Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39179021

RESUMO

Fish skeletal muscle is a component of the human diet, and understanding the mechanisms that control muscle growth can contribute to improving production in this sector and benefits the human health. In this sense, fish such as tambacu can represent a valuable source for exploring muscle growth regulators due to the indeterminate muscle growth pattern. In this context, the genes responsible for the indeterminate and determinate muscle growth pattern of fish are little explored, with piwi genes being possible candidates involved with these growth patterns. Piwi genes are associated with the proliferation and self-renewal of germ cells, and there are descriptions of these same functions in somatic cells from different tissues. However, little is known about the function of these genes in fish somatic cells. Considering this, our objective was to analyze the expression pattern of piwi 1 and 2 genes in cardiac muscle, skeletal muscle, liver, and gonad of zebrafish (species with determinate growth) and tambacu (species with indeterminate growth). We observed a distinct expression of piwi1 and piwi2 between tambacu and zebrafish, with both genes more expressed in tambacu in all tissues evaluated. Piwi genes can represent potential candidates involved with indeterminate muscle growth control.


Assuntos
Proteínas Argonautas , Caraciformes , Músculo Esquelético , Peixe-Zebra , Animais , Masculino , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Fígado/metabolismo , Fígado/crescimento & desenvolvimento , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Caraciformes/genética , Caraciformes/crescimento & desenvolvimento , Caraciformes/metabolismo
2.
J Comp Physiol B ; 194(4): 443-455, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38958740

RESUMO

The present study investigated the best photoperiod for culturing pacu (Piaractus mesopotamicus) in recirculation aquaculture systems (RAS) based on its growth performance and hematological and oxidative stress responses. Juveniles (∼ 5 g) were subjected to five treatments (in triplicate): 24 L (light):0D (dark), 15 L: 09D, 12 L:12D, 9 L:15D, and 0 L:24D for 45 days. A total of 225 pacu individuals were randomly distributed among 15 tanks of 210 L (n = 15 per tank). Zootechnical, hematological (glucose, lactate, hematocrit, and hemoglobin), and antioxidant and oxidative stress parameters (glutathione S-transferase (GST), total antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO) were analyzed. The zootechnical parameters (e.g., weight gain, Fulton's condition factor, and specific growth rate) were better and worse with 9 L:15D and 24 L:0D photoperiods, respectively. The hepatosomatic index was higher and lower in the 0 L:24D and 9 L:15D photoperiods. Blood lactate levels and antioxidant and oxidative stress responses were increased in the longest photoperiods (15 L:9D and 24 L:0D). In contrast, the treatments that showed lower oxidative damage (liver, gills, brain, and muscle) were 9 L:15D and 12 L:12D. In conclusion, manipulating artificial light is one way to improve fish growth and health, where the best photoperiod for pacu farming in RAS is 9 L:15D.


Assuntos
Antioxidantes , Aquicultura , Estresse Oxidativo , Fotoperíodo , Animais , Aquicultura/métodos , Antioxidantes/metabolismo , Caraciformes/fisiologia , Caraciformes/crescimento & desenvolvimento , Caraciformes/metabolismo , Peroxidação de Lipídeos , Ácido Láctico/sangue , Ácido Láctico/metabolismo
3.
Environ Toxicol Pharmacol ; 108: 104473, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759846

RESUMO

The most recent dam rupture in Brazil released tons of mining tailings into the upper course of the Paraopeba River, affecting this river in an unprecedented way. The present study aimed to evaluate the influence of heavy metals on Prochilodus costatus, an important commercial species in Brazil, four years after the dam colapse. To this end, biomarkers of heavy metals, oxidative stress, and environmental stress were analyzed, and histological analyses of target organs were performed. The results demonstrated critical contamination of fish from the Paraopeba River. Increased expression of Metallothioneins - MTs, Heat Shock Protein - HSP70, and inducible nitric oxide synthase - iNOS, as well as greater rates of histological changes in the liver, spleen, and gonads, were observed in P. costatus. These findings demonstrate that, despite past contamination, the metals present in mining tailings have significantly increased the contamination of the Paraopeba River basin.


Assuntos
Fígado , Metalotioneína , Metais Pesados , Óxido Nítrico Sintase Tipo II , Rios , Poluentes Químicos da Água , Animais , Metalotioneína/metabolismo , Poluentes Químicos da Água/toxicidade , Metais Pesados/toxicidade , Óxido Nítrico Sintase Tipo II/metabolismo , Brasil , Fígado/efeitos dos fármacos , Fígado/metabolismo , Baço/efeitos dos fármacos , Baço/metabolismo , Caraciformes/metabolismo , Masculino , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Peixes/metabolismo , Feminino
4.
PLoS One ; 19(4): e0299926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625887

RESUMO

Preservation of fish as diet ingredient is challenging in many tropical regions due to poor socioeconomic conditions and lack of freezing facilities. So, alternative preservation techniques could be viable to address the issue. The present study evaluated the effect of brine salting (15% w/v) prior to drying at different temperatures on the nutrient profiles of tambaqui fish (Colossoma macropomum). Whole fish samples (n = 48; 792 ± 16 g; 8 months old) were grouped into two as brine-salted and non-salted, and treated at seven different drying temperatures of 30, 35, 40, 45, 50, 55 and 60°C for a period of 23 h each. To evaluate the impact of Maillard reaction, reactive lysine was also quantified. Drying temperature had no effect on the evaluated macro- and micro-nutrients of tambaqui fish (P > 0.05) while brining reduced the overall protein concentration by 6% (58.8 to 55.4 g/100 g DM; P = 0.004). Brining significantly reduced many amino acids: taurine by 56% (7.1 to 3.1 g/kg; P < 0.001), methionine 17% (14.7 to 12.1 g/kg; P < 0.001), cysteine 11% (5.1 to 4.4 g/kg, P = 0.016), and reactive lysine 11% (52.0 to 46.4 g/kg; P = 0.004). However, alanine, arginine, and serine were not affected by brining (P > 0.05). Brining also reduced the concentrations of Se by 14% (149 to 128 µg/kg DM; P = 0.020), iodine 38% (604 to 373 µg/kg DM; P = 0.020), K 42% (9.71 to 5.61 g/kg DM; P < 0.001) and Mg 18% (1.32 to 1.10 g/kg DM; P = < 0.001) versus an anticipated vast increase in Na by 744% (2.70 to 22.90 g/kg DM; P < 0.001) and ash 28% (12.4 to 16.0 g/100g DM; P < 0.001) concentration. Neither brining nor drying temperature induced changes in % lysine reactivity and fat content of tambaqui fish (P > 0.05). Agreeably, results of multivariate analysis showed a negative association between brining, Na, and ash on one side of the component and most other nutrients on the other component. In conclusion, drying without brining may better preserve the nutritive value of tambaqui fish. However, as a practical remark to the industry sector, it is recommended that the final product may further evaluated for any pathogen of economic or public health importance.


Assuntos
Caraciformes , Lisina , Animais , Lisina/metabolismo , Caraciformes/metabolismo , Sais/metabolismo , Valor Nutritivo
5.
Biopreserv Biobank ; 22(5): 452-462, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38526565

RESUMO

Oxidative stress is one of the main causes of loss of sperm function during chilled storage. The aim of the current study was to evaluate the effects of a fructose-based extender, which was supplemented with catalase or uric acid, on the motility, viability, morphological integrity, and lipid peroxidation (LPO) of Colossoma macropomum spermatozoa. Sperm was diluted in extenders containing catalase (0; 0.1; 0.8; and 1.5 kU/L) or uric acid (0; 0.25; 0.5; and 1.0 mmol/L) and then stored at 4.3 ± 0.6°C for 96 hours. The chilling storage time had more significant and pronounced effects on practically all the measured sperm quality parameters than the different concentrations of both antioxidants added to the extenders. This was true for sperm motility, motility duration, sperm viability, and the percentage of normal spermatozoa. In fact, for all these parameters, values were higher in the extenders supplemented with catalase or uric acid, than those not supplemented with these antioxidants, especially after 96 hours. The LPO process showed an antioxidant-dependent response. In catalase-supplemented extenders thiobarbituric acid reactive substance (TBARS) levels increased gradually and significantly with time, but remained stable during the 96 hours of chilled storage in all samples in which uric acid was added. Despite this, TBARS levels were lower in the extenders supplemented with both catalase and uric acid than in those not having these antioxidants. Inverse correlations were found between sperm motility and the damage in sperm flagella. Our findings suggest that the supplementation of an extender with catalase or uric acid is beneficial and protects fish sperm membranes from damage caused by oxidative stress during low-temperature storage. The extenders containing 0.1 kU/L of catalase and 0.25 mmol/L of uric acid provided effective antioxidant protection for the spermatozoa of this important Amazonian fish.


Assuntos
Catalase , Peroxidação de Lipídeos , Preservação do Sêmen , Motilidade dos Espermatozoides , Ácido Úrico , Masculino , Animais , Catalase/metabolismo , Preservação do Sêmen/métodos , Ácido Úrico/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Antioxidantes/farmacologia , Temperatura Baixa , Estresse Oxidativo/efeitos dos fármacos , Cauda do Espermatozoide/efeitos dos fármacos , Cauda do Espermatozoide/metabolismo , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Caraciformes/metabolismo , Análise do Sêmen , Sobrevivência Celular/efeitos dos fármacos
6.
Sci Total Environ ; 922: 171379, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38431165

RESUMO

Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.


Assuntos
Caraciformes , Praguicidas , Animais , Praguicidas/toxicidade , Mudança Climática , Antioxidantes/metabolismo , Caraciformes/metabolismo , Malation
7.
Sci Total Environ ; 889: 164210, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37196965

RESUMO

Anthropogenic activities, including combustion of fossil fuels, coal, and gold mining, are significant sources of mercury (Hg) emissions into aquatic ecosystems. South Africa is a major contributor to global Hg emissions (46.4 tons Hg in 2018), with coal-fired power stations as the main source. Atmospheric transport of Hg emissions is the dominant cause of contamination, especially on the east coast of southern Africa where the Phongolo River Floodplain (PRF) is located. The PRF is the largest floodplain system in South Africa, with unique wetlands and high biodiversity, and provides essential ecosystem services to local communities who rely on fish as a protein source. We assessed the bioaccumulation of Hg in various biota, the trophic positions and food webs, as well as the biomagnification of Hg through the food webs in the PRF. Elevated Hg concentrations were found in sediments, macroinvertebrates and fish from the main rivers and associated floodplains in the PRF. Mercury biomagnification was observed through the food webs, with the apex predator tigerfish, Hydrocynus vittatus, having the highest Hg concentration. Our study shows that Hg in the PRF is bioavailable, accumulates in biota and biomagnifies in food webs.


Assuntos
Caraciformes , Mercúrio , Poluentes Químicos da Água , Animais , Mercúrio/análise , Cadeia Alimentar , Ecossistema , Bioacumulação , Áreas Alagadas , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Peixes/metabolismo , Caraciformes/metabolismo , Carvão Mineral
8.
Environ Toxicol Pharmacol ; 99: 104121, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37030645

RESUMO

In order to evaluate the effects of Cd, juveniles of the Neotropical fish Prochilodus lineatus were exposed to 1 and 10 µg L-1 Cd, for 24 and 96 h. Fish exposed to Cd showed metal accumulation in the gills, kidney, and liver, an increase in DNA damage in erythrocytes, and an increase in lipid peroxidation (LPO) in the kidney. Cd exposure also caused a reduction in catalase activity, metallothionein induction, and LPO in the liver. Cd stimulated the swimming activity of exposed fish, resulting in longer swimming times and distances travelled, especially for the shortest exposure time. Changes in acetylcholinesterase activity (AChE) in the muscle and brain are probably related to these behavioural responses. These results show that Cd affects the functioning of several organs in P. lineatus, which is indicated by the genotoxic damage and changes in the AChE and swimming pattern of the exposed fish.


Assuntos
Caraciformes , Poluentes Químicos da Água , Animais , Cádmio/metabolismo , Acetilcolinesterase/metabolismo , Caraciformes/metabolismo , Fígado , Dano ao DNA , Biomarcadores/metabolismo , Água Doce , Peroxidação de Lipídeos , Poluentes Químicos da Água/análise , Brânquias
9.
Chemosphere ; 316: 137779, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36632955

RESUMO

Exposure to mercury can interfere with the expression of proteins and enzymes, compromise important pathways, such as apoptosis and glucose metabolism, and even induce the expression of metallothioneins. In this study, analytical techniques were used to determine the concentration of total mercury (THg) in muscle and liver tissue, protein pellets, and spots [using graphite furnace atomic absorption spectrometry (GFAAS)], and molecular techniques were used to identify metalloproteins present in mercury-associated protein spots. Thirty individuals from three different fish species, Cichla sp. (n = 10), Brachyplatystoma filamentosum (n = 10), and Semaprochilodus sp. (n = 10) from the Brazilian Amazon were used. Oxidative stress indicators [such as glutathione peroxidase (GSH-Px), catalase (CAT), superoxide dismutase (SOD), a marker of lipid peroxidation (LPO)] and the possible expression of metallothioneins in muscle and liver tissues were investigated. The two piscivorous species, Cichla sp. and B. filamentosum, presented the highest concentrations of mercury in their hepatic tissue, 1219 ± 15.00 and 1044 ± 13.6 µg kg-1, respectively, and in their muscle tissue, 101 ± 1.30 µg kg-1 and 87.4 ± 0.900 µg kg-1, respectively. The non-carnivorous species Semaprochilodus sp. had comparatively low concentrations of mercury in both its hepatic (852 ± 11.1 µg kg-1) and muscle (71.4 ± 0.930 µg kg-1) tissues. The presence of mercury was identified in 24 protein spots using GFAAS; concentrations ranged from 11.5 to 787 µg kg-1, and mass spectrometry identified 21 metal-binding proteins. The activities of GSH-Px, CAT, and SOD, related to oxidative stress, decreased proportionally as tissue Hg concentrations increased, while the levels of LPO markers increased, indicating the presence of stress. Our study results demonstrate possible mercury interference in oxidative stress markers (GSH-Px, CAT, SOD, and LPO), in addition to the identification of 21 metal-binding proteins as possible biomarkers of mercury exposure in fish.


Assuntos
Caraciformes , Ciclídeos , Mercúrio , Animais , Peixes/metabolismo , Mercúrio/análise , Caraciformes/metabolismo , Músculos/química , Ciclídeos/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Biomarcadores/metabolismo , Estresse Oxidativo , Fígado/metabolismo
10.
Sci Total Environ ; 854: 158729, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116666

RESUMO

Climate change leads to an increase in water acidification and temperature, two environmental factors that can change fish appetite and metabolism, affecting fish population in both wild and aquaculture facilities. Therefore, our study tested if climate change affects gene expression levels of two appetite-regulating peptides - Neuropeptide Y (NPY) and Cholecystokinin (CCK) - in the brain of tambaqui, Colossoma macropomum. Additionally, we show the distribution of these genes throughout the body. Amino acid sequences of CCK and NPY of tambaqui showed high similarity with other Characiformes, with the closely related order Cypriniformes, and even with the more distantly related order Salmoniformes. High apparent levels of both peptides were expressed in all brain areas, while expression levels varied for peripheral tissues. NPY and CCK mRNA were detected in all peripheral tissues but cephalic kidney for CCK. As for the effects of climate change, we found that fish exposed to extreme climate scenario (800 ppm CO2 and 4.5 °C above current climate scenario) had higher expression levels of NPY and lower expression levels of CCK in the telencephalon. The extreme climate scenario also increased food intake, weight gain, and body length. These results suggest that the telencephalon is probably responsible for sensing the metabolic status of the organism and controlling feeding behavior through NPY, likely an orexigenic hormone, and CCK, which may act as an anorexigenic hormone. To our knowledge, this is the first study showing the effects of climate change on the endocrine regulation of appetite in an endemic and economically important fish from the Amazon. Our results can help us predict the impact of climate change on both wild and farmed fish populations, thus contributing to the elaboration of future policies regarding their conservation and sustainable use.


Assuntos
Regulação do Apetite , Caraciformes , Animais , Mudança Climática , Distribuição Tecidual , Colecistocinina/genética , Colecistocinina/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Caraciformes/metabolismo , Hormônios
11.
Environ Res ; 216(Pt 1): 114391, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36154861

RESUMO

The Eastern Amazon is rich in bauxite ore. The extraction and processing of bauxite lead to the mobilization of Aluminum (Al) and other metals in environmental. We evaluated the metals (Al, Mn, Ba, and Cr) concentration in tissue, water, and sediment associated with antioxidant and oxidative damage responses in Bryconops caudomaculatus. The samplings were done in two hydrological periods (post-rain and post-dry periods) and at three points, located at two rivers: one in the surroundings of the mining area (P1) and other inside the mining area, upstream (P2), and downstream (P3). Defense antioxidant system biomarkers analyzed were total antioxidant capacity (ACAP) and glutathione-S-transferase (GST) activity. As an oxidative damage biomarker, the lipoperoxidation (LPO) was evaluated. Metals concentrations in the water and sediment were higher in the post-rain period compared to post-dry period. The water samples were acidic, with dissolved Al concentrations above the values established by local legislation at all points. In the gills, the metals accumulation was higher in fish from in the surrounding and upstream sites, and in the liver, was higher in fish from downstream site. Fish from the surrounding had increased antioxidant defenses, with higher ACAP in all tissues and higher GST in the gills. Consequently, they had lower levels of LPO. Fish from the mining area had decreased antioxidant defenses, with lower ACAP in all tissues and lower GST in the gills. Consequently, they had higher levels of LPO, indicating oxidative stress. The fish muscle was not responsive to GST and LPO at all sites. We conclude that the oxidative stress observed in the gills and liver of B. caudomaculatus from the area modified by the mining activity reflected the local anthropogenic impact status.


Assuntos
Caraciformes , Poluentes Químicos da Água , Animais , Caraciformes/metabolismo , Antioxidantes/metabolismo , Peroxidação de Lipídeos , Óxido de Alumínio , Estresse Oxidativo/fisiologia , Brânquias/metabolismo , Metais/toxicidade , Metais/metabolismo , Biomarcadores/metabolismo , Fígado/química , Água , Poluentes Químicos da Água/análise , Glutationa Transferase/metabolismo
12.
Aquat Toxicol ; 252: 106315, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36195002

RESUMO

Copper waterborne toxicity is well understood in aquatic organisms. However, the dietary copper effects are much less known, especially in tropical fish. The toxicity of copper via the trophic route could be influenced by the composition of the food, and diets naturally impregnated with copper seem to have greater toxicity at lower concentrations than artificially impregnated ones. Thus, our objective was to investigate the effects of copper on juveniles of the Neotropical fish Hoplias malabaricus fed on live prey (Astyanax altiparanae) previously exposed to the metal (20 µg L - 1) for 96 h. The prey fish were given to H. malabaricus every 96 h, totaling 10 doses at the end of the experiment. Thus, after 40 days fish were killed and tissues were sampled. Blood showed to be the only tissue in which copper accumulated. Anemia was found and there was damage to the DNA of erythrocytes. Furthermore, ionic imbalances were observed in plasma. There was an increase in the concentration of Na+ and Cl- and a decrease in Ca2+, which were associated with increased copper uptake in the gastrointestinal tract of fish fed on copper exposed prey. All the antioxidant enzymes evaluated in the gills showed decreased activity compared to the control group. Copper seems to have interfered in the energy metabolism of H. malabaricus, since a lower condition factor and feed conversion efficiency rate were observed in fish fed with copper diet. The present study confirms the trophic route as an important copper toxicity pathway for H. malabaricus and reinforces the idea that metal toxicity can be increased when it is naturally impregnated in the prey tissues, even if the prey has been exposed to the metal only for a short period of time.


Assuntos
Characidae , Caraciformes , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Antioxidantes , Poluentes Químicos da Água/toxicidade , Caraciformes/metabolismo , Characidae/metabolismo , Biomarcadores
13.
Environ Toxicol Pharmacol ; 91: 103821, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35093559

RESUMO

The present study evaluated neurotoxic, biotransformation, genotoxic and antioxidant responses to relevant environmental concentrations of diclofenac (0.4 µg L-1) and caffeine (27.5 µg L-1), separate and combined, in adult males of the freshwater fish Astyanax altiparanae after a subchronic exposure (14 days). Fish exposed to diclofenac and caffeine, both separate and combined, revealed a neurotoxic effect through the inhibition of acetylcholinesterase activity in the muscle, while diclofenac alone and in combination caused cyclooxygenase inhibition. Caffeine alone produces genotoxicity on this species but, when combined with diclofenac, it potentiates hepatic lipoperoxidation and the inhibition of oxidative stress enzymes, while diclofenac alone or in combination produces a general inhibition of important enzymes. This study suggests that aquatic contamination produced by these pharmaceuticals has the potential to affect homeostasis and locomotion in A. altiparanae and compromise their immune system and general health.


Assuntos
Caraciformes , Poluentes Químicos da Água , Acetilcolinesterase/metabolismo , Animais , Biotransformação , Cafeína/toxicidade , Caraciformes/metabolismo , Dano ao DNA , Diclofenaco/toxicidade , Masculino , Estresse Oxidativo , Poluentes Químicos da Água/metabolismo
14.
J Comp Physiol B ; 192(1): 77-94, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34591144

RESUMO

Subtropical fish are exposed to seasonal variations in temperature that impose a set of adaptations on their metabolism necessary for the maintenance of homeostasis. In this study, we addressed the effects of temperature variation on the metabolism of Astyanax lacustris, a species of freshwater fish common in the subtropical region of Brazil. Biomarkers of carbohydrate and protein metabolism, antioxidant defense, and oxidative damage were evaluated in the liver of A. lacustris exposed to low (15 °C) and high (31 °C) temperature thermal shock, with controls at 23 °C for 2, 6, 12, 24, 48, 72, and 96 h. A high energy demand was observed during the first 48 h of exposure to 15 °C, which is necessary for metabolic adjustment at low temperatures, with an increase in glycolysis, citric acid cycle, and amino acid catabolism. In addition, at 31 °C, glucose was exported in the first 12 h of exposure, and an increase in the citric acid cycle suggested acetyl-CoA as the pathway substrate, originating from the oxidation of lipids. The antioxidant defenses did not change at 15 °C, as opposed to 31 °C, in which there were changes in several antioxidant defense markers, indicating a response to the production of ROS. However, oxidative stress was observed at both temperatures, with oxidative damage detected by lipid peroxidation at 15 °C and protein carbonylation at 31 °C.


Assuntos
Characidae , Caraciformes , Animais , Antioxidantes/metabolismo , Characidae/metabolismo , Caraciformes/metabolismo , Metabolismo Energético , Água Doce
15.
Sci Rep ; 11(1): 22350, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34785749

RESUMO

Global climate change represents a critical threat to the environment since it influences organismic interactions, such as the host-parasite systems, mainly in ectotherms including fishes. Rising temperature and CO2 are predicted to affect this interaction other and critical physiological processes in fish. Herein, we investigated the effects of different periods of exposure to climate change scenarios and to two degrees of parasitism by monogeneans in the host-parasite interaction, as well as the antioxidant and ionoregulatory responses of tambaqui (Colossoma macropomum), an important species in South American fishing and aquaculture. We hypothesized that temperature and CO2 changes in combination with parasite infection would interfere with the host's physiological processes that are related to oxidative stress and ionoregulation. We experimentally exposed C. macropomum to low and high levels of parasitism in the current and extreme climate scenarios (4.5 °C and 900 ppm CO2 above current levels) for periods of seven and thirty days and we use as analyzed factors; the exposure time, the climate scenario and parasitism level in a 2 × 2 × 2 factorial through a three-way ANOVA as being fish the experimental unit (n = 8). An analysis of gill enzymatic and gene expression profile was performed to assess physiological (SOD, GPx and Na+/K+-ATPase enzymes) and molecular (Nrf2, SOD1, HIF-1α and NKA α1a genes) responses. A clear difference in the parasitism levels of individuals exposed to the extreme climate scenario was observed with a rapid and aggressive increase that was higher after 7 days of exposure though showed a decrease after 30 days. The combination of exposure to the extreme climate change scenario and parasitism caused oxidative stress and osmoregulatory disturbance, which was observed through the analysis of gene expression (Nrf2, SOD1, HIF-1α and NKA α1a) and antioxidant and ionoregulatory enzymes (SOD, GPx and Na+/K+-ATPase) on the host, possibly linked to inflammatory processes caused by the high degree of parasitism. In the coming years, these conditions may result in losses of performance for this species, and as such will represent ecological damage and economical losses, and result in a possible vulnerability in relation to food security.


Assuntos
Caraciformes , Mudança Climática , Pesqueiros , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Estresse Oxidativo , Equilíbrio Hidroeletrolítico , Animais , Caraciformes/metabolismo , Caraciformes/parasitologia
16.
Aquat Toxicol ; 240: 105987, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34644674

RESUMO

The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and the insecticide fipronil have been used widely in agriculture and detected in aquatic ecosystems, where they threaten wildlife. This study evaluated the whole-body bioconcentration and the biochemical and morphological changes in the gills of the neotropical fish Prochilodus lineatus exposed for 96 h to 2,4-D or fipronil as single compounds or as a mixture (2,4-D + fipronil). Fish exposed to either compound alone bioconcentrated 2,4-D (77 ± 23 ng g - 1 fish dry mass) and fipronil (789 ± 178 ng g - 1 fish dry mass). Fish exposed to 2,4-D + fipronil bioconcentrated fipronil (683 ± 73 ng g - 1 fish dry mass) but not 2,4-D. In the gills, catalase (CAT) and glutathione-S-transferase (GST) activities and the lipid peroxidation (LPO) level increased after exposure to 2,4-D. GST activity increased after exposure to fipronil. Conversely, no changes occurred in CAT and GST activities and LPO upon exposure to 2,4-D + fipronil. Histopathological changes such as hyperplasia, cellular hypertrophy, epithelial lifting, and vascular congestion were frequent in the gills of fish exposed to 2,4-D or fipronil individually or 2,4-D + fipronil. The mitochondria-rich cell (MRC) density increased on gill surface in fish exposed to fipronil or 2,4-D + fipronil. Only exposure to 2,4-D alone induced oxidative stress in the gills. Most morphological changes showed defense responses against the pesticides; however, hypertrophy and the change in MRC indicated compensatory responses to maintain the gill osmoregulatory function. The 2,4-D + fipronil mixture showed antagonistic interaction, except for the MRC fractional area at gill surface, which showed synergistic interaction. This is the first report showing antagonistic interaction of 2,4-D and fipronil in the gills after exposing fish to the mixture of both pesticides. The biochemical and morphological changes in gills endanger the gill functions, a phenomenon that implies an energy cost for fish.


Assuntos
Caraciformes , Herbicidas , Poluentes Químicos da Água , Ácido 2,4-Diclorofenoxiacético/toxicidade , Animais , Bioacumulação , Catalase/metabolismo , Caraciformes/metabolismo , Ecossistema , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Herbicidas/metabolismo , Herbicidas/toxicidade , Peroxidação de Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Pirazóis , Poluentes Químicos da Água/toxicidade
17.
Sci Rep ; 11(1): 16157, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373560

RESUMO

Hyperspectral data encode information from electromagnetic radiation (i.e., color) of any object in the form of a spectral signature; these data can then be used to distinguish among materials or even map whole landscapes. Although hyperspectral data have been mostly used to study landscape ecology, floral diversity and many other applications in the natural sciences, we propose that spectral signatures can be used for rapid assessment of faunal biodiversity, akin to DNA barcoding and metabarcoding. We demonstrate that spectral signatures of individual, live fish specimens can accurately capture species and clade-level differences in fish coloration, specifically among piranhas and pacus (Family Serrasalmidae), fishes with a long history of taxonomic confusion. We analyzed 47 serrasalmid species and could distinguish spectra among different species and clades, with the method sensitive enough to document changes in fish coloration over ontogeny. Herbivorous pacu spectra were more like one another than they were to piranhas; however, our method also documented interspecific variation in pacus that corresponds to cryptic lineages. While spectra do not serve as an alternative to the collection of curated specimens, hyperspectral data of fishes in the field should help clarify which specimens might be unique or undescribed, complementing existing molecular and morphological techniques.


Assuntos
Biodiversidade , Caraciformes/classificação , Imageamento Hiperespectral/métodos , Animais , Caraciformes/genética , Caraciformes/metabolismo , Código de Barras de DNA Taxonômico , Fenótipo , Pigmentação , América do Sul
18.
Environ Sci Pollut Res Int ; 28(32): 43872-43884, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33840019

RESUMO

Fipronil is a broad-use insecticide with severe toxicity to fish. Biomarkers responses and bioaccumulation were evaluated on Prochilodus lineatus after exposure to environmentally relevant concentrations of fipronil (0.5 µg L-1, 9 µg L-1, and 100 µg L-1) in a prolonged flow-through assay and ex vivo gills short-term exposition. Lipid peroxidation (LPO), oxidatively modified proteins (PO), the activity of superoxide dismutase (SOD), the content of reduced glutathione (GSH), antioxidant capacity against peroxyles (ACAP), and acetylcholinesterase (AChE) were evaluated. Besides, levels of fipronil and metabolites were analyzed by GC-ECD. At the end of the flow-through assay, fipronil, Fp. sulfone and Fp. desulfinyl were detected in fish, being liver the target organ. Fipronil prolonged exposition promoted oxidative damage in lipids and proteins, alterations in the defense system and low-antioxidant capacity in organs of P. lineatus. The brain AChE activity was affected after prolonged exposition. Ex vivo gills exposition to fipronil promoted changes in antioxidant capacity and damage to lipids, providing a fast and suitable test to assess the pesticide exposure in fish. The results revealed that fipronil at environmental concentrations would be an inducer of oxidative stress in this fish, becoming a vulnerable species to the effects of fipronil in aquatic environments.


Assuntos
Caraciformes , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Caraciformes/metabolismo , Água Doce , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Estresse Oxidativo , Pirazóis , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
19.
Fish Physiol Biochem ; 47(4): 829-839, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33723682

RESUMO

This study aimed to analyze the cold stress effects (in terms of hematology, energy reserves, and oxidative stress) in Piaractus mesopotamicus (pacú) and their mitigation by a Pyropia columbina red seaweed-supplemented diet. For this purpose, juvenile fish were fed with a control (CD) or a red seaweed-supplemented diet (RD) for 60 days, and then, the animals were exposed to a low temperature (14 °C) and a control temperature (24 °C) for 24 h. The cold shock generated an increase of hemoglobin levels in fish fed with both diets. In CD-fed fish, plasmatic triglycerides, cholesterol, and hepatic glycogen decreased after the thermal shock; meanwhile, the animals fed with RD showed decreased hepatic proteins, but increased cholesterol and hepatic glycogen. Regarding oxidative stress, antioxidant enzymes augmented their activity in the liver, intestine, and gills; meanwhile, lipid oxidative damage was observed in the liver and intestine of fish exposed to 14 °C and fed with both diets. Pacú was sensitive to cold shock, but no mitigation effects were observed in fish fed with the supplemented diet. Further research should target higher concentrations of P. columbina in supplemented diets to take advantage of this valuable resource.


Assuntos
Caraciformes , Resposta ao Choque Frio , Suplementos Nutricionais , Rodófitas , Alga Marinha , Animais , Caraciformes/sangue , Caraciformes/metabolismo , Dieta , Proteínas de Peixes/metabolismo , Brânquias/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Glicogênio/metabolismo , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Músculos/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
20.
Fish Physiol Biochem ; 47(4): 895-905, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33786673

RESUMO

Stress is an energy-demanding process, as well as the responses of the innate immune system, that impose a metabolic overload on cellular energy production, which can affect the cellular redox balance, causing oxidative damage. We evaluated the role of stress in the modulation of innate immune and oxidative/antioxidant mechanisms in juvenile pacu exposed to acute and chronic stressors. The experimental period lasted 30 days, and fish (113.7 ± 35.1 g) were fed commercial feed. During this period, half of the fish were not manipulated (Condition A), and the other half were chased with a dip net for 5 min twice a day (Condition C). After the 30-day period, fish from both groups were sampled (baseline sampling), and the remainders (not sampled) were air exposed for 3 min (acute stressor), returned to the tanks, and were sampled again 30 min, 3 h, 6 h, and 24 h after air exposure. We evaluated biomarkers of stress (circulating cortisol and glucose), the innate immune system (respiratory burst activity/RBA, hemolytic activity of the complement system (HA-AP) and serum concentration of lysozyme), oxidative damage (lipid peroxidation/LPO), and antioxidant enzymes (superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GSH-Px). Our results showed that stress, acutely or chronically, caused a transient reduction of RAL and activated the HA-AP. Acutely, stress increased the lysozyme concentration. Furthermore, both conditions caused oxidative stress in the liver, and differently they modulated the antioxidant system, enhancing SOD activity and impairing CAT and GSH-Px activity.


Assuntos
Caraciformes , Estresse Fisiológico , Animais , Glicemia/análise , Catalase/metabolismo , Caraciformes/sangue , Caraciformes/imunologia , Caraciformes/metabolismo , Proteínas do Sistema Complemento , Proteínas de Peixes/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Hemólise , Hidrocortisona/sangue , Imunidade Inata , Leucócitos/metabolismo , Fígado/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA