercial hemp seed edible oils. In addition, one hemp seed oil was subjected to thermal processing up to 200 °C for up to 60 min. UHPLC-MS/MS was used for analysis. The content of cannabinoids in the samples ranged from 9 to 279 mg kg-1 (sum) and for Δ9-tetrahydrocannabinol (Δ9-THC) from 0.2 to 6.7 mg kg-1. Three samples exceeded the EU Δ9-THC equivalent maximum levels of 7.5 mg kg-1 for hemp seed oils. Cannabinoid profiles can provide indications of different product characteristics (e.g. degree of processing, variety of plant material). Furthermore, intense thermal processing (200 °C, 60 min) led to 38% decrease in sum cannabinoid content (sum of all analysed cannabinoids in this study), 99% decrease in cannabinoid acids, and 22% increase in Δ9-THC.


Assuntos
Canabinoides , Cannabis , Temperatura Alta , Extratos Vegetais , Óleos de Plantas , Sementes , Cannabis/química , Canabinoides/análise , Óleos de Plantas/química , Óleos de Plantas/análise , Cromatografia Líquida de Alta Pressão , Sementes/química , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise
19.
J Forensic Sci ; 69(3): 905-918, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38491781

RESUMO

Cannabidiol (CBD) vape pen usage has been on the rise given the changing political and scientific climate as well as the promotion of these delivery systems as a more accessible and lower-risk option for consumers. Despite being marketed as a safer way to use cannabis, CBD vape liquids are sold without restrictions or meticulous quality control procedures such as toxicological and clinical assessment, standards for product preservation, or investigative degradation analyses. Nine CBD-labeled vape liquid samples purchased and manufactured in the United States were evaluated and assessed for cannabinoid content. Quantification and validation of cannabinoids and matrix components was accomplished using gas and liquid chromatography with mass spectrometry analysis (GC-MS and LC-MS/MS) following liquid-liquid extraction with methanol. Samples degraded by temperature (analyzed by GC-MS) showed a greater disparity from the labeled CBD content compared with samples analyzed as purchased (by LC-MS/MS). Thermal degradation of the vape liquids showed increased levels of tetrahydrocannabinol (THC). Also, extended time and temperature degradation were evaluated in vape liquids by storing them for 15 months and then varying temperature conditions before analysis, which indicated CBD transformed into other cannabinoids leading to different cannabinoid content within the vape samples. Evaluation conducted on these vape liquids indicated the route of exposure, storage conditions, and length of storage could expose consumers to unintended cannabinoids and showed a concerning level of disagreement between the products' labeled cannabinoid content and the results generated by these analyses.


Assuntos
Canabinoides , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Canabinoides/análise , Canabinoides/química , Cromatografia Líquida , Temperatura , Cannabis/química , Extração Líquido-Líquido , Espectrometria de Massas em Tandem , Estabilidade de Medicamentos
20.
ACS Synth Biol ; 13(4): 1343-1354, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38459634

RESUMO

Production of phytocannabinoids remains an area of active scientific interest due to the growing use of cannabis by the public and the underexplored therapeutic potential of the over 100 minor cannabinoids. While phytocannabinoids are biosynthesized by Cannabis sativa and other select plants and fungi, structural analogs and stereoisomers can only be accessed synthetically or through heterologous expression. To date, the bioproduction of cannabinoids has required eukaryotic hosts like yeast since key, native oxidative cyclization enzymes do not express well in bacterial hosts. Here, we report that two marine bacterial flavoenzymes, Clz9 and Tcz9, perform oxidative cyclization reactions on phytocannabinoid precursors to efficiently generate cannabichromene scaffolds. Furthermore, Clz9 and Tcz9 express robustly in bacteria and display significant tolerance to organic solvent and high substrate loading, thereby enabling fermentative production of cannabichromenic acid in Escherichia coli and indicating their potential for biocatalyst development.


Assuntos
Canabinoides , Cannabis , Canabinoides/química , Cannabis/química , Cannabis/metabolismo , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA