Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31.710
Filtrar
1.
J Sep Sci ; 47(9-10): e2300668, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38699940

RESUMO

Saccharides and biocompounds as saccharide (sugar) complexes have various roles and biological functions in living organisms due to modifications via nucleophilic substitution, polymerization, and complex formation reactions. Mostly, mono-, di-, oligo-, and polysaccharides are stabilized to inactive glycosides, which are formed in metabolic pathways. Natural saccharides are important in food and environmental monitoring. Glycosides with various functionalities are significant in clinical and medical research. Saccharides are often studied with the chromatographic methods of hydrophilic interaction liquid chromatography and anion exchange chromatograpy, but also with capillary electrophoresis and mass spectrometry with their on-line coupling systems. Sample preparation is important in the identification of saccharide compounds. The cases discussed here focus on bioscience, clinical, and food applications.


Assuntos
Eletroforese Capilar , Espectrometria de Massas , Humanos , Carboidratos/química , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas
2.
Microbiology (Reading) ; 170(3)2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38568197

RESUMO

Cellvibrio japonicus is a saprophytic bacterium proficient at environmental polysaccharide degradation for carbon and energy acquisition. Genetic, enzymatic, and structural characterization of C. japonicus carbohydrate active enzymes, specifically those that degrade plant and animal-derived polysaccharides, demonstrated that this bacterium is a carbohydrate-bioconversion specialist. Structural analyses of these enzymes identified highly specialized carbohydrate binding modules that facilitate activity. Steady progress has been made in developing genetic tools for C. japonicus to better understand the function and regulation of the polysaccharide-degrading enzymes it possesses, as well as to develop it as a biotechnology platform to produce renewable fuels and chemicals.


Assuntos
Cellvibrio , Animais , Biomassa , Cellvibrio/genética , Carboidratos , Polissacarídeos
3.
Environ Sci Technol ; 58(18): 7826-7837, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38653213

RESUMO

The interaction effects between the main components (proteins (P), carbohydrates (C), and lipids (L)) of protein-rich biomass during microwave-assisted pyrolysis were investigated in depth with an exploration of individual pyrolysis and copyrolysis (PC, PL, and CL) of model compounds. The average heating rate of P was higher than those of C and L, and the interactions in all copyrolysis groups reduced the max instant heating rate. The synergistic extent (S) of PC and PL for bio-oil yield was 16.78 and 18.24%, respectively, indicating that the interactions promoted the production of bio-oil. Besides, all of the copyrolysis groups exhibited a synergistic effect on biochar production (S = 19.43-28.24%), while inhibiting the gas generation, with S ranging from -20.17 to -6.09%. Regarding the gaseous products, apart from H2, P, C, and L primarily generated CO2, CO, and CH4, respectively. Regarding bio-oil composition, the interactions occurring within PC, PL, and CL exhibited a significantly synergistic effect (S = 47.81-412.96%) on the formation of N-heterocyclics/amides, amides/nitriles, and acids/esters, respectively. Finally, the favorable applicability of the proposed interaction effects was verified with microalgae. This study offers valuable insights for understanding the microwave-assisted pyrolysis of protein-rich biomass, laying the groundwork for further research and process optimization.


Assuntos
Biomassa , Micro-Ondas , Pirólise , Proteínas/química , Lipídeos/química , Carvão Vegetal/química , Carboidratos/química , Biocombustíveis
4.
J Chem Theory Comput ; 20(8): 2985-2991, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38602504

RESUMO

The Protein Structure Transformer (PeSTo), a geometric transformer, has exhibited exceptional performance in predicting protein-protein binding interfaces and distinguishing interfaces with nucleic acids, lipids, small molecules, and ions. In this study, we introduce PeSTo-Carbs, an extension of PeSTo specifically engineered to predict protein-carbohydrate binding interfaces. We evaluate the performance of this approach using independent test sets and compare them with those of previous methods. Furthermore, we highlight the model's capability to specialize in predicting interfaces involving cyclodextrins, a biologically and pharmaceutically significant class of carbohydrates. Our method consistently achieves remarkable accuracy despite the scarcity of available structural data for cyclodextrins.


Assuntos
Carboidratos , Aprendizado Profundo , Ligação Proteica , Proteínas , Proteínas/química , Proteínas/metabolismo , Carboidratos/química , Sítios de Ligação
5.
Org Biomol Chem ; 22(18): 3544-3558, 2024 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-38624091

RESUMO

Chemical tools and principles have become central to biological and medical research/applications by leveraging a range of classical organic chemistry reactions. Friedel-Crafts alkylation and acylation are arguably some of the most well-known and used synthetic methods for the preparation of small molecules but their use in biological and medical fields is relatively less frequent than the other reactions, possibly owing to the notion of their plausible incompatibility with biological systems. This review demonstrates advances in Friedel-Crafts alkylation and acylation reactions in a variety of biomolecular chemistry fields. With the discoveries and applications of numerous biomolecule-catalyzed or -assisted processes, these reactions have garnered considerable interest in biochemistry, enzymology, and biocatalysis. Despite the challenges of reactivity and selectivity of biomolecular reactions, the alkylation and acylation reactions demonstrated their utility for the construction and functionalization of all the four major biomolecules (i.e., nucleosides, carbohydrates/saccharides, lipids/fatty acids, and amino acids/peptides/proteins), and their diverse applications in biological, medical, and material fields are discussed. As the alkylation and acylation reactions are often fundamental educational components of organic chemistry courses, this review is intended for both experts and nonexperts by discussing their basic reaction patterns (with the depiction of each reaction mechanism in the ESI) and relevant real-world impacts in order to enrich chemical research and education. The significant growth of biomolecular Friedel-Crafts reactions described here is a testament to their broad importance and utility, and further development and investigations of the reactions will surely be the focus in the organic biomolecular chemistry fields.


Assuntos
Proteínas , Alquilação , Acilação , Proteínas/química , Aminoácidos/química , Aminoácidos/síntese química , Carboidratos/química , Carboidratos/síntese química , Ácidos Graxos/química , Lipídeos/química , Nucleosídeos/química , Nucleosídeos/síntese química , Peptídeos/química , Peptídeos/síntese química
6.
J Agric Food Chem ; 72(18): 10206-10217, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38597965

RESUMO

Bamboo is a promising biomass resource. However, the complex multilayered structure and chemical composition of bamboo cell walls create a unique anti-depolymerization barrier, which increases the difficulty of separation and utilization of bamboo. In this study, the relationship between the connections of lignin-carbohydrate complexes (LCCs) within bamboo cell walls and their multilayered structural compositions was investigated. The chemical composition, structural properties, dissolution processes, and migration mechanisms of LCCs were analyzed. Alkali-stabilized LCC bonds were found to be predominantly characterized by phenyl glycoside (PhGlc) bonds along with numerous p-coumaric acid (PCA) linkage structures. As demonstrated by the NMR and CLSM results, the dissolution of the LCC during the alkaline pretreatment process was observed to migrate from the inner secondary wall (S-layer) of the bamboo fiber cell walls to the cell corner middle lamella (CCML) and compound middle lamella (CML), ultimately leading to its release from the bamboo. Furthermore, the presence of H-type lignin-FA-arabinoxylan linkage structures within the bamboo LCC was identified with their primary dissolution observed in the S-layer of the bamboo fiber cell walls. The study results provided a clear target for breaking down the anti-depolymerization barrier in bamboo, signifying a major advancement in achieving the comprehensive separation of bamboo components.


Assuntos
Carboidratos , Parede Celular , Lignina , Lignina/química , Parede Celular/química , Carboidratos/química , Álcalis/química , Sasa/química , Solubilidade , Poaceae/química , Xilanos/química , Espectroscopia de Ressonância Magnética
7.
Eur J Med Res ; 29(1): 227, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38609963

RESUMO

BACKGROUND AND AIM: Previous observational investigations have indicated a potential association between relative dietary macronutrient intakes and atrial fibrillation and flutter (AF) risk. In this study, we employed Mendelian Randomization (MR) to evaluate the presence of causality and to elucidate the specific causal relationship. METHODS: We employed six, five, and three single nucleotide polymorphisms (SNPs) as instrumental variables for relative carbohydrate, protein, and fat intake, identified from a genome-wide association study that included 268,922 individuals of European descent. Furthermore, we acquired summary statistics for genome-wide association studies on AF from the FinnGen consortium, which involved 22,068 cases and 116,926 controls. To evaluate the causal estimates, we utilized the random effect inverse variance weighted method (IVW) and several other MR methods, including MR-Egger, weighted median, and MR-PRESSO, to confirm the robustness of our findings. RESULTS: Our analysis indicates a convincing causal relationship between genetically predicted relative carbohydrate and protein intake and reduced AF risk. Inverse variance weighted analysis results for carbohydrates (OR = 0.29; 95% CI (0.14, 0.59); P < 0.001) and protein (OR = 0.47; 95% CI (0.26, 0.85); P = 0.01) support this association. Our MR analysis did not identify a significant causal relationship between relative fat intake and AF risk. CONCLUSION: Our study provides evidence supporting a causal relationship between higher relative protein and carbohydrate intake and a lower risk of atrial fibrillation (AF).


Assuntos
Fibrilação Atrial , Humanos , Fibrilação Atrial/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Ingestão de Alimentos , Carboidratos
8.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612540

RESUMO

Carbohydrate-based surfactants are amphiphilic compounds containing hydrophilic moieties linked to hydrophobic aglycones. More specifically, carbohydrate esters are biosourced and biocompatible surfactants derived from inexpensive renewable raw materials (sugars and fatty acids). Their unique properties allow them to be used in various areas, such as the cosmetic, food, and medicine industries. These multi-applications have created a worldwide market for biobased surfactants and consequently expectations for their production. Biobased surfactants can be obtained from various processes, such as chemical synthesis or microorganism culture and surfactant purification. In accordance with the need for more sustainable and greener processes, the synthesis of these molecules by enzymatic pathways is an opportunity. This work presents a state-of-the-art lipase action mode, with a focus on the active sites of these proteins, and then on four essential parameters for optimizing the reaction: type of lipase, reaction medium, temperature, and ratio of substrates. Finally, this review discusses the latest trends and recent developments, showing the unlimited potential for optimization of such enzymatic syntheses.


Assuntos
Lipase , Tensoativos , Ésteres , Carboidratos , Catálise
9.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612667

RESUMO

Knee osteoarthritis (KOA) is characterized by low-grade inflammation, loss of articular cartilage, subchondral bone remodeling, synovitis, osteophyte formation, and pain. Strong, continuous pain may indicate the need for joint replacement in patients with end-stage OA, although postoperative pain (POP) of at least a two-month duration persists in 10-40% of patients with OA. STUDY PURPOSE: The inflammation observed in joint tissues is linked to pain caused by the production of proinflammatory cytokines. Since the biosynthesis of cytokines requires energy, their production is supported by extensive metabolic conversions of carbohydrates and fatty acids, which could lead to a disruption in cellular homeostasis. Therefore, this study aimed to investigate the association between POP development and disturbances in energy metabolic conversions, focusing on carbohydrate and fatty acid metabolism. METHODS: Peripheral blood samples were collected from 26 healthy subjects and 50 patients with end-stage OA before joint replacement surgery. All implants were validated by orthopedic surgeons, and patients with OA demonstrated no inherent abnormalities to cause pain from other reasons than OA disease, such as malalignment, aseptic loosening, or excessive bleeding. Pain levels were assessed before surgery using the visual analogue scale (VAS) and neuropathic pain questionnaires, DN4 and PainDETECT. Functional activity was evaluated using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC). Three and six months after surgery, pain indices according to a VAS of 30 mm or higher were considered. Total RNA isolated from whole blood was analyzed using quantitative real-time RT-PCR (qRT-PCR) for the expression of genes related to carbohydrate and fatty acid metabolism. Protein levels of the examined genes were measured using an ELISA in the peripheral blood mononuclear cells (PBMCs). We used qRT-PCR because it is the most sensitive and reliable method for gene expression analysis, while an ELISA was used to confirm our qRT-PCR results. KEY FINDINGS: Among the study cohort, 17 patients who reported POP demonstrated significantly higher (p < 0.05) expressions of the genes PKM2, LDH, SDH, UCP2, CPT1A, and ACLY compared to pain-free patients with KOA. Receiver-operating characteristic (ROC) curve analyses confirmed the association between these gene expressions and pain development post-arthroplasty. A principle component analysis identified the prognostic values of ACLY, CPT1A, AMPK, SDHB, Caspase 3, and IL-1ß gene expressions for POP development in the examined subjects. CONCLUSION: These findings suggest that the disturbances in energy metabolism, as observed in the PBMCs of patients with end-stage KOA before arthroplasty, may contribute to POP development. An understanding of these metabolic processes could provide insights into the pathogenesis of KOA. Additionally, our findings can be used in a clinical setting to predict POP development in end-stage patients with KOA before arthroplasty.


Assuntos
Artroplastia de Substituição , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/cirurgia , Leucócitos Mononucleares , Dor Pós-Operatória , Inflamação , Carboidratos , Citocinas , Ácidos Graxos
10.
Sci Rep ; 14(1): 9367, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654118

RESUMO

This study is focused on analysing polyphenols and carbohydrates released by Phaeodactylum tricornutum (P. tricornutum) diatoms cultured in natural seawater enriched with sublethal and lethal Cu doses. Cu concentrations of 0.31, 0.79 and 1.57 µM reduced cell densities by 37, 82 and 91%, respectively, compared to the control. The total sum of all identified polyphenols and total carbohydrates released by cells grown under lethal Cu levels increased up to 18.8 and 107.4 times, respectively, compared to data from a control experiment. Four different in vitro assays were used to estimate the antioxidant activities of the extracellular compounds: 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical inhibition, cupric ion reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power and Cu complexing ability (CCA). The highest antioxidant activities were observed in the Cu lethal treatments, where the CCA assay exhibited a greater increase (up to 32.2 times higher than that found in the control experiment) to reduce the concentration of free Cu in the medium and its toxicity. The presence of Cu stimulated the release of polyphenols and carbohydrates to the medium as a detoxification mechanism to survive under lethal levels of Cu regulating its speciation.


Assuntos
Antioxidantes , Carboidratos , Cobre , Diatomáceas , Polifenóis , Diatomáceas/metabolismo , Diatomáceas/efeitos dos fármacos , Diatomáceas/crescimento & desenvolvimento , Polifenóis/metabolismo , Cobre/metabolismo , Carboidratos/química , Antioxidantes/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos
11.
Sci Adv ; 10(16): eadl3419, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640242

RESUMO

Plant biomass conversion by saprotrophic fungi plays a pivotal role in terrestrial carbon (C) cycling. The general consensus is that fungi metabolize carbohydrates, while lignin is only degraded and mineralized to CO2. Recent research, however, demonstrated fungal conversion of 13C-monoaromatic compounds into proteinogenic amino acids. To unambiguously prove that polymeric lignin is not merely degraded, but also metabolized, carefully isolated 13C-labeled lignin served as substrate for Agaricus bisporus, the world's most consumed mushroom. The fungus formed a dense mycelial network, secreted lignin-active enzymes, depolymerized, and removed lignin. With a lignin carbon use efficiency of 0.14 (g/g) and fungal biomass enrichment in 13C, we demonstrate that A. bisporus assimilated and further metabolized lignin when offered as C-source. Amino acids were high in 13C-enrichment, while fungal-derived carbohydrates, fatty acids, and ergosterol showed traces of 13C. These results hint at lignin conversion via aromatic ring-cleaved intermediates to central metabolites, underlining lignin's metabolic value for fungi.


Assuntos
Agaricus , Carbono , Lignina , Lignina/metabolismo , Carbono/metabolismo , Micélio/metabolismo , Carboidratos , Aminoácidos
12.
Sci Rep ; 14(1): 8672, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622317

RESUMO

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Assuntos
Hibiscus , Lignina , Lignina/química , Solventes Eutéticos Profundos , Biomassa , Carboidratos , Solventes/química , Carbono , Hidrólise
13.
Planta ; 259(5): 113, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581452

RESUMO

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Assuntos
Glicosídeo Hidrolases , Polissacarídeos , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Polissacarídeos/metabolismo , Carboidratos , Plantas/metabolismo , Glicosídeos/metabolismo
14.
Xenotransplantation ; 31(2): exen12855, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38602029

RESUMO

Carbohydrate-antigens widely existed on glycoproteins and glycosphingolipids of all mammalian cells play a crucial role in self-defense and immunity. Xeno-reactive antibodies included in natural human sera play a protecting role in an acute phase-rejection of xenotransplantation. In this study, we investigated the effect of an alteration of glycosylation-pattern, caused by human sialyltransferases such as hST3Gal II or hST6GalNAc IV, on human serum mediated cytotoxicity in pig kidney PK15 cells. From LDH cytotoxicity assay, cytotoxicity to human serum was significantly increased in hST3Gal II and hST6GalNAc IV-transfected PK15 cells, as compared to the control. In the hST6Gal I-carrying cells, the cytotoxicity to human serum was rather decreased. Moreover, flow cytometry analysis revealed that an alteration of pig glycosylation-pattern by hST3Gal II or hST6GalNAc IV influences on a binding of human IgM or IgG, respectively, in pig kidney cells, regardless of Gal antigen alteration. Finally, we found that hST6GalNAc IV contributed to increase of terminal disialylated tetrasaccharide structure, disialyl T antigen, as evidenced by increase of the MAL II lectin binding capacity in the hST6GalNAc IV-transfected PK15 cells, compared with control. Therefore, our results suggest that carbohydrate antigens, such as disialyl T antigen, newly synthesized by the ST3Gal II- and ST6GalNAc IV are potentially believed to be new xeno-reactive elements.


Assuntos
Sialiltransferases , Transplante Heterólogo , beta-Galactosídeo alfa-2,3-Sialiltransferase , Animais , Humanos , Antígenos Virais de Tumores , Carboidratos , Mamíferos/metabolismo , Sialiltransferases/genética , Sialiltransferases/química , Sialiltransferases/metabolismo , Suínos
15.
PLoS One ; 19(4): e0297217, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635692

RESUMO

This study focuses on isolated thermophilic Bacillus species' adaptability and physiological diversity, highlighting their ecological roles and potential industrial applications. We specifically investigated their capacity to thrive in extreme conditions by examining their environmental tolerances and adaptations at the metabolic and genetic levels. The primary objective is to evaluate the suitability of these species for biotechnological applications, considering their resilience in harsh environments. We conducted a comparative analysis of the environmental adaptability parameters for various Bacillus species. This included examining growth temperature ranges, pH tolerance, oxygen requirements, carbohydrate fermentation patterns, colony morphology, enzymatic activities, and genetic properties. Controlled laboratory experiments provided the data, which were then analyzed to determine patterns of adaptability and diversity. The research revealed that Bacillus species could endure temperatures as high as 73°C, with a generally lower growth limit at 43°C. However, strains TBS35 and TBS40 were exceptions, growing at 37°C. Most strains preferred slightly alkaline conditions (optimal pH 8), but TBS34, TBS35, and TBS40 exhibited adaptations to highly alkaline environments (pH 11). Oxygen requirement tests classified the species into aerobic, anaerobic, and facultative aerobic categories. Genetic analysis highlighted variations in DNA concentrations, 16s rRNA gene lengths, and G+C content across species. Although glucose was the primary substrate for carbohydrate fermentation, exceptions indicated metabolic flexibility. The enzymatic profiles varied, with a universal absence of urease and differences in catalase and oxidase production. Our findings underscore thermophilic Bacillus species' significant adaptability and diversity under various environmental conditions. Their resilience to extreme temperatures, pH levels, varied oxygen conditions, and diverse metabolic and genetic features emphasize their potential for biotechnological applications. These insights deepen our understanding of these species' ecological roles and highlight their potential industrial and environmental applications.


Assuntos
Bacillus , RNA Ribossômico 16S/genética , Temperatura Alta , Oxigênio , Carboidratos , Filogenia
16.
FASEB J ; 38(7): e23586, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38568858

RESUMO

Acetaminophen (ACE) is a widely used analgesic and antipyretic drug with various applications, from pain relief to fever reduction. Recent studies have reported equivocal effects of habitual ACE intake on exercise performance, muscle growth, and risks to bone health. Thus, this study aimed to assess the impact of a 6-week, low-dose ACE regimen on muscle and bone adaptations in exercising and non-exercising rats. Nine-week-old Wistar rats (n = 40) were randomized to an exercise or control (no exercise) condition with ACE or without (placebo). For the exercise condition, rats ran 5 days per week for 6 weeks at a 5% incline for 2 min at 15 cm/s, 2 min at 20 cm/s, and 26 min at 25 cm/s. A human equivalent dose of ACE was administered (379 mg/kg body weight) in drinking water and adjusted each week based on body weight. Food, water intake, and body weight were measured daily. At the beginning of week 6, animals in the exercise group completed a maximal treadmill test. At the end of week 6, rats were euthanized, and muscle cross-sectional area (CSA), fiber type, and signaling pathways were measured. Additionally, three-point bending and microcomputer tomography were measured in the femur. Follow-up experiments in human primary muscle cells were used to explore supra-physiological effects of ACE. Data were analyzed using a two-way ANOVA for treatment (ACE or placebo) and condition (exercise or non-exercise) for all animal outcomes. Data for cell culture experiments were analyzed via ANOVA. If omnibus significance was found in either ANOVA, a post hoc analysis was completed, and a Tukey's adjustment was used. ACE did not alter body weight, water intake, food intake, or treadmill performance (p > .05). There was a treatment-by-condition effect for Young's Modulus where placebo exercise was significantly lower than placebo control (p < .05). There was no treatment by condition effects for microCT measures, muscle CSA, fiber type, or mRNA expression. Phosphorylated-AMPK was significantly increased with exercise (p < .05) and this was attenuated with ACE treatment. Furthermore, phospho-4EBP1 was depressed in the exercise group compared to the control (p < .05) and increased in the ACE control and ACE exercise group compared to placebo exercise (p < .05). A low dose of ACE did not influence chronic musculoskeletal adaptations in exercising rodents but acutely attenuated AMPK phosphorylation and 4EBP1 dephosphorylation post-exercise.


Assuntos
Acetaminofen , Condicionamento Físico Animal , Animais , Humanos , Ratos , Acetaminofen/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Carboidratos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Ratos Wistar
17.
Nutrients ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38613031

RESUMO

In diabetes, pancreatic ß-cells gradually lose their ability to secrete insulin with disease progression. ß-cell dysfunction is a contributing factor to diabetes severity. Recently, islet cell heterogeneity, exemplified by ß-cell dedifferentiation and identified in diabetic animals, has attracted attention as an underlying molecular mechanism of ß-cell dysfunction. Previously, we reported ß-cell dedifferentiation suppression by calorie restriction, not by reducing hyperglycemia using hypoglycemic agents (including sodium-glucose cotransporter inhibitors), in an obese diabetic mice model (db/db). Here, to explore further mechanisms of the effects of food intake on ß-cell function, db/db mice were fed either a high-carbohydrate/low-fat diet (db-HC) or a low-carbohydrate/high-fat diet (db-HF) using similar calorie restriction regimens. After one month of intervention, body weight reduced, and glucose intolerance improved to a similar extent in the db-HC and db-HF groups. However, ß-cell dedifferentiation did not improve in the db-HC group, and ß-cell mass compensatory increase occurred in this group. More prominent fat accumulation occurred in the db-HC group livers. The expression levels of genes related to lipid metabolism, mainly regulated by peroxisome proliferator-activated receptor α and γ, differed significantly between groups. In conclusion, the fat/carbohydrate ratio in food during calorie restriction in obese mice affected both liver lipid metabolism and ß-cell dedifferentiation.


Assuntos
Restrição Calórica , Diabetes Mellitus Experimental , Animais , Camundongos , Camundongos Obesos , Dieta Hiperlipídica/efeitos adversos , Desdiferenciação Celular , Dieta com Restrição de Carboidratos , Fígado , Carboidratos , Obesidade
18.
Cryo Letters ; 45(2): 69-87, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557986

RESUMO

Despite the routine use of cryopreservation for the storage of biological materials, its outcomes are often sub-optimal (including reduced post-thaw viability, recovery, and functionality) due to the damage caused by uncontrolled ice growth. Traditional cryoprotective agents (CPAs), including dimethyl sulfoxide (DMSO), fail to prevent damage caused by ice growth and concerns over CPA cytotoxicity have fostered an increased interest in developing improved CPAs and cryoprotection strategies. The inhibition of ice recrystallization by natural antifreeze (glyco)proteins [AF(G)Ps] to improve cryopreservation outcomes has been examined; however, the ice binding properties of these substances and their challenging large-scale production make them poor CPA candidates. Therefore, the development and deployment of biocompatible, small-molecule ice recrystallization inhibitors (IRIs) for use as CPAs is a worthwhile objective. Extensive structure-activity relationship studies on AF(G)Ps revealed that simple carbohydrate derivatives could inhibit ice recrystallization. It was later discovered that this activity could be fine-tuned by delicately balancing the molecule's hydrophobicity and hydrophilicity. Current generation small-molecule IRIs have been meticulously designed to avoid binding to the surface of ice and subsequent biological testing (for both cytotoxicity and cryopreservation efficacy) has demonstrated significant improvements to the cryopreservation outcomes of several cell types. However, an individualized cell-specific approach for the simultaneous assessment of multiple cryopreservation outcomes is necessary to realize the full potential of IRIs as CPAs. This article provides a detailed overview of the development of small-molecule carbohydrate-based IRIs and highlights the crucial cell-specific biological considerations that must be taken into account when assessing cryopreservation outcomes. https://doi.org/10.54680/fr24210110112.


Assuntos
Criopreservação , Gelo , Sobrevivência Celular , Crioprotetores/farmacologia , Crioprotetores/química , Carboidratos , Iris
19.
Cell Commun Signal ; 22(1): 203, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566182

RESUMO

BACKGROUND: The metabolically demanding nature of immune response requires nutrients to be preferentially directed towards the immune system at the expense of peripheral tissues. We study the mechanisms by which this metabolic reprograming occurs using the parasitoid infection of Drosophila larvae. To overcome such an immune challenge hemocytes differentiate into lamellocytes, which encapsulate and melanize the parasitoid egg. Hemocytes acquire the energy for this process by expressing JAK/STAT ligands upd2 and upd3, which activates JAK/STAT signaling in muscles and redirects carbohydrates away from muscles in favor of immune cells. METHODS: Immune response of Drosophila larvae was induced by parasitoid wasp infestation. Carbohydrate levels, larval locomotion and gene expression of key proteins were compared between control and infected animals. Efficacy of lamellocyte production and resistance to wasp infection was observed for RNAi and mutant animals. RESULTS: Absence of upd/JAK/STAT signaling leads to an impaired immune response and increased mortality. We demonstrate how JAK/STAT signaling in muscles leads to suppression of insulin signaling through activation of ImpL2, the inhibitor of Drosophila insulin like peptides. CONCLUSIONS: Our findings reveal cross-talk between immune cells and muscles mediates a metabolic shift, redirecting carbohydrates towards immune cells. We emphasize the crucial function of muscles during immune response and show the benefits of insulin resistance as an adaptive mechanism that is necessary for survival.


Assuntos
Proteínas de Drosophila , Resistência à Insulina , Vespas , Animais , Fatores de Transcrição/metabolismo , Proteínas de Drosophila/metabolismo , Janus Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Drosophila/genética , Músculos , Vespas/metabolismo , Larva/metabolismo , Imunidade , Carboidratos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA