Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Pediatr Endocrinol Metab ; 36(9): 873-878, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37427576

RESUMO

OBJECTIVES: Carbamoyl phosphate synthetase 1 (CPS1) deficiency is a severe urea cycle disorder. Patients can present with hyperammonemic coma in the first days of life. Treatment includes nitrogen scavengers, reduced protein intake and supplementation with L-arginine and/or L-citrulline. N-carbamoyl glutamate (NCG) has been hypothesized to stimulate the residual CPS1 function, although only few patients are reported. CASE PRESENTATION: We report a patient with neonatal-onset CPS1 deficiency who received NCG in association with nitrogen scavenger and L-citrulline. The patient carried the novel variants CPS1-c.2447A>G p.(Gln816Arg) and CPS1-c.4489T>C p.(Tyr1497His). The latter is localized in the C-terminal allosteric domain of the protein, and is implicated in the binding of the natural activator N-acetyl-L-glutamate. NCG therapy was effective in controlling ammonia levels, allowing to increase the protein intake. CONCLUSIONS: Our data show that the response to NCG can be indicated based on the protein structure. We hypothesize that variants in the C-terminal domain may be responsive to NCG therapy.


Assuntos
Doença da Deficiência da Carbamoil-Fosfato Sintase I , Distúrbios Congênitos do Ciclo da Ureia , Humanos , Recém-Nascido , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Citrulina/uso terapêutico , Ácido Glutâmico
2.
Int J Radiat Oncol Biol Phys ; 115(5): 1244-1256, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36423742

RESUMO

PURPOSE: Tumor radiation resistance is the main obstacle to effective radiation therapy for patients with hepatocellular carcinoma (HCC). We identified the role of urea cycle key enzyme carbamoyl phosphate synthetase 1 (CPS1) in radioresistance of HCC and explored its mechanism, aiming to provide a novel radiosensitization strategy for the CPS1-deficiency HCC subtype. METHODS AND MATERIALS: The expression of CPS1 was measured by western blot and immunohistochemistry. Cell growth assay, EdU assay, cell apoptosis assay, cell cycle assay, clone formation assay, and subcutaneous tumor assay were performed to explore the relationship between CPS1 and radioresistance of HCC cells. Lipid metabonomic analysis was used for investigating the effects of CPS1 on lipid synthesis of HCC cells. RNA sequencing and coimmunoprecipitation assay were carried out to reveal the mechanism of CPS1 participating in the regulation of HCC radiation therapy resistance. Furthermore, 10074-G5, the specific inhibitor of c-Myc, was administered to HCC cells to investigate the role of c-Myc in CPS1-deficiency HCC cells. RESULTS: We found that urea cycle key enzyme CPS1 was frequently lower in human HCC samples and positively associated with the patient's prognosis. Functionally, the present study proved that CPS1 depletion could accelerate the development of HCC and induce radiation resistance of HCC in vitro and in vivo, and deficiency of CPS1 promoted the synthesis of some lipid molecules. Regarding the mechanism, we uncovered that inhibition of CPS1 upregulated CyclinA2 and CyclinD1 by stabilizing oncoprotein c-Myc at the posttranscriptional level and generated radioresistance of HCC cells. Moreover, inactivation of c-Myc using 10074-G5, a specific c-Myc inhibitor, could partially attenuate the proliferation and radioresistance induced by depletion of CPS1. CONCLUSIONS: Our results recapitulated that silencing CPS1 could promote HCC progression and radioresistance via c-Myc stability mediated by the ubiquitin-proteasome system, suggesting that targeting c-Myc in CPS1-deficiency HCC subtype may be a valuable radiosensitization strategy in the treatment of HCC.


Assuntos
Doença da Deficiência da Carbamoil-Fosfato Sintase I , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/radioterapia , Carcinoma Hepatocelular/metabolismo , Carbamoil-Fosfato , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Ureia , Lipídeos , Linhagem Celular Tumoral
3.
Bioorg Chem ; 130: 106253, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356370

RESUMO

CPS1, the rate-limiting enzyme that controls the first reaction of the urea cycle, is responsible for converting toxic ammonia into non-toxic urea in mammals. While disruption of the functions of CPS1 leads to elevated ammonia and nerve damage in the body, mainly manifested as urea cycle disorder. Moreover, accumulating evidence has recently revealed that CPS1 is involved in a variety of human diseases, including CPS1D, cardiovascular disease, cancers, and others. In particular, CPS1 expression varies among cancers, being overexpressed in some cancers and downregulated in others, suggesting that CPS1 may be a promising cancer therapeutic target. In addition, some small-molecule inhibitors of CPS1 have been reported, which have not been confirmed experimentally in malignancies, meaning their future role is far from certain. In this review, we describe the structure and function of CPS1, highlight its important roles in various human diseases, and further discuss the potential diagnostic and therapeutic implications of small molecule compounds targeting CPS1.


Assuntos
Doença da Deficiência da Carbamoil-Fosfato Sintase I , Animais , Humanos , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/terapia , Carbamoil-Fosfato/metabolismo , Amônia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Ureia , Mamíferos/metabolismo
4.
Biochimie ; 183: 89-99, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33309754

RESUMO

Despite biochemical and genetic testing being the golden standards for identification of proximal urea cycle disorders (UCDs), genotype-phenotype correlations are often unclear. Co-occurring partial defects affecting more than one gene have not been demonstrated so far in proximal UCDs. Here, we analyzed the mutational spectrum of 557 suspected proximal UCD individuals. We probed oligomerizing forms of NAGS, CPS1 and OTC, and evaluated the surface exposure of residues mutated in heterozygously affected individuals. BN-PAGE and gel-filtration chromatography were employed to discover protein-protein interactions within recombinant enzymes. From a total of 281 confirmed patients, only 15 were identified as "heterozygous-only" candidates (i.e. single defective allele). Within these cases, the only missense variants to potentially qualify as dominant negative triggers were CPS1 p.Gly401Arg and NAGS p.Thr181Ala and p.Tyr512Cys, as assessed by residue oligomerization capacity and surface exposure. However, all three candidates seem to participate in critical intramolecular functions, thus, unlikely to facilitate protein-protein interactions. This interpretation is further supported by BN-PAGE and gel-filtration analyses revealing no multiprotein proximal urea cycle complex formation. Collectively, genetic analysis, structural considerations and in vitro experiments point against a prominent role of dominant negative effects in human proximal UCDs.


Assuntos
Aminoácido N-Acetiltransferase , Carbamoil-Fosfato Sintase (Amônia) , Genes Dominantes , Mutação de Sentido Incorreto , Ornitina Carbamoiltransferase , Distúrbios Congênitos do Ciclo da Ureia , Substituição de Aminoácidos , Aminoácido N-Acetiltransferase/química , Aminoácido N-Acetiltransferase/genética , Aminoácido N-Acetiltransferase/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Feminino , Heterozigoto , Homozigoto , Humanos , Masculino , Ornitina Carbamoiltransferase/química , Ornitina Carbamoiltransferase/genética , Ornitina Carbamoiltransferase/metabolismo , Domínios Proteicos , Distúrbios Congênitos do Ciclo da Ureia/enzimologia , Distúrbios Congênitos do Ciclo da Ureia/genética
5.
Mol Cell Biochem ; 455(1-2): 29-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30421312

RESUMO

Carbamoyl phosphate synthetase I (CPS1) represents an important regulatory enzyme of the urea cycle that mediates the ATP-driven reaction ligating ammonium, carbonate, and phosphate to form carbamoyl phosphate. The freeze-tolerant wood frog (Rana sylvatica or Lithobates sylvaticus) accumulates high concentrations of urea during bouts of freezing to detoxify any ammonia generated and to contribute as a cryoprotectant thereby helping to avoid freeze damage to cells. Purification of CPS1 to homogeneity from wood frog liver was performed in control and frozen wood frogs by a three-step chromatographic process. The affinity of CPS1 for its three substrates was tested in the purified control and freeze-exposed enzyme under a variety of conditions including the presence and absence of the natural cryoprotectants urea and glucose. The results demonstrated that affinity for ammonium was higher in the freeze-exposed CPS1 (1.26-fold) and that with the addition of 400 mM glucose it displayed higher affinity for ATP (1.30-fold) and the obligate activator N-acetylglutamate (1.24-fold). Denaturation studies demonstrated the freeze-exposed enzyme was less thermally stable than the control with an unfolding temperature approximately 1.5 °C lower (52.9 °C for frozen and 54.4 °C for control). The control form of CPS1 had a significantly higher degree of glutarylated lysine residues (1.42-fold increase) relative to the frozen. The results suggest that CPS1 activation and maintenance of urea cycle activity despite the hypometabolic conditions associated with freezing are important aspects in the metabolic survival strategies of the wood frog.


Assuntos
Proteínas de Anfíbios/química , Proteínas de Anfíbios/isolamento & purificação , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/isolamento & purificação , Congelamento , Fígado/enzimologia , Aclimatação , Animais , Ranidae
6.
Acta Crystallogr D Struct Biol ; 74(Pt 2): 98-105, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29533235

RESUMO

A fast Fourier transform (FFT) method is described for determining the substructure of anomalously scattering atoms in macromolecular crystals that allows successful structure determination by X-ray single-wavelength anomalous diffraction (SAD). This method is based on the maximum-likelihood SAD phasing function, which accounts for measurement errors and for correlations between the observed and calculated Bijvoet mates. Proof of principle is shown that this method can improve determination of the anomalously scattering substructure in challenging cases where the anomalous scattering from the substructure is weak but the substructure also constitutes a significant fraction of the real scattering. The method is deterministic and can be fast compared with existing multi-trial dual-space methods for SAD substructure determination.


Assuntos
Cristalografia por Raios X/métodos , Funções Verossimilhança , Substâncias Macromoleculares/química , Animais , Proteínas de Bactérias/química , Carbamoil-Fosfato Sintase (Amônia)/química , Embrião de Galinha , Ferredoxinas/química , Análise de Fourier , Muramidase/química , Conformação Proteica , Tiorredoxinas
7.
Mol Genet Metab ; 120(3): 198-206, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28007335

RESUMO

This study documents the disparate therapeutic effect of N-carbamyl-l-glutamate (NCG) in the activation of two different disease-causing mutants of carbamyl phosphate synthetase 1 (CPS1). We investigated the effects of NCG on purified recombinant wild-type (WT) mouse CPS1 and its human corresponding E1034G (increased ureagenesis on NCG) and M792I (decreased ureagenesis on NCG) mutants. NCG activates WT CPS1 sub-optimally compared to NAG. Similar to NAG, NCG, in combination with MgATP, stabilizes the enzyme, but competes with NAG binding to the enzyme. NCG supplementation activates available E1034G mutant CPS1 molecules not bound to NAG enhancing ureagenesis. Conversely, NCG competes with NAG binding to the scarce M792I mutant enzyme further decreasing residual ureagenesis. These results correlate with the respective patient's response to NCG. Particular caution should be taken in the administration of NCG to patients with hyperammonemia before their molecular bases of their urea cycle disorders is known.


Assuntos
Trifosfato de Adenosina/administração & dosagem , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/tratamento farmacológico , Glutamatos/administração & dosagem , Trifosfato de Adenosina/farmacologia , Animais , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Quimioterapia Combinada , Feminino , Glutamatos/farmacologia , Humanos , Masculino , Camundongos , Mutação , Medicina de Precisão , Estabilidade Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Doenças Raras/tratamento farmacológico , Doenças Raras/enzimologia
8.
Ann Lab Med ; 37(1): 58-62, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27834067

RESUMO

Diagnosis of the urea cycle disorder (USD) carbamoyl-phosphate synthetase 1 (CPS1) deficiency (CPS1D) based on only the measurements of biochemical intermediary metabolites is not sufficient to properly exclude other UCDs with similar symptoms. We report the first Korean CPS1D patient using whole exome sequencing (WES). A four-day-old female neonate presented with respiratory failure due to severe metabolic encephalopathy with hyperammonemia (1,690 µmol/L; reference range, 11.2-48.2 µmol/L). Plasma amino acid analysis revealed markedly elevated levels of alanine (2,923 µmol/L; reference range, 131-710 µmol/L) and glutamine (5,777 µmol/L; reference range, 376-709 µmol/L), whereas that of citrulline was decreased (2 µmol/L; reference range, 10-45 µmol/L). WES revealed compound heterozygous pathogenic variants in the CPS1 gene: one novel nonsense pathogenic variant of c.580C>T (p.Gln194*) and one known pathogenic frameshift pathogenic variant of c.1547delG (p.Gly516Alafs*5), which was previously reported in Japanese patients with CPS1D. We successfully applied WES to molecularly diagnose the first Korean patient with CPS1D in a clinical setting. This result supports the clinical applicability of WES for cost-effective molecular diagnosis of UCDs.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Sequência de Bases , Carbamoil-Fosfato Sintase (Amônia)/química , Doença da Deficiência da Carbamoil-Fosfato Sintase I/diagnóstico , Códon sem Sentido , Éxons , Feminino , Mutação da Fase de Leitura , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Recém-Nascido , República da Coreia , Análise de Sequência de DNA , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico
9.
Methods Enzymol ; 578: 169-212, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27497167

RESUMO

Computational studies of protein and small molecule (protein-ligand/enzyme-substrate) interactions become more and more important in biological science and drug discovery. Computer modeling can provide molecular details of the processes such as conformational change, binding, and transportation of small molecules/proteins, which are not easily to be captured in experiments. In this chapter, we discussed simulation studies of both protein and small molecules from three aspects: conformation sampling, transportations of small molecules in enzymes, and enzymatic reactions involving small molecules. Both methodology developments and examples of simulation studies in this field were presented.


Assuntos
Inibidores Enzimáticos/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular , Nucleotídeos Cíclicos/química , Bibliotecas de Moléculas Pequenas/química , Bactérias/química , Bactérias/enzimologia , Bradicinina/química , Cálcio/química , Calmodulina/química , Carbamoil-Fosfato Sintase (Amônia)/química , Corismato Mutase/química , Humanos , Cinética , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica
10.
Sci Rep ; 5: 16950, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26592762

RESUMO

Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By binding at the C-terminal domain of CPS1, NAG triggers long-range conformational changes affecting the two distant phosphorylation domains. These changes, concerted with the binding of nucleotides, result in a dramatic remodeling that stabilizes the catalytically competent conformation and the building of the ~35 Å-long tunnel that allows migration of the carbamate intermediate from its site of formation to the second phosphorylation site, where carbamoyl phosphate is produced. These structures allow rationalizing the effects of mutations found in patients with CPS1 deficiency (presenting hyperammonemia, mental retardation and even death), as exemplified here for some mutations.


Assuntos
Amônia/química , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato/química , Glutamatos/química , Ureia/química , Motivos de Aminoácidos , Amônia/metabolismo , Animais , Baculoviridae/genética , Baculoviridae/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Carbamoil-Fosfato/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Expressão Gênica , Glutamatos/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Especificidade por Substrato , Ureia/metabolismo
11.
Mol Med Rep ; 12(6): 7915-26, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26499888

RESUMO

The mechanisms leading to high rates of malignancy and recurrence of human intrahepatic cholangiocarcinoma (ICC) remain unclear. It is difficult to diagnose and assess the prognosis of patients with ICC in the clinic due to the lack of specific biomarkers. In addition, long non­coding RNAs (lncRNAs) have been reported to serve important roles in certain types of tumorigenesis however a role in ICC remains to be reported. The aim of the current study was to screen for genes and lncRNAs that are abnormally expressed in ICC and to investigate their biological and clinicopathological significance in ICC. The global gene and lncRNA expression profiles in ICC were measured using bioinformatics analysis. Carbamoyl­phosphate synthase 1 (CPS1) and its lncRNA CPS1 intronic transcript 1 (CPS1­IT1) were observed to be upregulated in ICC. The expression of CPS1 and CPS1­IT1 was measured in 31 tissue samples from patients with ICC and a number of cell lines. The effects of CPS1 and CPS1­IT1 on the proliferation and apoptosis of the ICC­9810 cell line were measured. In addition, the clinicopathological features and survival rates of patients with ICC with respect to the gene and lncRNA expression status were analyzed. CPS1 and CPS1­IT1 were co­upregulated in ICC tissues compared with non­cancerous tissues. Knockdown of CPS1 andor CPS1­IT1 reduced the proliferation and increased the apoptosis of ICC­9810 cells. Additionally, clinical analysis indicated that CPS1 and CPS1­IT1 were associated with poor liver function and reduced survival rates when the relative expression values were greater than 4 in cancer tissues. The comparisons between the high CPS1 expression group and the low expression group indicated significant differences in international normalized ratio (P=0.048), total protein (P=0.049), indirect bilirubin (P=0.025), alkaline phosphatase (P=0.003) and disease­free survival (P=0.034). In addition, there were differential trends in CA19­9 (P=0.068), globulin (P=0.052) and total bilirubin (P=0.066). The comparisons between the high CPS1­IT1 expression group and the low expression group indicated significant differences in lymphatic invasion (P=0.045), carbohydrate antigen 19­9 (P=0.044), disease­free survival (P=0.026), and non­significant differential trends in alkaline phosphatase were observed (P=0.085). In conclusion, CPS1 and CPS1­IT1 may serve an important role in ICC development by promoting the proliferation of ICC cells. Furthermore, CPS1 and CPS1­IT1 were associated with poor liver function and reduced survival rates. Thus, CPS1 and CPS1­IT1 may be potential prognostic indicators for patients with ICC.


Assuntos
Neoplasias dos Ductos Biliares/genética , Carbamoil-Fosfato Sintase (Amônia)/genética , Colangiocarcinoma/genética , RNA Longo não Codificante/metabolismo , Idoso , Neoplasias dos Ductos Biliares/metabolismo , Biomarcadores Tumorais , Carbamoil-Fosfato Sintase (Amônia)/química , Linhagem Celular Tumoral , Proliferação de Células , Colangiocarcinoma/metabolismo , Intervalo Livre de Doença , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Regulação para Cima
12.
J Med Chem ; 58(18): 7217-23, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26308971

RESUMO

Sirtuins are NAD(+) dependent lysine deacylases involved in many regulatory processes like control of metabolic pathways, DNA repair, and stress response. Modulators of sirtuin activity are needed as tools for uncovering the biological function of these enzymes and as potential therapeutics. Systematic discovery of such modulators is hampered by the lack of efficient and simple continuous activity assays running at low sirtuin concentrations in microtiter plates. Here we describe an improved continuous sirtuin 5 assay based on the coupling of the sirtuin reaction to a proteolytic cleavage using internally fluorescence-quenched substrates. Systematic optimization of a carbamoyl phosphate synthetase 1 derived, glutarylated peptide yielded a Sirt5 substrate with k(cat)/K(M) value of 337,000 M(-1) s(-1), which represents the best sirtuin substrate described so far. These extraordinary substrate properties allowed reliable determination of Ki values for different inhibitors in the presence of only 10 nM sirtuin in microtiter plate format. Assay conditions could be transferred effectively to other lysine deacetylases, like sirtuin 2 and sirtuin 3, which now enables more efficient development of sirtuin targeting drugs.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Histona Desacetilases/química , Oligopeptídeos/química , Sirtuínas/química , Ensaios Enzimáticos/métodos , Inibidores de Histona Desacetilases/química , Cinética , Proteólise , Sirtuínas/antagonistas & inibidores , Especificidade por Substrato
13.
J Genet Genomics ; 42(5): 249-60, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-26059772

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) deficiency (CPS1D) is an inborn error of the urea cycle having autosomal (2q34) recessive inheritance that can cause hyperammonemia and neonatal death or mental retardation. We analyzed the effects on CPS1 activity, kinetic parameters and enzyme stability of missense mutations reported in patients with CPS1 deficiency that map in the 20-kDa C-terminal domain of the enzyme. This domain turns on or off the enzyme depending on whether the essential allosteric activator of CPS1, N-acetyl-L-glutamate (NAG), is bound or is not bound to it. To carry out the present studies, we exploited a novel system that allows the expression in vitro and the purification of human CPS1, thus permitting site-directed mutagenesis. These studies have clarified disease causation by individual mutations, identifying functionally important residues, and revealing that a number of mutations decrease the affinity of the enzyme for NAG. Patients with NAG affinity-decreasing mutations might benefit from NAG site saturation therapy with N-carbamyl-L-glutamate (a registered drug, the analog of NAG). Our results, together with additional present and prior site-directed mutagenesis data for other residues mapping in this domain, suggest an NAG-triggered conformational change in the ß4-α4 loop of the C-terminal domain of this enzyme. This change might be an early event in the NAG activation process. Molecular dynamics simulations that were restrained according to the observed effects of the mutations are consistent with this hypothesis, providing further backing for this structurally plausible signaling mechanism by which NAG could trigger urea cycle activation via CPS1.


Assuntos
Amônia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/metabolismo , Ureia/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/enzimologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Estabilidade Enzimática , Glutamatos/metabolismo , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação , Estrutura Terciária de Proteína , Transdução de Sinais
14.
Mol Genet Metab ; 113(4): 267-73, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25410056

RESUMO

Carbamoyl phosphate synthetase 1 (CPS1) deficiency due to CPS1 mutations is a rare autosomal-recessive urea cycle disorder causing hyperammonemia that can lead to death or severe neurological impairment. CPS1 catalyzes carbamoyl phosphate formation from ammonia, bicarbonate and two molecules of ATP, and requires the allosteric activator N-acetyl-L-glutamate. Clinical mutations occur in the entire CPS1 coding region, but mainly in single families, with little recurrence. We characterized here the only currently known recurrent CPS1 mutation, p.Val1013del, found in eleven unrelated patients of Turkish descent using recombinant His-tagged wild type or mutant CPS1 expressed in baculovirus/insect cell system. The global CPS1 reaction and the ATPase and ATP synthesis partial reactions that reflect, respectively, the bicarbonate and the carbamate phosphorylation steps, were assayed. We found that CPS1 wild type and V1013del mutant showed comparable expression levels and purity but the mutant CPS1 exhibited no significant residual activities. In the CPS1 structural model, V1013 belongs to a highly hydrophobic ß-strand at the middle of the central ß-sheet of the A subdomain of the carbamate phosphorylation domain and is close to the predicted carbamate tunnel that links both phosphorylation sites. Haplotype studies suggested that p.Val1013del is a founder mutation. In conclusion, the mutation p.V1013del inactivates CPS1 but does not render the enzyme grossly unstable or insoluble. Recurrence of this particular mutation in Turkish patients is likely due to a founder effect, which is consistent with the frequent consanguinity observed in the affected population.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Deleção de Sequência , Animais , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Estabilidade Enzimática , Feminino , Efeito Fundador , Humanos , Recém-Nascido , Masculino , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão , Células Sf9 , Spodoptera , Turquia
15.
Mol Genet Metab ; 112(2): 123-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813853

RESUMO

Carbamoyl phosphate synthetase 1 deficiency (CPS1D) is an inborn error of the urea cycle that is due to mutations in the CPS1 gene. In the first large repertory of mutations found in CPS1D, a small CPS1 domain of unknown function (called the UFSD) was found to host missense changes with high frequency, despite the fact that this domain does not host substrate-binding or catalytic machinery. We investigate here by in vitro expression studies using baculovirus/insect cells the reasons for the prominence of the UFSD in CPS1D, as well as the disease-causing roles and pathogenic mechanisms of the mutations affecting this domain. All but three of the 18 missense changes found thus far mapping in this domain in CPS1D patients drastically decreased the yield of pure CPS1, mainly because of decreased enzyme solubility, strongly suggesting misfolding as a major determinant of the mutations negative effects. In addition, the majority of the mutations also decreased from modestly to very drastically the specific activity of the fraction of the enzyme that remained soluble and that could be purified, apparently because they decreased V(max). Substantial although not dramatic increases in K(m) values for the substrates or for N-acetyl-L-glutamate were observed for only five mutations. Similarly, important thermal stability decreases were observed for three mutations. The results indicate a disease-causing role for all the mutations, due in most cases to the combined effects of the low enzyme level and the decreased activity. Our data strongly support the value of the present expression system for ascertaining the disease-causing potential of CPS1 mutations, provided that the CPS1 yield is monitored. The observed effects of the mutations have been rationalized on the basis of an existing structural model of CPS1. This model shows that the UFSD, which is in the middle of the 1462-residue multidomain CPS1 protein, plays a key integrating role for creating the CPS1 multidomain architecture leading us to propose here a denomination of "Integrating Domain" for this CPS1 region. The majority of these 18 mutations distort the interaction of this domain with other CPS1 domains, in many cases by causing improper folding of structural elements of the Integrating Domain that play key roles in these interactions.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Mutação de Sentido Incorreto , Animais , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Linhagem Celular , Estabilidade Enzimática , Glutamatos/metabolismo , Humanos , Recém-Nascido , Insetos/citologia , Insetos/genética , Insetos/metabolismo , Modelos Moleculares , Conformação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
16.
Hum Mutat ; 34(8): 1149-59, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23649895

RESUMO

The urea cycle disease carbamoyl-phosphate synthetase deficiency (CPS1D) has been associated with many mutations in the CPS1 gene [Häberle et al., 2011. Hum Mutat 32:579-589]. The disease-causing potential of most of these mutations is unclear. To test the mutations effects, we have developed a system for recombinant expression, mutagenesis, and purification of human carbamoyl-phosphate synthetase 1 (CPS1), a very large, complex, and fastidious enzyme. The kinetic and molecular properties of recombinant CPS1 are essentially the same as for natural human CPS1. Glycerol partially replaces the essential activator N-acetyl-l-glutamate (NAG), opening possibilities for treating CPS1D due to NAG site defects. The value of our expression system for elucidating the effects of mutations is demonstrated with eight clinical CPS1 mutations. Five of these mutations decreased enzyme stability, two mutations drastically hampered catalysis, and one vastly impaired NAG activation. In contrast, the polymorphisms p.Thr344Ala and p.Gly1376Ser had no detectable effects. Site-limited proteolysis proved the correctness of the working model for the human CPS1 domain architecture generally used for rationalizing the mutations effects. NAG and its analogue and orphan drug N-carbamoyl-l-glutamate, protected human CPS1 against proteolytic and thermal inactivation in the presence of MgATP, raising hopes of treating CPS1D by chemical chaperoning with N-carbamoyl-l-glutamate.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/genética , Doença da Deficiência da Carbamoil-Fosfato Sintase I/genética , Mutação de Sentido Incorreto , Animais , Carbamoil-Fosfato Sintase (Amônia)/deficiência , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Doença da Deficiência da Carbamoil-Fosfato Sintase I/etiologia , Doença da Deficiência da Carbamoil-Fosfato Sintase I/patologia , Humanos , Mutagênese , Polimorfismo Genético , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
17.
Methods Mol Biol ; 909: 241-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22903720

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is being increasingly recognized as a major cause of liver-related morbidity and mortality. Given the increasing prevalence of obesity in western countries, NAFLD has become an important public health problem. The principal aim of this study was to find differences in protein expression between patients with NAFLD and healthy controls. Changes in protein expression of liver samples from controls, nonalcoholic steatosis, and nonalcoholic steatohepatitis (NASH) subjects were analyzed by two-dimensional differential in-gel electrophoresis (DIGE). With this proteomic technique, hundreds of proteins can be analyzed simultaneously and their relative abundance can be calculated. Proteins showing significant changes (ratio ≥ 1.5, p < 0.05) were identified by MALDI TOF/TOF mass spectrometry. Western blot of tissue homogenates was then used as a complementary method to validate protein expression changes observed by DIGE. With the aim to have a noninvasive approach to detect changes produced in NAFLD-affected liver, validated proteins were further tested in serum samples of different cohorts of patients. Following this approach, we identified two candidate markers CPS1 and GRP78 that were differentially expressed between control, steatosis, and NASH. This proteomics approach demonstrates that DIGE combined with MALDI TOF/TOF and Western blot analysis of tissue and serum samples is a useful approach to identify candidate markers associated with NAFLD.


Assuntos
Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Fígado Gorduroso/metabolismo , Proteínas de Choque Térmico/metabolismo , Fígado/metabolismo , Proteoma/metabolismo , Biomarcadores/metabolismo , Western Blotting , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/isolamento & purificação , Estudos de Casos e Controles , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/isolamento & purificação , Humanos , Focalização Isoelétrica , Hepatopatia Gordurosa não Alcoólica , Mapeamento de Peptídeos , Proteoma/química , Proteoma/isolamento & purificação , Proteômica , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Coloração e Rotulagem , Eletroforese em Gel Diferencial Bidimensional
18.
J Comp Physiol B ; 182(8): 1081-94, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22736308

RESUMO

The complete cDNA sequence of CPS I obtained from the liver of the hylid tree frog, Litoria caerulea, consisted of 4,485 bp which coded for 1,495 amino acids with an estimated molecular mass of 163.7 kDa. The deduced CPS I consisted of a mitochondrial targeting sequence of 33 amino acid residues, a glutaminase amidotransferase component spanning from tyrosine 95 to leucine 425, and a methylglyoxal synthetase-like component spanning from valine 441 to lysine 1566. It also comprised two cysteine residues (cysteine 1360 and cysteine 1370) that are characteristic of N-acetyl-L-glutamate dependency. Similar to the CPS I of Rana catesbeiana and Cps III of lungfishes and teleosts, it contained the Cys-His-Glu catalytic triad (cysteine 304, histidine 388 and glutamate 390). All Cps III contain methionine 305 and glutamine 308, which are essential for the Cys-His-Glu triad to react with glutamine, but the CPS I of R. catesbeiana contains lysine 305 and glutamate 308, and therefore cannot effectively utilize glutamine as a substrate. However, the CPS I of L. caerulea, unlike that of R. catesbeiana, contained besides glutamate 308, methionine 305 instead of lysine 305, and thus represented a transitional form between Cps III and CPS I. Indeed, CPS I of L. caerulea could utilize glutamine or NH4⁺ as a substrate in vitro, but the activity obtained with glutamine + NH4⁺ reflected that obtained with NH4⁺ alone. Furthermore, only <5 % of the glutamine synthetase activity was present in the hepatic mitochondria, indicating that CPS I of L. caerulea did not have an effective supply of glutamine in vivo. Hence, our results confirmed that the evolution of CPS I from Cps III occurred in amphibians. Since L. caerulea contained high levels of urea in its muscle and liver, which increased significantly in response to desiccation, its CPS I had the dual functions of detoxifying ammonia to urea and producing urea to reduce evaporative water loss.


Assuntos
Adaptação Fisiológica , Proteínas de Anfíbios/metabolismo , Anuros/fisiologia , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Fígado/metabolismo , Ureia/metabolismo , Sequência de Aminoácidos , Proteínas de Anfíbios/química , Animais , Carbamoil-Fosfato Sintase (Amônia)/química , Carbono-Nitrogênio Ligases/química , Citosol/enzimologia , Citosol/metabolismo , Secas , Ativação Enzimática , Isoenzimas/química , Isoenzimas/metabolismo , Fígado/enzimologia , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Ureia/sangue , Equilíbrio Hidroeletrolítico
19.
J Microbiol Methods ; 90(3): 206-10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22595184

RESUMO

As glutamate and ammonia play a pivotal role in nitrogen homeostasis, their production is mediated by various enzymes that are widespread in living organisms. Here, we report on an effective electrophoretic method to monitor these enzymes. The in gel activity visualization is based on the interaction of the products, glutamate and ammonia, with glutamate dehydrogenase (GDH, EC: 1.4.1.2) in the presence of either phenazine methosulfate (PMS) or 2,6-dichloroindophenol (DCIP) and iodonitrotetrazolium (INT). The intensity of the activity bands was dependent on the amount of proteins loaded, the incubation time and the concentration of the respective substrates. The following enzymes were readily identified: glutaminase (EC: 3.5.1.2), alanine transaminase (EC: 2.6.1.2), aspartate transaminase (EC: 2.6.1.1), glycine transaminase (EC: 2.6.1.4), ornithine oxoacid aminotransferase (EC: 2.6.1.13), and carbamoyl phosphate synthase I (EC: 6.3.4.16). The specificity of the activity band was confirmed by high pressure liquid chromatography (HPLC) following incubation of the excised band with the corresponding substrates. These bands are amenable to further molecular characterization by a variety of analytical methods. This electrophoretic technology provides a powerful tool to screen these enzymes that contribute to nitrogen homeostasis in Pseudomonas fluorescens and possibly in other microbial systems.


Assuntos
Proteínas de Bactérias/química , Eletroforese em Gel de Poliacrilamida/métodos , Homeostase , Nitrogênio/metabolismo , Pseudomonas fluorescens/metabolismo , 2,6-Dicloroindofenol/química , Alanina Transaminase/química , Alanina Transaminase/isolamento & purificação , Alanina Transaminase/metabolismo , Amônia/química , Aspartato Aminotransferases/química , Aspartato Aminotransferases/isolamento & purificação , Aspartato Aminotransferases/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/isolamento & purificação , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Ensaios Enzimáticos , Glutamato Desidrogenase/química , Ácido Glutâmico/química , Glutaminase/química , Glutaminase/isolamento & purificação , Glutaminase/metabolismo , Glicina Transaminase/química , Glicina Transaminase/isolamento & purificação , Glicina Transaminase/metabolismo , Metilfenazônio Metossulfato/química , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/isolamento & purificação , Ornitina-Oxo-Ácido Transaminase/metabolismo , Proteômica , Pseudomonas fluorescens/enzimologia , Sais de Tetrazólio/química
20.
PLoS One ; 7(4): e35048, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496890

RESUMO

Proteins involved in mitochondrial metabolic pathways engage in functionally relevant multi-enzyme complexes. We previously described an interaction between short-chain 3-hydroxyacyl-coenzyme A dehydrogenase (SCHAD) and glutamate dehydrogenase (GDH) explaining the clinical phenotype of hyperinsulinism in SCHAD-deficient patients and adding SCHAD to the list of mitochondrial proteins capable of forming functional, multi-pathway complexes. In this work, we provide evidence of SCHAD's involvement in additional interactions forming tissue-specific metabolic super complexes involving both membrane-associated and matrix-dwelling enzymes and spanning multiple metabolic pathways. As an example, in murine liver, we find SCHAD interaction with aspartate transaminase (AST) and GDH from amino acid metabolic pathways, carbamoyl phosphate synthase I (CPS-1) from ureagenesis, other fatty acid oxidation and ketogenesis enzymes and fructose-bisphosphate aldolase, an extra-mitochondrial enzyme of the glycolytic pathway. Most of the interactions appear to be independent of SCHAD's role in the penultimate step of fatty acid oxidation suggesting an organizational, structural or non-enzymatic role for the SCHAD protein.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Fígado/metabolismo , Redes e Vias Metabólicas , Complexos Multienzimáticos/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/genética , Animais , Aspartato Aminotransferases/química , Aspartato Aminotransferases/metabolismo , Carbamoil-Fosfato Sintase (Amônia)/química , Carbamoil-Fosfato Sintase (Amônia)/metabolismo , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/metabolismo , Glutamato Desidrogenase/química , Glutamato Desidrogenase/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Complexos Multienzimáticos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA