Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Chem Biodivers ; 21(2): e202301652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38240171

RESUMO

In this research, the total phenolic and flavonoid amounts, phenolic compositions, in vitro antioxidant, antibacterial and antidiabetic properties of the methanol extracts obtained from Scabiosa L. (Caprifoliaceae) species distributed in the flora of Türkiye were investigated using chemometric methods. For this purpose, principal component (PCA) and agglomerative hierarchical clustering analysis were performed as chemometric methods. Chlorogenic acid, quinic acid and cyranoside were determined in the extracts. According to chemometric analysis, S. columbaria subsp. ochroleuca var. ochroleuca and S. triniifolia species were found to be valuable in terms of methanol extract yields, total phenolic and flavonoid contents, antioxidant and antidiabetic activities while S. columbaria subsp. ochroleuca var. webbiana species were found to be valuable in terms of phenolic composition. The methanol extracts of Scabiosa species showed high antioxidant activity, with high phenolic and flavonoid contents. Among the tested 13 bacteria, Scabiosa extracts showed only low activity against Klebsiella pneumoniae, Streptococcus pneumoniae and Pseudomonas aeruginosa. The extracts showed high α-amylase and α-glucosidase inhibitory activity. The results show that Scabiosa methanol extracts may be a source of alternative antioxidants that may be beneficial in slowing or preventing the progression of various oxidative stress-related diseases.


Assuntos
Caprifoliaceae , Dipsacaceae , Antioxidantes/farmacologia , Antioxidantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Quimiometria , Metanol , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Flavonoides/farmacologia , Compostos Fitoquímicos/farmacologia
2.
Nat Prod Res ; 38(5): 719-726, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36960955

RESUMO

This work aimed to investigate the chemical composition, antioxidant activity, antinociceptive effect, and wound healing activity of the Lonicera caprifolium L. flower essential oil (LCEO). Linalool (16.42%), d-limonene (9.99%), and α-cadinol (10.65%) were the most prevalent components of the LCEO. The LCEO revealed moderate DPPH and ABTS radical-scavenging activity. LCEO exhibited potent antinociceptive activity in acetic acid-induced writhing and hot plate-induced pain model; LCEO reduced 73.88 ± 2.78% of writhing and significantly increased pain withdrawal latency in the mice, respectively. The LCEO also presented a potent wound healing effect, with 98.08 ± 1.37% wound closure on the 12th day of treatment. The results of the study demonstrate antioxidant and wound healing potential with antinociceptive effect. To the best of our knowledge, this is the first report on the bioactivities of L. caprifolium L. essential oil.


Assuntos
Caprifoliaceae , Lonicera , Óleos Voláteis , Camundongos , Animais , Óleos Voláteis/química , Dor/tratamento farmacológico , Antioxidantes/química , Analgésicos/farmacologia , Analgésicos/química
3.
BMC Plant Biol ; 23(1): 645, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38097946

RESUMO

BACKGROUND: The genus Triplostegia contains two recognized species, T. glandulifera and T. grandiflora, but its phylogenetic position and species delimitation remain controversial. In this study, we assembled plastid genomes and nuclear ribosomal DNA (nrDNA) cistrons sampled from 22 wild Triplostegia individuals, each from a separate population, and examined these with 11 recently published Triplostegia plastomes. Morphological traits were measured from herbarium specimens and wild material, and ecological niche models were constructed. RESULTS: Triplostegia is a monophyletic genus within the subfamily Dipsacoideae comprising three monophyletic species, T. glandulifera, T. grandiflora, and an unrecognized species Triplostegia sp. A, which occupies much higher altitude than the other two. The new species had previously been misidentified as T. glandulifera, but differs in taproot, leaf, and other characters. Triplotegia is an old genus, with stem age 39.96 Ma, and within it T. glandulifera diverged 7.94 Ma. Triplostegia grandiflora and sp. A diverged 1.05 Ma, perhaps in response to Quaternary climate fluctuations. Niche overlap between Triplostegia species was positively correlated with their phylogenetic relatedness. CONCLUSIONS: Our results provide new insights into the species delimitation of Triplostegia, and indicate that a taxonomic revision of Triplostegia is needed. We also identified that either rpoB-trnC or ycf1 could serve as a DNA barcode for Triplostegia.


Assuntos
Caprifoliaceae , Genomas de Plastídeos , Humanos , Adulto , Filogenia , Caprifoliaceae/genética , Genomas de Plastídeos/genética , Fenótipo , DNA Ribossômico
4.
Molecules ; 28(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298806

RESUMO

In the field of research on medicinal plants from the Armenian flora, the phytochemical study of two Scabiosa L. species, S. caucasica M. Bieb. and S. ochroleuca L. (Caprifoliaceae), has led to the isolation of five previously undescribed oleanolic acid glycosides from an aqueous-ethanolic extract of the roots: 3-O-α-L-rhamnopyranosyl-(1→3)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid, 3-O-ß-D-xylopyranosyl-(1→2)-[α-L-rhamnopyranosyl-(1→4)]-ß-D-xylopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester, 3-O-α-L-rhamnopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-glucopyranosyl-(1→4)-ß-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyloleanolic acid 28-O-ß-D-glucopyranosyl-(1→6)-ß-D-glucopyranosyl ester. Their full structural elucidation required extensive 1D and 2D NMR experiments, as well as mass spectrometry analysis. For the biological activity of the bidesmosidic saponins and the monodesmosidic saponin, their cytotoxicity on a mouse colon cancer cell line (MC-38) was evaluated.


Assuntos
Caprifoliaceae , Dipsacaceae , Ácido Oleanólico , Saponinas , Triterpenos , Animais , Camundongos , Glicosídeos/farmacologia , Glicosídeos/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/química , Saponinas/química , Caprifoliaceae/química , Triterpenos/farmacologia , Triterpenos/química
5.
Mol Phylogenet Evol ; 184: 107808, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156329

RESUMO

The genus Lonicera L. is widely distributed in the north temperate zone and is well-known for its high species richness and morphological diversity. Previous studies have suggested that many sections of Lonicera are not monophyletic and phylogenetic relationships within the genus are still poorly resolved. In this study, we sampled 37 accessions of Lonicera, covering four sections of subgenus Chamaecerasus plus six outgroup taxa, to recover the main clades of Lonicera based on sequences of nuclear loci generated by target enrichment and cpDNA from genome skimming. We found extensive cytonuclear discordance across the subgenus. Both nuclear and plastid phylogenetic analyses supported subgenus Chamaecerasus sister to subgenus Lonicera. Within subgenus Chamaecerasus, sections Isika and Nintooa were each polyphyletic. Based on the nuclear and chloroplast phylogenies, we propose to merge Lonicera korolkowii into section Coeloxylosteum and Lonicera caerulea into section Nintooa. In addition, Lonicera is estimated to have originated in the mid Oligocene (26.45 Ma). The stem age of section Nintooa was estimated to be 17.09 Ma (95% HPD: 13.30-24.45). The stem age of subgenus Lonicera was estimated to be 16.35 Ma (95% HPD: 14.12-23.66). Ancestral area reconstruction analyses indicate that subgenus Chamaecerasus originated in East Asia and Central Asia. In addition, sections Coeloxylosteum and Nintooa originated in East Asia, with subsequent dispersals into other areas. The aridification of the Asian interior likely promoted the rapid radiation of sections Coeloxylosteum and Nintooa within this region. Moreover, our biogeographic analysis fully supports the Bering and the North Atlantic Land Bridge hypotheses for the intercontinental migrations in the Northern Hemisphere. Overall, this study provides new insights into the taxonomically complex lineages of subgenus Chamaecerasus and the process of speciation.


Assuntos
Caprifoliaceae , Lonicera , Filogenia , Lonicera/genética , Caprifoliaceae/genética , Evolução Biológica , DNA de Cloroplastos/genética , Análise de Sequência de DNA
6.
Plant Biol (Stuttg) ; 25(2): 287-295, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36440587

RESUMO

Intraspecific variations in pollen morphological traits are poorly studied. Interspecific variations are often associated with pollination systems and pollinator types. Altitudinal environmental changes, which can influence local pollinator assemblages, provide opportunities to explore differentiation in pollen traits of a single species over short distances. The aim of this study is to examine intraspecific variations in pollen traits of an insect-pollinated shrub, Weigela hortensis (Caprifoliaceae), along an altitudinal gradient. Pollen spine phenotypes (length, number and density), pollen diameter, lipid mass (pollenkitt) around pollen grains, pollen production per flower and pollinator assemblages were compared at four sites at different altitudes. Spine length and the spine length/diameter ratio of pollen grains were greater at higher altitudes but not correlated with flower or plant size. Spine number and density increased as flower size increased, and pollen lipid mass decreased as plant size increased. Bees were the predominant pollinators at low-altitude sites whereas flies, specifically Oligoneura spp. (Acroceridae), increased in relative abundance with increasing altitude. The results of this study suggest that the increase in spine length with altitude was the result of selection favouring longer spines at higher-altitude sites and/or shorter spines at lower-altitude sites. The altitudinal variation in selection pressure on spine length could reflect changes in local pollinator assemblages with altitude.


Assuntos
Caprifoliaceae , Insetos , Abelhas , Animais , Pólen , Altitude , Polinização , Flores/anatomia & histologia , Plantas
7.
Genes (Basel) ; 13(5)2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35627318

RESUMO

Triosteum himalayanum, Triosteum pinnatifidum (Triosteum L., Caprifoliaceae, Dipsacales) are widely distributed in China while Triosteum sinuatum mainly occurrs in northeast China. Few reports have been determined on the genus Triosteum. In the present research, we sequenced 2 chloroplast genomes of Triosteum and analyzed 18 chloroplast genomes, trying to explore the sequence variations and phylogeny of genus Triosteum in the order Dipsacales. The chloroplast genomes of the genus Triosteum ranged from 154,579 bp to 157,178 bp, consisting of 132 genes (86 protein-coding genes, 38 transfer RNA genes, and 8 ribosomal RNA genes). Comparative analyses and phylogenetic analysis supported the division of Dipsacales into two clades, Adoxaceae and six other families. Among the six families, a clade of Valerianaceae+Dipsacaceae was recovered as a sister to a clade of Morinaceae+Linnaeaceae. A closer relationship of T. himalayanum and T. pinnatifidum among three species was revealed. Our research supported that Loniceraferdinandi and Triosteum was closely related. Zabelia had a closer relationship with Linnaea borealis and Dipelta than Morinaceae. The divergence between T. sinuatum and two other species in Triosteum was dated to 13.4 mya.


Assuntos
Caprifoliaceae , Genoma de Cloroplastos , Caprifoliaceae/genética , Cloroplastos/genética , Dipsacales , Genômica , Humanos , Filogenia
8.
Chem Biodivers ; 19(4): e202100952, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35166030

RESUMO

Four new secoiridoid-iridoid heterodimers, pterocenoids E-H (1-4), together with a known analog (5), were separated from the whole plants of Pterocephalus hookeri. Their structures were characterized by detailed spectroscopic analyses and NMR comparison with reported data for known analogs. Pterocenoid E (1) represents the first bis-iridoid example incorporating a rare trans-fused monomeric unit, and the C(8) configuration in 5 was corrected to be reversed to the original assignment. Among all the isolates, compound 5 not only showed moderate inhibition against the nitric oxide production (IC50 =36.0±4.3 µM) but also dose-dependently suppressed the secretion of an important pro-inflammatory cytokine TNF-α, in lipopolysaccharide-induced RAW264.7 cells.


Assuntos
Caprifoliaceae , Iridoides , Animais , Anti-Inflamatórios/farmacologia , Caprifoliaceae/química , Iridoides/química , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Células RAW 264.7
9.
PLoS One ; 17(1): e0262813, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35077482

RESUMO

Lonicera ruprechtiana Regel is widely used as a greening tree in China and also displays excellent pharmacological activities. The phylogenetic relationship between L. ruprechtiana and other members of Caprifoliaceae remains unclear. In this study, the complete cp genome of L. ruprechtiana was identified using high-throughput Illumina pair-end sequencing data. The circular cp genome was 154,611 bp long and has a large single-copy region of 88,182 bp and a small single-copy region of 18,713 bp, with the two parts separated by two inverted repeat (IR) regions (23,858 bp each). A total of 131 genes were annotated, including 8 ribosomal RNAs, 39 transfer RNAs, and 84 protein-coding genes (PCGs). In addition, 49 repeat sequences and 55 simple sequence repeat loci of 18 types were also detected. Codon usage analysis demonstrated that the Leu codon is preferential for the A/U ending. Maximum-likelihood phylogenetic analysis using 22 Caprifoliaceae species revealed that L. ruprechtiana was closely related to Lonicera insularis. Comparison of IR regions revealed that the cp genome of L. ruprechtiana was largely conserved with that of congeneric species. Moreover, synonymous (Ks) and non-synonymous (Ka) substitution rate analysis showed that most genes were under purifying selection pressure; ycf3, and some genes associated with subunits of NADH dehydrogenase, subunits of the cytochrome b/f complex, and subunits of the photosystem had been subjected to strong purifying selection pressure (Ka/Ks < 0.1). This study provides useful genetic information for future study of L. ruprechtiana evolution.


Assuntos
Caprifoliaceae/genética , Genoma de Cloroplastos/genética , Lonicera/genética , Sequência Conservada/genética , Genes de Plantas/genética , Repetições de Microssatélites/genética , Fotossíntese/genética , Filogenia , Análise de Sequência de DNA
10.
Bioorg Chem ; 120: 105630, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35091291

RESUMO

The ethanolic extracts of the dried flower buds of two Caprifoliaceae plants, Lonicera japonica and Abelia × grandiflora, showed considerable inhibitory activities against adenosine triphosphate (ATP)-citrate lyase (ACL), a new promising drug target for the treatment of metabolic disorders. Bioassay-guided purification in conjunction with HPLC-PDA profiling led to the isolation and characterization of thirty-five (1-35) and fourteen (1'-14') structurally diverse compounds from the above two plant extracts, respectively. Compounds 1-9 and 1'-6' are previously undescribed glycosides. Their structures were elucidated on the basis of spectroscopic data, electronic circular dichroism (ECD), and single crystal X-ray diffraction analyses. In particular, lonicejaposide A (1) has an unprecedented skeleton generated through the coupling of C-7 in secologanin with C-2'' in phenylacetaldehyde via an aldol condensation. Abeliflorosides A (1') and B (2') are hitherto unknown glycosides of triterpene and bisiridoid conjugates constructed through the formation of a 1,3-dioxane moiety. All the isolates were evaluated for their inhibitory activities against ACL. Compounds 9, 25-28, 31, 1', 2', and 14' displayed significant inhibitory effects, with IC50 values ranging from 0.1 to 14.2 µM. The interactions of selected compounds possessing different structure features (e.g., 9, 25, 31, and 2') with ACL were thereafter performed by employing molecular docking studies. In addition, compound 2', the most complex triterpene-bisiridoid conjugate glycoside reported herein, also inhibited acetyl-CoA carboxylase 1 (ACC1), with an IC50 value of 7.9 µM. The dried material of the flower buds of L. japonica (honeysuckle) is a well-known traditional oriental medicine (i.e., Flos Lonicerae Japonicae, FLJ) and has long been used in large quantities. The above findings not only provide new insights for the development of multipurpose utilization of FLJ in healthcare community, but also provide profitable clues indicating that the flower buds of A. × grandiflora might be a potential alternative to FLJ in the traditional Chinese medicine market.


Assuntos
Caprifoliaceae , Lonicera , Triterpenos , Trifosfato de Adenosina , Flores/química , Glicosídeos/química , Lonicera/química , Simulação de Acoplamento Molecular , Complexos Multienzimáticos , Oxo-Ácido-Liases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA