Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Plant Physiol ; 195(1): 343-355, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38270530

RESUMO

Flowering plants contain tightly controlled pollen-pistil interactions required for promoting intraspecific fertilization and preventing interspecific hybridizations. In Arabidopsis (Arabidopsis thaliana), several receptor kinases (RKs) are known to regulate the later stages of intraspecific pollen tube growth and ovular reception in the pistil, but less is known about RK regulation of the earlier stages. The Arabidopsis RECEPTOR-LIKE KINASE IN FLOWERS1 (RKF1)/RKF1-LIKE (RKFL) 1-3 cluster of 4 leucine-rich repeat malectin (LRR-MAL) RKs was previously found to function in the stigma to promote intraspecific pollen hydration. In this study, we tested additional combinations of up to 7 Arabidopsis LRR-MAL RK knockout mutants, including RKF1, RKFL1-3, LysM RLK1-INTERACTING KINASE1, REMORIN-INTERACTING RECEPTOR1, and NEMATODE-INDUCED LRR-RLK2. These LRR-MAL RKs were discovered to function in the female stigma to support intraspecific Arabidopsis pollen tube growth and to establish a prezygotic interspecific barrier against Capsella rubella pollen. Thus, this study uncovered additional biological functions for this poorly understood group of RKs in regulating the early stages of Arabidopsis sexual reproduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Tubo Polínico , Pólen , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiologia , Pólen/genética , Pólen/fisiologia , Pólen/crescimento & desenvolvimento , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Polinização/fisiologia , Capsella/genética , Capsella/fisiologia , Capsella/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/metabolismo , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas de Repetições Ricas em Leucina
2.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37958893

RESUMO

Doxorubicin (DOX), an effective chemotherapeutic drug, causes cardiotoxicity in a cumulative and dose-dependent manner. The aim of this study is to investigate the effects of hot-water extract of Capsella bursa-pastoris (CBW) on DOX-induced cardiotoxicity (DICT). We utilized H9c2 rat cardiomyocytes and MDA-MB-231 human breast cancer cells to evaluate the effects of CBW on DOX-induced cell death. Superoxide dismutase (SOD) levels, reactive oxygen species (ROS) production, and oxygen consumption rate were measured in H9c2 cells. C57BL/6 mice were treated with DOX and CBW to assess their impact on various cardiac parameters. Human-induced pluripotent stem-cell-derived cardiomyocytes were also used to investigate DOX-induced electrophysiological changes and the potential ameliorative effects of CBW. UPLC-TQ/MS analysis identified seven flavonoids in CBW, with luteolin-7-O-glucoside and isoorientin as the major compounds. CBW inhibited DOX-induced death of H9c2 rat cardiomyocytes but did not affect DOX-induced death of MDA-MB-231 human breast cancer cells. CBW increased SOD levels in a dose-dependent manner, reducing ROS production and increasing the oxygen consumption rate in H9c2 cells. The heart rate, RR interval, QT, and ST prolongation remarkably recovered in C57BL/6 mice treated with the combination of DOX and CBW compared to those in mice treated with DOX alone. Administration of CBW with DOX effectively alleviated collagen accumulation, cell death in mouse heart tissues, and reduced the levels of creatinine kinase (CK) and lactate dehydrogenase (LDH) in serum. Furthermore, DOX-induced pathological electrophysiological features in human-induced pluripotent stem-cell-derived cardiomyocytes were ameliorated by CBW. CBW may prevent DICT by stabilizing SOD and scavenging ROS. The presence of flavonoids, particularly luteolin-7-O-glucoside and isoorientin, in CBW may contribute to its protective effects. These results suggest the potential of CBW as a traditional therapeutic option to mitigate DOX-induced cardiotoxicity.


Assuntos
Neoplasias da Mama , Capsella , Ratos , Camundongos , Animais , Humanos , Feminino , Antioxidantes/metabolismo , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Capsella/metabolismo , Estresse Oxidativo , Camundongos Endogâmicos C57BL , Doxorrubicina/toxicidade , Doxorrubicina/metabolismo , Miócitos Cardíacos/metabolismo , Flavonoides/farmacologia , Superóxido Dismutase/metabolismo , Neoplasias da Mama/metabolismo , Apoptose
3.
J Agric Food Chem ; 69(12): 3692-3701, 2021 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-33728912

RESUMO

Capsella bursa-pastoris (L.) Medik. has evolved resistance to ALS-inhibiting herbicides on a large scale. Previous studies primarily focused on the target-site resistance (TSR), and the non-TSR (NTSR) is not well characterized. In this study, pre-treatment with the cytochrome P450 monooxygenase (P450) inhibitor malathion clearly reduced the tribenuron-methyl resistance in the resistant (R) population. After tribenuron-methyl treatment, the glutathione S-transferase (GST) activity of R plants was significantly higher than that of susceptible (S) plants. The higher tribenuron-methyl metabolism in R plants was also confirmed by using LC-MS/MS analysis. Isoform sequencing (Iso-Seq) combined with RNA sequencing (RNA-Seq) was used to identify candidate genes involved in non-target metabolic resistance in this population. A total of 37 differentially expressed genes were identified, 11 of them constitutively upregulated in R plants, including three P450s, one GST, two glycosyltransferases, two ATP-binding cassette transporters, one oxidase, and two peroxidases. This study confirmed the metabolic tribenuron-methyl resistance in C. bursa-pastoris, and the transcriptome data obtained by Iso-Seq combined with RNA-Seq provide gene resources for understanding the molecular mechanism of NTSR in C. bursa-pastoris.


Assuntos
Acetolactato Sintase , Capsella , Herbicidas , Acetolactato Sintase/metabolismo , Sulfonatos de Arila , Capsella/genética , Capsella/metabolismo , Cromatografia Líquida , Resistência a Herbicidas/genética , Herbicidas/farmacologia , RNA-Seq , Análise de Sequência de RNA , Espectrometria de Massas em Tandem , Transcriptoma
4.
Food Chem ; 342: 128536, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33189481

RESUMO

Shepherd's purse as a wild vegetable is getting more and more attention on health benefits. Water extract of shepherd's purse (WESP) was prepared and analyzed for the chemical constituents. The mice were fed high-fructose (HF) diet and treated with WESP at 50, 100 and 200 mg/kg·bw for 8 weeks. The HF-fed mice receiving WESP exhibited the inhibitions against abnormal weight gain, hepatic fat accumulation and lipid metabolic by down-regulating FAS and ACC expressions. WESP also significantly alleviated hyperglycemia, oxidative stress, and inflammatory response by regulating of NF-κB pathway. Moreover, WESP dose-dependently increased the acetic, propionic, and butyric acids levels in HF-fed mice. Furthermore, WESP significantly alleviated the HF-induced gut dysbiosis by reducing the ratio of Firmicutes to Bacteroidetes and increasing the abundance of potential beneficial bacteria. Our findings indicate that WESP may be an effective dietary supplement for preventing the liver damage.


Assuntos
Capsella/química , Doença Hepática Induzida por Substâncias e Drogas/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Extratos Vegetais/farmacologia , Água/química , Animais , Antioxidantes/química , Capsella/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Dieta Hiperlipídica , Frutose/toxicidade , Glucose/metabolismo , Teste de Tolerância a Glucose , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/uso terapêutico
5.
Plant J ; 102(6): 1142-1156, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31925978

RESUMO

Plants survey their environment for the presence of potentially harmful or beneficial microbes. During colonization, cell surface receptors perceive microbe-derived or modified-self ligands and initiate appropriate responses. The recognition of fungal chitin oligomers and the subsequent activation of plant immunity are well described. In contrast, the mechanisms underlying ß-glucan recognition and signaling activation remain largely unexplored. Here, we systematically tested immune responses towards different ß-glucan structures and show that responses vary between plant species. While leaves of the monocots Hordeum vulgare and Brachypodium distachyon can recognize longer (laminarin) and shorter (laminarihexaose) ß-1,3-glucans with responses of varying intensity, duration and timing, leaves of the dicot Nicotiana benthamiana activate immunity in response to long ß-1,3-glucans, whereas Arabidopsis thaliana and Capsella rubella perceive short ß-1,3-glucans. Hydrolysis of the ß-1,6 side-branches of laminarin demonstrated that not the glycosidic decoration but rather the degree of polymerization plays a pivotal role in the recognition of long-chain ß-glucans. Moreover, in contrast to the recognition of short ß-1,3-glucans in A. thaliana, perception of long ß-1,3-glucans in N. benthamiana and rice is independent of CERK1, indicating that ß-glucan recognition may be mediated by multiple ß-glucan receptor systems.


Assuntos
Imunidade Vegetal , beta-Glucanas/metabolismo , Arabidopsis/imunologia , Arabidopsis/metabolismo , Brachypodium/imunologia , Brachypodium/metabolismo , Capsella/imunologia , Capsella/metabolismo , Glucanos/metabolismo , Hordeum/imunologia , Hordeum/metabolismo , Oligossacarídeos/metabolismo , Folhas de Planta/imunologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Receptores Imunológicos/metabolismo , Especificidade da Espécie , Nicotiana/imunologia , Nicotiana/metabolismo
6.
Sci China Life Sci ; 62(11): 1413-1419, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31637576

RESUMO

In flowering plants, pollen tubes are attracted to the ovule by secreted peptides to release the sperm cells for double fertilization. This process is species-specific and acts as an important stage of reproductive isolation between species. Here we identified a cysteine-rich peptide TICKET2 in Arabidopsis thaliana and its orthologs in Arabidopsis lyrata and Capsella rebella that can attract the conspecific pollen tubes, but not the pollen tubes of relative species in Brassicaceae. Genetic knockout of the AtTICKET subclade compromised the pollen tube attraction efficiency. This study identified a new pollen tube attracting signal and shed light on the molecular basis of reproductive isolation.


Assuntos
Arabidopsis/metabolismo , Capsella/metabolismo , Peptídeos/metabolismo , Tubo Polínico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Capsella/genética , Fertilização , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Óvulo Vegetal/metabolismo , Isolamento Reprodutivo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 116(14): 6908-6913, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30877258

RESUMO

Rapid phenotypic changes in traits of adaptive significance are crucial for organisms to thrive in changing environments. How such phenotypic variation is achieved rapidly, despite limited genetic variation in species that experience a genetic bottleneck is unknown. Capsella rubella, an annual and inbreeding forb (Brassicaceae), is a great system for studying this basic question. Its distribution is wider than those of its congeneric species, despite an extreme genetic bottleneck event that severely diminished its genetic variation. Here, we demonstrate that transposable elements (TEs) are an important source of genetic variation that could account for its high phenotypic diversity. TEs are (i) highly enriched in C. rubella compared with its outcrossing sister species Capsella grandiflora, and (ii) 4.2% of polymorphic TEs in C. rubella are associated with variation in the expression levels of their adjacent genes. Furthermore, we show that frequent TE insertions at FLOWERING LOCUS C (FLC) in natural populations of C. rubella could explain 12.5% of the natural variation in flowering time, a key life history trait correlated with fitness and adaptation. In particular, we show that a recent TE insertion at the 3' UTR of FLC affects mRNA stability, which results in reducing its steady-state expression levels, to promote the onset of flowering. Our results highlight that TE insertions can drive rapid phenotypic variation, which could potentially help with adaptation to changing environments in a species with limited standing genetic variation.


Assuntos
Adaptação Fisiológica , Capsella , Elementos de DNA Transponíveis , Loci Gênicos , Variação Genética , Fenótipo , Capsella/genética , Capsella/metabolismo , Proteínas de Domínio MADS/biossíntese , Proteínas de Domínio MADS/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo
8.
Pestic Biochem Physiol ; 143: 239-245, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29183598

RESUMO

Shepherd's purse is a troublesome dicot weed that occurs in the major wheat-producing areas in China. Twenty-eight shepherd's purse populations were collected from winter wheat-planting areas in Henan Province and used to evaluate tribenuron-methyl resistance and acetohydroxyacid synthase (AHAS) gene-mutation diversity. The results indicate that all 28 shepherd's purse populations were resistant to tribenuron-methyl at different levels compared with the susceptible population. Mutation of the 197 codon (CCT) changed proline (Pro) into tyrosine (Tyr), histidine (His), leucine (Leu), serine (Ser), arginine (Arg), alanine (Ala) and threonine (Thr), whereas mutation of the 574 codon (TGG) changed tryptophan (Trp) into leucine (Leu). Among these amino acid changes, a co-concurrence of Pro197Leu and Trp574Leu substitutions was identified for the first time in resistant weed species. Furthermore, Pro197Tyr, Pro197Arg and Pro197Ala substitutions have not been previously reported in shepherd's purse. The results of the in vitro AHAS assay suggest that an insensitive AHAS is likely involved in the resistance to tribenuron-methyl in the R populations with AHAS gene mutations, and the non-target-site based resistance might exist in some populations.


Assuntos
Acetolactato Sintase/genética , Sulfonatos de Arila/toxicidade , Capsella/efeitos dos fármacos , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Proteínas de Plantas/genética , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Capsella/crescimento & desenvolvimento , Capsella/metabolismo , China , Mutação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/metabolismo
9.
Nat Commun ; 8(1): 1331, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109411

RESUMO

Transportation of the immobile sperms directed by pollen tubes to the ovule-enclosed female gametophytes is important for plant sexual reproduction. The defensin-like (DEFL) cysteine-rich peptides (CRPs) LUREs play an essential role in pollen tube attraction to the ovule, though their receptors still remain controversial. Here we provide several lines of biochemical evidence showing that the extracellular domain of the leucine-rich repeat receptor kinase (LRR-RK) PRK6 from Arabidopsis thaliana directly interacts with AtLURE1 peptides. Structural study reveals that a C-terminal loop of the LRR domain (AtPRK6LRR) is responsible for recognition of AtLURE1.2, mediated by a set of residues largely conserved among PRK6 homologs from Arabidopsis lyrata and Capsella rubella, supported by in vitro mutagenesis and semi-in-vivo pollen tube growth assays. Our study provides evidence showing that PRK6 functions as a receptor of the LURE peptides in A. thaliana and reveals a unique ligand recognition mechanism of LRR-RKs.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Tubo Polínico/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Capsella/genética , Capsella/metabolismo , Cristalografia por Raios X , Genes de Plantas , Ligantes , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Eletricidade Estática
10.
Development ; 143(18): 3394-406, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27624834

RESUMO

Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue-level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity.


Assuntos
Brassicaceae/anatomia & histologia , Brassicaceae/metabolismo , Frutas/anatomia & histologia , Frutas/metabolismo , Anisotropia , Arabidopsis/anatomia & histologia , Arabidopsis/metabolismo , Capsella/anatomia & histologia , Capsella/metabolismo , Regulação da Expressão Gênica de Plantas
11.
J Biotechnol ; 233: 49-55, 2016 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-27378621

RESUMO

UDP-glycosyltransferases (UGTs) are a promising class of biocatalysts that offer a sustainable alternative for chemical glycosylation of natural products. In this study, we aimed to characterize plant-derived UGTs from the GT-1 family with an emphasis on their acceptor promiscuity and their potential application in glycosylation processes. Recombinant expression in E. coli provided sufficient amounts of enzyme for the in-depth characterization of the salicylic acid UGT from Capsella rubella (UGT-SACr) and the stevia UGT from Stevia rebaudiana (UGT-76G1Sr). The latter was found to have a remarkably broad specificity with activities on a wide diversity of structures, from aliphatic and branched alcohols, over small phenolics to larger flavonoids, terpenoids and even higher glycoside compounds. As an example for its industrial potential, the glycosylation of curcumin was thoroughly evaluated. Under optimized conditions, 96% of curcumin was converted within 24h into the corresponding curcumin ß-glycosides. In addition, the reaction was performed in a coupled system with sucrose synthase from Glycine max, to enable the cost-efficient (re)generation of UDP-Glc from sucrose as abundant and renewable resource.


Assuntos
Glicosiltransferases/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Stevia/enzimologia , Capsella/genética , Capsella/metabolismo , Curcumina/química , Curcumina/metabolismo , Estabilidade Enzimática , Glicosilação , Glicosiltransferases/química , Glicosiltransferases/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Stevia/genética
12.
Nature ; 531(7593): 245-8, 2016 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-26961657

RESUMO

Directional control of tip-growing cells is essential for proper tissue organization and cell-to-cell communication in animals and plants. In the sexual reproduction of flowering plants, the tip growth of the male gametophyte, the pollen tube, is precisely guided by female cues to achieve fertilization. Several female-secreted peptides have recently been identified as species-specific attractants that directly control the direction of pollen tube growth. However, the method by which pollen tubes precisely and promptly respond to the guidance signal from their own species is unknown. Here we show that tip-localized pollen-specific receptor-like kinase 6 (PRK6) with an extracellular leucine-rich repeat domain is an essential receptor for sensing of the LURE1 attractant peptide in Arabidopsis thaliana under semi-in-vivo conditions, and is important for ovule targeting in the pistil. PRK6 interacted with pollen-expressed ROPGEFs (Rho of plant guanine nucleotide-exchange factors), which are important for pollen tube growth through activation of the signalling switch Rho GTPase ROP1 (refs 7, 8). PRK6 conferred responsiveness to AtLURE1 in pollen tubes of the related species Capsella rubella. Furthermore, our genetic and physiological data suggest that PRK6 signalling through ROPGEFs and sensing of AtLURE1 are achieved in cooperation with the other PRK family receptors, PRK1, PRK3 and PRK8. Notably, the tip-focused PRK6 accumulated asymmetrically towards an external AtLURE1 source before reorientation of pollen tube tip growth. These results demonstrate that PRK6 acts as a key membrane receptor for external AtLURE1 attractants, and recruits the core tip-growth machinery, including ROP signalling proteins. This work provides insights into the orchestration of efficient pollen tube growth and species-specific pollen tube attraction by multiple receptors during male-female communication.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Capsella/genética , Capsella/metabolismo , Capsella/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Mutação , Óvulo Vegetal/metabolismo , Fenótipo , Fosfotransferases/química , Fosfotransferases/genética , Tubo Polínico/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Reprodução , Especificidade da Espécie
14.
Nature ; 531(7593): 241-4, 2016 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-26863186

RESUMO

Sexual reproduction requires recognition between the male and female gametes. In flowering plants, the immobile sperms are delivered to the ovule-enclosed female gametophyte by guided pollen tube growth. Although the female gametophyte-secreted peptides have been identified to be the chemotactic attractant to the pollen tube, the male receptor(s) is still unknown. Here we identify a cell-surface receptor heteromer, MDIS1-MIK, on the pollen tube that perceives female attractant LURE1 in Arabidopsis thaliana. MDIS1, MIK1 and MIK2 are plasma-membrane-localized receptor-like kinases with extracellular leucine-rich repeats and an intracellular kinase domain. LURE1 specifically binds the extracellular domains of MDIS1, MIK1 and MIK2, whereas mdis1 and mik1 mik2 mutant pollen tubes respond less sensitively to LURE1. Furthermore, LURE1 triggers dimerization of the receptors and activates the kinase activity of MIK1. Importantly, transformation of AtMDIS1 to the sister species Capsella rubella can partially break down the reproductive isolation barrier. Our findings reveal a new mechanism of the male perception of the female attracting signals.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfotransferases/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Capsella/genética , Capsella/metabolismo , Capsella/fisiologia , Membrana Celular/metabolismo , Mutação , Óvulo Vegetal/metabolismo , Fenótipo , Fosfotransferases/química , Fosfotransferases/genética , Tubo Polínico/genética , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Multimerização Proteica , Proteínas Serina-Treonina Quinases , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Reprodução
15.
Plant J ; 81(4): 597-610, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25557441

RESUMO

MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences.


Assuntos
Arabidopsis/genética , Capsella/genética , Evolução Molecular , MicroRNAs/genética , Arabidopsis/metabolismo , Capsella/metabolismo , MicroRNAs/metabolismo , Polimorfismo Genético , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Sintenia
16.
Curr Biol ; 24(16): 1880-6, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25127212

RESUMO

Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effects underlie many cases of repeated morphological transitions. By contrast, only few such genes have been identified from plants, limiting cross-kingdom comparisons of the principles of morphological evolution. Here, we demonstrate that the REDUCED COMPLEXITY (RCO) locus underlies more than one naturally evolved change in leaf shape in the Brassicaceae. We show that the difference in leaf margin dissection between the sister species Capsella rubella and Capsella grandiflora is caused by cis-regulatory variation in the homeobox gene RCO-A, which alters its activity in the developing lobes of the leaf. Population genetic analyses in the ancestral C. grandiflora indicate that the more-active C. rubella haplotype is derived from a now rare or lost C. grandiflora haplotype via additional mutations. In Arabidopsis thaliana, the deletion of the RCO-A and RCO-B genes has contributed to its evolutionarily derived smooth leaf margin, suggesting the RCO locus as a candidate for an evolutionary hot spot. We also find that temperature-responsive expression of RCO-A can explain the phenotypic plasticity of leaf shape to ambient temperature in Capsella, suggesting a molecular basis for the well-known negative correlation between temperature and leaf margin dissection.


Assuntos
Evolução Biológica , Capsella/anatomia & histologia , Capsella/genética , Genes Homeobox , Mutação , Proteínas de Plantas/genética , Sequência de Aminoácidos , Capsella/metabolismo , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Alinhamento de Sequência , Temperatura
17.
Plant Mol Biol ; 85(3): 259-75, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24532380

RESUMO

Plant cells respond to cold stress via a regulatory mechanism leading to enhanced cold acclimation accompanied by growth retardation. The C-repeat binding factor (CBF) signaling pathway is essential for cold response of flowering plants. Our previously study documented a novel CBF-like gene from the cold-tolerant Capsella bursa-pastoris named CbCBF, which was responsive to chilling temperatures. Here, we show that CbCBF expression is obviously responsive to chilling, freezing, abscisic acid, gibberellic acid (GA), indoleacetic acid or methyl jasmonate treatments and that the CbCBF:GFP fusion protein was localized to the nucleus. In addition, CbCBF overexpression conferred to the cold-sensitive tobacco plants enhanced tolerance to chilling and freezing, as well as dwarfism and delayed flowering. The leaf cells of CbCBF overexpression tobacco lines attained smaller sizes and underwent delayed cell division with reduced expression of cyclin D genes. The dwarfism of CbCBF transformants can be partially restored by GA application. Consistently, CbCBF overexpression reduced the bioactive gibberellin contents and disturbed the expression of gibberellin metabolic genes in tobacco. Meanwhile, cold induced CbCBF expression and cold tolerance in C. bursa-pastoris are reduced by GA. We conclude that CbCBF confers cold resistance and growth inhibition to tobacco cells by interacting with gibberellin and cell cycle pathways, likely through activation of downstream target genes.


Assuntos
Capsella/metabolismo , Ciclo Celular/fisiologia , Temperatura Baixa , Giberelinas/antagonistas & inibidores , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Ácido Abscísico , Acetatos , Adaptação Fisiológica , Capsella/genética , Clonagem Molecular , Ciclinas/genética , Ciclinas/metabolismo , Ciclopentanos , Ácidos Indolacéticos , Oxilipinas , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
18.
PLoS One ; 7(10): e46640, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23056382

RESUMO

The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress-related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Capsella/metabolismo , Capsella/fisiologia , Regulação da Expressão Gênica de Plantas
19.
J Plant Physiol ; 169(14): 1408-16, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22795746

RESUMO

Low temperature is among the most significant abiotic stresses, restricting the habitats of sessile plants and reducing crop productivity. Cold regulated (COR) genes are low temperature-responsive genes expressing under regulation of a specific signal transduction pathway, which is designated C-repeat-binding-factor (CBF) signaling pathway. In the present article, cold bioassay showed that the transcript level of cold regulated gene CbCOR15b from shepherd's purse (Capsella bursa-pastoris) was obviously elevated under cold treatments. Reverse transcription-PCR (RT-PCR) and GUS report system revealed that unlike AtCOR15b, CbCOR15b expressed not only in leaves but also in stems and maturation zone of roots. When transgenic tobacco plants ectopically expressing CbCOR15b were exposed to chilling and freezing temperatures, they displayed more cold tolerance compared to control plants. According to the electrolyte leakage, the relative water content, the glucose content and the phenotype observation, CbCOR15b transformants suffered less damage under cold stress. Further investigation of the subcellular localization of CbCOR15b by transient expression of fusion protein CbCOR15b-GFP revealed that it was localized exclusively in the chloroplasts of tobacco mesophyll cells and in the cytoplasm of onion epidermal cells. It can be concluded that CbCOR15b which located in the chloroplasts and in the cytoplasm of cells without chloroplasts was involved in cold response of C. bursa-pastoris and conferred enhanced cold tolerance in transgenic tobacco plants.


Assuntos
Adaptação Fisiológica/genética , Capsella/metabolismo , Temperatura Baixa , Nicotiana/genética , Nicotiana/fisiologia , Proteínas de Plantas/metabolismo , Bioensaio , Cloroplastos/metabolismo , Congelamento , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Glucuronidase/metabolismo , Células do Mesofilo/citologia , Células do Mesofilo/metabolismo , Cebolas/citologia , Fenótipo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Coloração e Rotulagem , Frações Subcelulares/metabolismo , Transformação Genética , Água
20.
Plant Cell Rep ; 31(10): 1769-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22648014

RESUMO

As the crucial members of the cold-regulated (COR) gene family, KIN genes are involved in diverse abiotic stress responses in plants. In the present study, KIN genes from the widespread plant Capsella bursa-pastoris were identified and analyzed to better understand the powerful adaptation of this species. Two KIN genes were cloned and sequenced by 3' RACE. As some COR genes are homologous to LEA genes, three KIN-homologous LEA genes were also identified. We deduced the amino acid sequences of the five proteins to estimate their phylogenetic relationships, and grouped them into three subfamilies (CI, CII, and CIII). Variable 3' UTRs were found in CI, CII, and CIII genes. Using qPCR, we evaluated the transcriptional levels of the five genes in different organs and embryonic stages. Two CI genes were exclusively expressed in early embryos and flowers. The CII and CIII genes showed obvious up-regulation in young leaves after heat stress, cold stress, and ABA treatment. Two of the CI genes, however, rarely responded to those stresses in young leaves. In contrast, all five genes showed differential responses in flowers when C. bursa-pastoris plants were sprayed with ABA. Furthermore, the expression of these genes in C. bursa-pastoris was compared to that of the corresponding Arabidopsis genes, and similar gene expression profiles were found in both species. Our findings suggest that these five genes play different roles in development and the responses to abiotic stresses in C. bursa-pastoris. Key message We characterized two KIN and three KIN-homologous LEA genes, and analyzed their variable 3'UTR and organ-specific, embryo-developmental, stress-induced gene expression in Capsella bursa-pastoris.


Assuntos
Regiões 3' não Traduzidas , Capsella/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ácido Abscísico/farmacologia , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Capsella/classificação , Capsella/efeitos dos fármacos , Capsella/metabolismo , Clonagem Molecular , Temperatura Baixa , DNA Complementar/genética , DNA Complementar/metabolismo , Temperatura Alta , Filogenia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo , Reação em Cadeia da Polimerase/métodos , Sementes/genética , Sementes/metabolismo , Estresse Fisiológico , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA