Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.452
Filtrar
1.
J Med Chem ; 67(18): 16820-16834, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39237317

RESUMO

In vivo bioimaging using shortwave infrared (SWIR) (1000-2000 nm) molecular dyes enables deeper penetration and higher contrast compared to visible and near-infrared-I (NIR-I, 700-900 nm) dyes. Developing new SWIR molecules is still quite challenging. This study developed SRHCYs, a panel of fluorescent dyes based on hemicyanine, with adjustable absorbance (830-1144 nm) and emission (886-1217 nm) wavelength. The photophysical attributes of these dyes are precisely tailored by strengthening the donor parts and extending polymethine chains. SRHCY-3, with its clickable azido group, was chosen for high-performance imaging of blood vessels in living mice, enabling the precise detection of brain and lung cancer. The combination of these probes achieved in vivo multicolor imaging with negligible optical crosstalk. This report presents a series of SWIR hemicyanine dyes with promising spectroscopic properties for high-contrast bioimaging and multiplexing detection.


Assuntos
Carbocianinas , Corantes Fluorescentes , Imagem Óptica , Animais , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Carbocianinas/química , Carbocianinas/síntese química , Camundongos , Humanos , Raios Infravermelhos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem , Camundongos Nus , Estrutura Molecular
2.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39337633

RESUMO

The first example of sonodynamic therapy (SDT) with a cyanine dye-antibody conjugate is reported. The aim of this study was to evaluate the sonodynamic efficacy of a trastuzumab-guided diiodinated heptamethine cyanine-based sensitizer, 2ICy7-Ab, versus its non-iodinated counterpart, Cy7-Ab, in a human epidermal growth factor receptor 2-positive (HER2+) xenograft model. In addition, the combined sonodynamic and photodynamic (PDT) effects were investigated. A single intravenous injection of 2ICy7-Ab followed by sonication or combined sonication and photoirradiation in mice resulted in complete tumor growth suppression compared with the nontreated control and showed no detectable toxicity to off-target tissues. In contrast, Cy7-Ab provided only a moderate therapeutic effect (~1.4-1.6-fold suppression). SDT with 2ICy7-Ab resulted in a 3.5-fold reduction in tumor volume within 45 days and exhibited 13-fold greater tumor suppression than PDT alone. In addition, 2ICy7-Ab showed more durable sonostability than photostability. The sonotoxicity of the iodinated versus noniodinated counterparts is attributed to the increased generation of hydroxyl radicals, superoxide, and singlet oxygen. We observed no significant contribution of PDT to the efficacy of the combined SDT and PDT, indicating that SDT with 2ICy7-Ab is superior to PDT alone. These new findings set the stage for the application of cyanine-antibody conjugates for fluorescently monitored targeted sonodynamic treatment of cancer.


Assuntos
Neoplasias da Mama , Carbocianinas , Receptor ErbB-2 , Trastuzumab , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Neoplasias da Mama/terapia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Feminino , Humanos , Trastuzumab/farmacologia , Trastuzumab/química , Camundongos , Receptor ErbB-2/metabolismo , Carbocianinas/química , Linhagem Celular Tumoral , Terapia por Ultrassom/métodos , Fotoquimioterapia/métodos , Imunoconjugados/química , Imunoconjugados/farmacologia , Camundongos Nus , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química
3.
PLoS One ; 19(9): e0310171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39325749

RESUMO

The diagnoses of retroviruses are essential for controlling the rapid spread of pandemics. However, the real-time Reverse Transcriptase quantitative Polymerase Chain Reaction (RT-qPCR), which has been the gold standard for identifying viruses such as SARS-CoV-2 in the early stages of infection, is associated with high costs and logistical challenges. To innovate in viral RNA detection a novel molecular approach for detecting SARS-CoV-2 viral RNA, as a proof of concept, was developed. This method combines specific viral gene analysis, trans-acting ribozymes, and Fluorescence Resonance Energy Transfer (FRET)-based hybridization of fluorescent DNA hairpins. In this molecular mechanism, SARS-CoV-2 RNA is specifically recognized and cleaved by ribozymes, releasing an initiator fragment that triggers a hybridization chain reaction (HCR) with DNA hairpins containing fluorophores, leading to a FRET process. A consensus SARS-CoV-2 RNA target sequence was identified, and specific ribozymes were designed and transcribed in vitro to cleave the viral RNA into fragments. DNA hairpins labeled with Cy3/Cy5 fluorophores were then designed and synthesized for HCR-FRET assays targeting the RNA fragment sequences resulting from ribozyme cleavage. The results demonstrated that two of the three designed ribozymes effectively cleaved the target RNA within 10 minutes. Additionally, DNA hairpins labeled with Cy3/Cy5 pairs efficiently detected target RNA specifically and triggered detectable HCR-FRET reactions. This method is versatile and can be adapted for use with other viruses. Furthermore, the design and construction of a DIY photo-fluorometer prototype enabled us to explore the development of a simple and cost-effective point-of-care detection method based on digital image analysis.


Assuntos
Transferência Ressonante de Energia de Fluorescência , RNA Catalítico , RNA Viral , SARS-CoV-2 , Transferência Ressonante de Energia de Fluorescência/métodos , RNA Viral/genética , RNA Catalítico/genética , RNA Catalítico/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Humanos , COVID-19/virologia , COVID-19/diagnóstico , Hibridização de Ácido Nucleico/métodos , Carbocianinas/química
4.
Anal Chem ; 96(37): 14843-14852, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39239835

RESUMO

Developing NIR-IIb luminescence probes with rapid visualization and a high penetration depth is essential for diabetes research. Combining a sensitizing switch with lanthanide-doped nanoparticles (LnNPs) has been employed to fabricate the NIR-IIb probes. However, these probes mainly adopt heptamethine cyanine dye as the antenna, and the NIR-IIb signal is activated by inhibiting the photoinduced electron transfer (PET) of the dye. Due to limited recognition units, this strategy makes many biomolecules undetectable, such as cysteine (Cys), which is closely related to diabetes. Herein, in this article, hemicyanine dye, NFL-OH, was verified as a new antenna to sensitize NIR-IIb emission from LnNPs. Unlike traditional cyanine dyes, hemicyanine's fluorescence intensity can also be modulated by intramolecular charge transfer (ICT), thereby expanding the range of detectable targets for NIR-IIb probes based on sensitization mechanism. Through switching the hemicyanine-sensitized NIR-IIb emission, we successfully fabricated an NFL-Cys-LnNPs' nanoprobe, which can effectively monitor Cys concentration in the liver of diabetic mice during diabetes progression and evaluate the efficacy of diabetic drugs. Our work not only presents an excellent tool for Cys imaging but also introduces new concepts for designing NIR-IIb probes.


Assuntos
Cisteína , Diabetes Mellitus Experimental , Corantes Fluorescentes , Animais , Camundongos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Diabetes Mellitus Experimental/induzido quimicamente , Cisteína/química , Cisteína/análise , Raios Infravermelhos , Imagem Óptica , Nanopartículas/química , Carbocianinas/química , Progressão da Doença , Humanos , Masculino
5.
Nat Biomed Eng ; 8(9): 1092-1108, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39251765

RESUMO

The efficacy of fluorescence-guided surgery in facilitating the real-time delineation of tumours depends on the optical contrast of tumour tissue over healthy tissue. Here we show that CJ215-a commercially available, renally cleared carbocyanine dye sensitive to apoptosis, and with an absorption and emission spectra suitable for near-infrared fluorescence imaging (wavelengths of 650-900 nm) and shortwave infrared (SWIR) fluorescence imaging (900-1,700 nm)-can facilitate fluorescence-guided tumour screening, tumour resection and the assessment of wound healing. In tumour models of either murine or human-derived breast, prostate and colon cancers and of fibrosarcoma, and in a model of intraperitoneal carcinomatosis, imaging of CJ215 with ambient light allowed for the delineation of nearly all tumours within 24 h after intravenous injection of the dye, which was minimally taken up by healthy organs. At later timepoints, CJ215 provided tumour-to-muscle contrast ratios up to 100 and tumour-to-liver contrast ratios up to 18. SWIR fluorescence imaging with the dye also allowed for quantifiable non-contact wound monitoring through commercial bandages. CJ215 may be compatible with existing and emerging clinical solutions.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Animais , Humanos , Camundongos , Imagem Óptica/métodos , Corantes Fluorescentes/química , Feminino , Masculino , Neoplasias/diagnóstico por imagem , Neoplasias/cirurgia , Linhagem Celular Tumoral , Cicatrização , Carbocianinas/química , Espectroscopia de Luz Próxima ao Infravermelho/métodos
6.
Anal Chim Acta ; 1325: 343122, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39244308

RESUMO

BACKGROUND: Drug-induced liver injury (DILI) is the most important standard for the entrance of clinical drugs into the pharmaceutical market. The elevation of superoxide anion (O2•-) during drug metabolism can mediate apoptosis of hepatocytes and further generation of liver damage. Therefore, developing an effective imaging method for evaluating O2•- levels during DILI is of great importance. However, current reported O2•- fluorescent probes either use short excitation wavelengths or a single intensity detection system, limiting the accurate quantification of O2•- in deep tissue in vivo. RESULTS: We developed a NIR-excited ratiometric nanoprobe (CyD-UCNPs) by assembly of O2•--sensitive hemicyanine dyes (CyD) on the surface of Tm/Er-codoped upconversion nanoparticles (UCNPs) with the assistance of α-cyclodextrin, which exhibited a robust "turn-on" ratiometric sensing signal. In vitro experiments indicated that CyD-UCNPs respond well to O2•- with high selectivity. Furthermore, by taking advantage of the outstanding optical properties produced by the luminescent resonance energy transfer between the UCNPs and CyD upon the excitation of 980 nm, the ratiometric upconversion luminescence signal of CyD-UCNPs was successfully utilized to monitor the fluctuation of O2•- levels under phorbol-12-myristate-13-acetate (PMA)/cisplatin-induced oxidative stress in living cells, liver tissues, and zebrafish. More importantly, endogenous change in O2•- levels in the liver sites of mice during DILI and its prevention with L-carnitine was visualized using CyD-UCNPs. SIGNIFICANCE: This study provides a ratiometric NIR-excited imaging strategy for investigating the correlation between O2•- levels and DILI and its prevention, which is significant for early diagnosis of DILI and preclinical screening of anti-hepatotoxic drugs in vivo.


Assuntos
Carbocianinas , Doença Hepática Induzida por Substâncias e Drogas , Corantes Fluorescentes , Raios Infravermelhos , Nanopartículas , Superóxidos , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Animais , Superóxidos/análise , Superóxidos/metabolismo , Superóxidos/química , Camundongos , Corantes Fluorescentes/química , Carbocianinas/química , Nanopartículas/química , Humanos , Peixe-Zebra , Imagem Óptica , Transdução de Sinais/efeitos dos fármacos
7.
J Vis Exp ; (210)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39248512

RESUMO

Metastatic breast cancer is a devastating disease with very limited therapeutic options, calling for new therapeutic strategies. Oncogenic miRNAs have been shown to be associated with the metastatic potential of breast cancer and are implicated in tumor cell migration, invasion, and viability. However, it can be difficult to deliver an inhibitory RNA molecule to the tissue of interest. To overcome this challenge and deliver active antisense oligonucleotides to tumors, we utilized magnetic iron oxide nanoparticles as a delivery platform. These nanoparticles target tissues with increased vascular permeability, such as sites of inflammation or cancer. Delivery of these nanoparticles can be monitored in vivo by magnetic resonance imaging (MRI) due to their magnetic properties. Translation of this therapeutic approach into the clinic will be more accessible because of its compatibility with this relevant imaging modality. They can also be labeled with other imaging reporters such as a Cy5.5 near-infrared optical dye for correlative optical imaging and fluorescence microscopy. Here, we demonstrate that nanoparticles labeled with Cy5.5 and conjugated to therapeutic oligomers targeting oncogenic miRNA-10b (termed MN-anti-miR10b, or "nanodrug") administered intravenously accumulate in metastatic sites, opening a possibility for therapeutic intervention of metastatic breast cancer.


Assuntos
Carbocianinas , MicroRNAs , Animais , Feminino , Camundongos , MicroRNAs/genética , MicroRNAs/administração & dosagem , Carbocianinas/química , Neoplasias Mamárias Experimentais/patologia , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/diagnóstico por imagem , Nanopartículas Magnéticas de Óxido de Ferro/química , Imageamento por Ressonância Magnética/métodos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Oligonucleotídeos Antissenso/administração & dosagem , Oligonucleotídeos Antissenso/química
8.
Acc Chem Res ; 57(17): 2582-2593, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39152945

RESUMO

ConspectusDue to the advantages of spatiotemporal selectivity and inherent noninvasiveness, cancer phototherapy, which includes both photodynamic therapy (PDT) and photothermal therapy (PTT), has garnered significant attention in recent years as a promising cancer treatment. Despite the commendable progress in this field, persistent challenges remain. In PDT, limitations in dyes manifest as low intersystem crossing (ISC) efficiency and oxygen-dependent photoactivity, resulting in unsatisfactory performance, particularly under hypoxic conditions. Similarly, PTT encounters consistent insufficiencies in the photothermal conversion efficiency (PCE) of dyes. Additionally, the suboptimal phototherapeutic efficacy often exhibits a limited immune response. These factors collectively impose significant constraints on phototherapy in oncological applications, leading to limited tumor inhibition, tumor recurrence, and even metastasis.Unlike strategies that rely on external assistance with complicated systems, manipulating excited-state deactivation pathways in biocompatible dyes offers a universal way to systematically address these challenges. Our group has devoted considerable effort to achieving this goal. In this Account, we present and discuss our journey in optimizing excited-state energy-release pathways through regulating molecular charge transfer based on cyanine dyes, which are renowned for their exceptional photophysical properties and harmonious biocompatibility. The investigation begins with the introduction of amino groups in the meso position of a heptamethine cyanine dye, where the intramolecular charge transfer (ICT) effect causes a significant enlargement of the Stokes shift. Subsequently, ICT induced by introducing functional electron-deficient groups in cyanines is found to decrease the overlap of electron distribution or narrow the energy gaps of molecular frontier orbitals. Such modifications result in a reduction of the energy gaps between singlet and triplet states or an improvement in internal conversion, ultimately promoting phototherapy efficacy in both primary and distant tumors. Furthermore, with the intensification of the charge transfer effect aided by light, photoinduced intramolecular electron transfer occurs in some cyanines, leading to complete charge separation in the excited state. This process enhances the transition to the ground or triplet states, improving tumor phototherapy and inhibiting metastasis by increasing the PCE or the yield of reactive oxygen species, respectively. Shifting focus from intramolecular to intermolecular interactions, we successfully constructed and explored cyanines based on intermolecular charge transfer. These dyes, with excited-state dynamics mimicking natural photosynthesis, generate radicals and facilitate oxygen-independent hypoxic tumor PDT. Finally, we outlined the existing challenges and future directions for optimizing phototherapeutic efficacy by regulating molecular charge transfer. This Account provides molecular-level insights into improving phototherapeutic performance, offering valuable perspectives, and inspiring the development of functional dyes in other application fields.


Assuntos
Carbocianinas , Neoplasias , Animais , Humanos , Carbocianinas/química , Carbocianinas/farmacologia , Carbocianinas/uso terapêutico , Corantes/química , Corantes/farmacologia , Corantes/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fototerapia/métodos
9.
Anal Chim Acta ; 1320: 343005, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39142782

RESUMO

BACKGROUND: Cell-surface proteins, which are closely associated with various physiological and pathological processes, have drawn much attention in drug discovery and disease diagnosis. Thus, wash-free imaging of the target cell-surface protein under its native environment is critical and helpful for early detection and prognostic evaluation of diseases. RESULTS: To minimize the interference from autofluorescence and fit the penetration depth towards tissue samples, we developed a fluorogenic antibody-based probe, Ab-Cy5.5, which will liberate > 5-fold turn-on near-infrared (NIR) emission in the presence of its target antigen within 10 min. SIGNIFICANCE: By taking advantage of the fluorescence-quenched dimeric H-aggregation of Cy5.5, Ab-Cy5.5 with Cy5.5 attached at the N-terminus showed negligible background signal, allowing direct imaging of the target cell-surface protein in both living cells and tissue samples without washing.


Assuntos
Carbocianinas , Corantes Fluorescentes , Proteínas de Membrana , Corantes Fluorescentes/química , Humanos , Carbocianinas/química , Proteínas de Membrana/química , Proteínas de Membrana/análise , Proteínas de Membrana/imunologia , Animais , Imagem Óptica , Anticorpos/química , Anticorpos/imunologia , Camundongos
10.
Org Biomol Chem ; 22(34): 6981-6987, 2024 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-39118527

RESUMO

Glyoxal (GL) is a reactive α-dicarbonyl compound generated from glycated proteins in the Maillard reaction. It has attracted particular attention over the past few years because of its possible clinical significance in chronic and age-related diseases. In this work, a reaction-based red emission fluorescent probe GL1 has been synthesized successfully by grafting an alkyl group onto an amino group to regulate its selectivity for GL. Under physiological conditions, the fluorescence intensity of GL1 at 640 nm obviously increased with the increase of GL concentration, and it exhibited high selectivity for GL over other reactive carbonyl compounds, as well as a lower detection limit (0.021 µM) and a larger Stokes shift (112 nm). At the same time, GL1 can selectively accumulate in mitochondria and can be used to detect exogenous and endogenous GL in living cells with low cytotoxicity.


Assuntos
Corantes Fluorescentes , Glioxal , Fenilenodiaminas , Glioxal/química , Humanos , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Carbocianinas/química , Células HeLa , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Imagem Óptica , Mitocôndrias/metabolismo
11.
Sci Rep ; 14(1): 18322, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39112643

RESUMO

The development of a non-invasive infection-specific diagnostic probe holds the potential to vastly improve early-stage detection of infection, enabling precise therapeutic intervention and potentially reducing the incidence of antibiotic resistance. Towards this goal, a commercially available bacteria-targeting Zinc(II)-dipicolylamine (ZnDPA)-derived fluorophore, PSVue794, was assessed as a photoacoustic (PA) imaging probe (PIP). A radiolabeled version of the dye, [99mTc]Tc-PSVue794, was developed to facilitate quantitative biodistribution studies beyond optical imaging methods, which showed a target-to-non-target ratio of 10.1 ± 1.1, 12 h post-injection. The ability of the PIP to differentiate between bacterial infection, sterile inflammation, and healthy tissue in a mouse model, was then evaluated via PA imaging. The PA signal in sites of sterile inflammation (0.062 ± 0.012 a.u.) was not statistically different from that of the background (0.058 ± 0.006 a.u.). In contrast, high PA signal was detected at sites of bacterial infection (0.176 ± 0.011 a.u.) as compared to background (0.081 ± 0.04 a.u., where P ≤ 0.03). This work demonstrates the potential of utilizing established fluorophores towards PAI and utilizing PAI as a modality in the distinction of bacterial infection from sites of sterile inflammation.


Assuntos
Infecções Bacterianas , Carbocianinas , Corantes Fluorescentes , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Animais , Camundongos , Carbocianinas/química , Corantes Fluorescentes/química , Infecções Bacterianas/diagnóstico por imagem , Distribuição Tecidual , Feminino , Modelos Animais de Doenças , Ácidos Picolínicos/química
12.
Int J Biol Macromol ; 278(Pt 1): 134589, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127295

RESUMO

3D bioprinting with cell-laden materials is an emerging technique for fabricating functional tissue constructs. However, current cell-laden bioinks often lack sufficient cytocompatibility with commonly used UV-light sources. In this study, green to red photoinduced hydrogel crosslinking was obtained by introducing synthesized biosafety photoinitiators and used in light-based direct ink writing (DIW) 3D printing for enabling cell encapsulation successfully. The novel type II photointiators contain iodonium (ONI) and synthesized cyanine dyes CZBIN, TDPABIN, Col-SH-CZ, and Col-SH-TD with strong absorption in the range of 400-600 nm. Collagen-based macromolecule dyes Col-SH-CZ and Col-SH-TD showed excellent cytocompatibility. The photochemistry of these photoinitiators revealed an efficient photoinduced electron transfer (PET) process from the singlet excited states of the dyes to iodonium (ONI), facilitating the crosslinking of the biogels. L929 cells were encapsulated in Gel-MA hydrogels containing various photoinitiating systems and exposed to near-ultraviolet, green, or red LED irradiation. DIW-type 3D printing of Gel-MA bioink with L929 cells was also evaluated. The cell viability achieved with green light encapsulation reached 90 %. This novel approach offers promising prospects for bioprinting functional tissues with enhanced cytocompatibility under visible light conditions.


Assuntos
Colágeno , Hidrogéis , Colágeno/química , Animais , Camundongos , Hidrogéis/química , Impressão Tridimensional , Linhagem Celular , Carbocianinas/química , Luz , Bioimpressão/métodos , Sobrevivência Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
13.
J Phys Chem B ; 128(32): 7750-7760, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39105720

RESUMO

Performing spectroscopic measurements on biomolecules labeled with fluorescent probes is a powerful approach to locating the molecular behavior and dynamics of large systems at specific sites within their local environments. The indocarbocyanine dye Cy3 has emerged as one of the most commonly used chromophores. The incorporation of Cy3 dimers into DNA enhances experimental resolution owing to the spectral characteristics influenced by the geometric orientation of excitonically coupled monomeric units. Various theoretical models and simulations have been utilized to aid in the interpretation of the experimental spectra. In this study, we employ all-atom molecular dynamics simulations to study the structural dynamics of Cy3 dimers internally linked to the dsDNA backbone. We used quantum mechanical calculations to derive insights from both the linear absorption spectra and the circular dichroism data. Furthermore, we explore potential limitations within a commonly used force field for cyanine dyes. The molecular dynamics simulations suggest the presence of four possible Cy3 dimeric populations. The spectral simulations on the four populations show one of them to agree better with the experimental signatures, suggesting it to be the dominant population. The relative orientation of Cy3 in this population compares very well with previous predictions from the Holstein-Frenkel Hamiltonian model.


Assuntos
Carbocianinas , DNA , Dimerização , Simulação de Dinâmica Molecular , Teoria Quântica , Carbocianinas/química , DNA/química
14.
J Biomed Opt ; 29(8): 085001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39165858

RESUMO

Significance: Fluorescent organic dyes provide imaging capabilities at cellular and sub-cellular levels. However, a common problem associated with some of the existing dyes such as the US FDA-approved indocyanine green (ICG) is their weak fluorescence emission. Alternative dyes with greater emission characteristics would be useful in various imaging applications. Complementing optical imaging, magnetic resonance (MR) imaging enables deep tissue imaging. Nano-sized delivery systems containing dyes with greater fluorescence emission as well as MR contrast agents present a promising dual-mode platform with high optical sensitivity and deep tissue imaging for image-guided surgical applications. Aim: We have engineered a nano-sized platform, derived from erythrocyte ghosts (EGs), with dual near-infrared fluorescence and MR characteristics by co-encapsulation of a brominated carbocyanine dye and gadobenate dimeglumine (Gd-BOPTA). Approach: We have investigated the use of three brominated carbocyanine dyes (referred to as BrCy106, BrCy111, and BrCy112) with various degrees of bromination, structural symmetry, and acidic modifications for encapsulation by nano-sized EGs (nEGs) and compared their resulting optical characteristics with nEGs containing ICG. Results: We find that asymmetric dyes (BrCy106 and BrCy112) with one dibromobenzene ring offer greater fluorescence emission characteristics. For example, the relative fluorescence quantum yield ( ϕ ) for nEGs fabricated using 100 µ M of BrCy112 is ∼ 41 -fold higher than nEGs fabricated using the same concentrations of ICG. The dual-mode nEGs containing BrCy112 and Gd-BOPTA show a nearly twofold increase in their ϕ as compared with their single optical mode counterpart. Cytotoxicity is not observed upon incubation of SKOV3 cells with nEGs containing BrCy112. Conclusions: Erythrocyte nano-ghosts with dual optical and MR characteristics may ultimately prove useful in various biomedical imaging applications such as image-guided tumor surgery where MR imaging can be used for tumor staging and mapping, and fluorescence imaging can help visualize small tumor nodules for resection.


Assuntos
Carbocianinas , Eritrócitos , Corantes Fluorescentes , Imageamento por Ressonância Magnética , Imagem Óptica , Imageamento por Ressonância Magnética/métodos , Eritrócitos/química , Corantes Fluorescentes/química , Carbocianinas/química , Imagem Óptica/métodos , Humanos , Meios de Contraste/química , Verde de Indocianina/química
15.
J Hazard Mater ; 477: 135369, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088949

RESUMO

SO2 derivatives, sulfite/bisulfite, are widely employed in both the food processing and drug synthesis industries. Despite their widespread application, excessive levels of sulfite/bisulfite can negatively impact human health. Most probes for detecting sulfite/bisulfite are restricted by their fluorescence within the visible spectrum range and poor solubility in aqueous solution, which limit their use in food testing and biological imaging. Herein, a near-infrared probe comprising of the cyanopyridine cyanine skeleton, 4-((Z)-2-((E)-2-chloro-3-(2-cyano-2-(1-methylpyridine-4(1H)-ylidene)ethylidene)cyclohex-1-en-1-yl)-1-cyanovinyl)-1-methylpyridin-1-ium (abbreviated as CCP), was developed. This probe enables precise quantification of bisulfite (HSO3-) in almost pure buffered solutions, showing a near-infrared fluorescence emission at 784 nm with an impressively low detection limit of 0.32 µM. The probe stands out for its exceptional selectivity, minimal susceptibility to interference, and strong adaptability. The probe CCP utilizes the CC bond to trigger a near-infrared fluorescence quenching reaction with HSO3- via nucleophilic addition, which effectively disrupts the large delocalization within the molecule for accurate HSO3- identification. Moreover, the probe has been successfully applied in detecting HSO3- in various food products and living cells, simplifying the measurement of HSO3- content in water samples. This advancement not only enhances the analytical capabilities but also contributes to ensuring food safety and environmental protection. ENVIRONMENTAL IMPLICATION: SO2 derivatives including sulfite/bisulfite, serving dual roles as preservatives and antioxidants, have widespread application across various sectors including food preservation, water sanitation, and the pharmaceutical industry. Despite their widespread application, excessive levels of sulfite/bisulfite can affect human health. Developing methods for precisely and sensitively detecting sulfite/bisulfite in food products and biological samples is important for ensuring food safety and environmental protection. Here, a sensitive near-infrared and multifunctional fluorescent probe in a 99.9 % buffered solution, along with water gel encapsulation, has been successfully applied for the detection of bisulfite in food, authentic water samples, and biological cells.


Assuntos
Carbocianinas , Sulfitos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Espectrometria de Fluorescência/métodos , Piridinas/química , Carbocianinas/química , Sulfitos/análise , Sulfitos/química , Estrutura Molecular , Humanos , Células HeLa , Processos Fotoquímicos , Limite de Detecção , Hidrogéis/química , Análise de Alimentos
16.
ACS Nano ; 18(34): 23154-23167, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39140713

RESUMO

Efficient delivery of nanoparticles (NPs) to plants is important for agricultural application. However, to date, we still lack knowledge about how NPs' charge matters for its translocation pathway, i.e., symplastic and apoplastic pathways, in plants. In this study, we synthesized and used negatively charged citrate sourced carbon dots (C-CDs, -37.97 ± 1.89 mV), Cy5 coated C-CDs (Cy5-C-CDs, -41.90 ± 2.55 mV), positively charged PEI coated carbon dots (P-CDs, +43.03 ± 1.71 mV), and Cy5 coated P-CDs (Cy5-P-CDs, +48.80 ± 1.21 mV) to investigate the role of surface charges and coatings on the employed translocation pathways (symplastic and apoplastic pathways) of charged NPs in plants. Our results showed that, different from the higher fluorescence intensity of P-CDs and Cy5-P-CDs in extracellular than intracellular space, the fluorescence intensity of C-CDs and Cy5-C-CDs was similar between intracellular and extracellular space in cucumber and cotton roots. It suggests that the negatively charged CDs were translocated via both symplastic and apoplastic pathways, but the positively charged CDs were mainly translocated via the apoplastic pathway. Furthermore, our results showed that root applied negatively charged C-CDs demonstrated higher leaf fluorescence than did positively charged P-CDs in both cucumber (8.09 ± 0.99 vs 3.75 ± 0.23) and cotton (7.27 ± 1.06 vs 3.23 ± 0.22), indicating that negatively charged CDs have a higher translocation efficiency from root to leaf than do positively charged CDs. It should be noted that CDs do not affect root cell activities, ROS level, and photosynthetic performance in cucumber and cotton, showing its good biocompatibility. Overall, this study not only figured out that root applied negatively charged CDs employed both symplastic and apoplastic pathways to do the transportation in roots compared with mainly the employment of apoplastic pathway for positively charge CDs, but also found that negatively charge CDs could be more efficiently translocated from root to leaf than positively charged CDs, indicating that imparting negative charge to NPs, at least CDs, matters for its efficient delivery in crops.


Assuntos
Carbono , Raízes de Plantas , Pontos Quânticos , Carbono/química , Carbono/metabolismo , Pontos Quânticos/química , Pontos Quânticos/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/química , Cucumis sativus/metabolismo , Carbocianinas/química
17.
Int J Mol Sci ; 25(15)2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39126073

RESUMO

The spread of multidrug-resistant mycobacterium strains requires the development of new approaches to combat diseases caused by these pathogens. For that, photodynamic inactivation (PDI) is a promising approach. In this study, a tricarbocyanine (TCC) is used for the first time as a near-infrared (740 nm) activatable PDI photosensitizer to kill mycobacteria with deep light penetration. For better targeting, a novel tricarbocyanine dye functionalized with two trehalose units (TCC2Tre) is developed. The photodynamic effect of the conjugates against mycobacteria, including Mycobacterium tuberculosis, is evaluated. Under irradiation, TCC2Tre causes more effective killing of mycobacteria compared to the photosensitizer without trehalose conjugation, with 99.99% dead vegetative cells of M. tuberculosis and M. smegmatis. In addition, effective photoinactivation of dormant forms of M. smegmatis is observed after incubation with TCC2Tre. Mycobacteria treated with TCC2Tre are more sensitive to 740 nm light than the Gram-positive Micrococcus luteus and the Gram-negative Escherichia coli. For the first time, this study demonstrates the proof of principle of in vitro PDI of mycobacteria including the fast-growing M. smegmatis and the slow-growing M. tuberculosis using near-infrared activatable photosensitizers conjugated with trehalose. These findings are useful for the development of new efficient alternatives to antibiotic therapy.


Assuntos
Raios Infravermelhos , Mycobacterium smegmatis , Mycobacterium tuberculosis , Fármacos Fotossensibilizantes , Trealose , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos da radiação , Trealose/farmacologia , Trealose/química , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos da radiação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Carbocianinas/química , Carbocianinas/farmacologia , Fotoquimioterapia/métodos
18.
Appl Spectrosc ; 78(7): 744-752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39096170

RESUMO

Hemicyanine dyes are an ideal structure for building near-infrared fluorescent probes due to their excellent emission wavelength properties and biocompatibility in biological imaging field. Developing a near-infrared fluorescent probe capable of detecting cysteine (Cys) was the aim of this study. A novel developed fluorescent probe P showed high selectivity and sensitivity to Cys in the presence of various analytes. The detection limit of P was found to be 0.329 µM. The MTT assay showed that the probe was essentially non-cytotoxic. Furthermore, the probe was successfully used as cysteine imaging in living cells and mice.


Assuntos
Cisteína , Corantes Fluorescentes , Cisteína/análise , Cisteína/química , Corantes Fluorescentes/química , Animais , Camundongos , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Limite de Detecção , Carbocianinas/química , Espectrometria de Fluorescência/métodos , Células HeLa , Imagem Óptica/métodos
19.
J Phys Chem B ; 128(32): 7722-7735, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39091133

RESUMO

The protein-induced fluorescence change technique was employed to investigate the interactions between proteins and their DNA substrates modified with the Cy3 fluorophore. It has been reported that the human hepatoma-derived growth factor (HDGF), containing the chromatin-associated N-terminal proline-tryptophan-tryptophan-proline (PWWP) domain (the N-terminal 100 amino acids of HDGF) capable of binding the SMYD1 promoter, participates in various cellular processes and is involved in human cancer. This project investigated the specific binding behavior of HDGF, the PWWP domain, and the C140 domain (the C-terminal 140 amino acids of HDGF) sequentially using protein-induced fluorescence change. We found that the binding of HDGF and its related proteins on Cy3-labeled 15 bp SMYD1 dsDNA will cause a significant decrease in the recorded Cy3 fluorophore intensity, indicating the occurrence of protein-induced fluorescence quenching. The dissociation equilibrium constant was determined by fitting the bound fraction curve to a binding model. An approximate 10-time weaker SMYD1 binding affinity of the PWWP domain was found in comparison to HDGF. Moreover, the PWWP domain is required for DNA binding, and the C140 domain can enhance the DNA binding affinity. Furthermore, we found that the C140 domain can regulate the sequence-specific binding capability of HDGF on SMYD1.


Assuntos
Proteínas de Ligação a DNA , DNA , Peptídeos e Proteínas de Sinalização Intercelular , Ligação Proteica , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/química , DNA/metabolismo , Domínios Proteicos , Sítios de Ligação , Carbocianinas/química , Proteínas Musculares , Fatores de Transcrição
20.
Angew Chem Int Ed Engl ; 63(41): e202408769, 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-38960984

RESUMO

The clinical application of photodynamic therapy (PDT) is limited by oxygen-dependence and side effects caused by photosensitizer residues. Photoinitiators based on the H-abstraction reaction can address these challenges because they can generate alkyl radical-killing cells independently of oxygen and undergo rapid bleaching following H-abstraction. Nonetheless, the development of photoinitiators for PDT has been impeded by the absence of effective design strategies. Herein, we have developed aryl-ketone substituted cyanine (ACy-R), the first red-light triggered H-abstraction photoinitiators for hypoxic cancer therapy. These ACy-R molecules inherited the near-infrared absorption of cyanine dye, and aryl-ketone modification imparted H-abstraction capability. Experimental and quantum calculations revealed that modifying the electron-withdrawing groups of the aryl (e.g., ACy-5F) improved the contribution of the O atom to the photon excitation process promoting intersystem crossing and H-abstraction ability. Particularly, ACy-5F rapidly penetrated cells and enriched in the endoplasmic reticulum. Even under severe hypoxia, ACy-5F initiated red-light induced H-abstraction with intracellular biomolecules, inducing necroptosis and ferroptosis. Moreover, ACy-5F was degraded after H-abstraction, thus avoiding the side effects of long-term phototoxicity after therapy. This study not only provides a crucial molecular tool for hypoxic tumors therapy, but also presents a promising strategy for the development of multifunctional photosensitizers and photoinitiators.


Assuntos
Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Animais , Oxigênio/química , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Carbocianinas/química , Carbocianinas/farmacologia , Linhagem Celular Tumoral , Estrutura Molecular , Hipóxia Tumoral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA