Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
J Phys Chem B ; 128(39): 9385-9395, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39315758

RESUMO

This study conducts a systematic investigation into the catalytic mechanism of norcoclaurine synthase (NCS), a key enzyme in the biosynthesis of tetrahydroisoquinolines (THIQs) with therapeutic applications. By integration of LiGaMD and DFT calculations, the reaction pathway of NCS is mapped, providing detailed insights into its catalytic activity and selectivity. Our findings underscore the critical role of E103 in substrate capture and reveal the hitherto unappreciated influence of nonpolar residues M183 and L76 on tunnel dynamics. A prominent discovery is the identification of a high-energy barrier (44.2 kcal/mol) associated with the aromatic electrophilic attack, which pinpoints the rate-limiting step. Moreover, we disclose the existence of dual transition states leading to different products with the energetically favored six-membered ring formation consistent with experimental evidence. These mechanistic revelations not only refine our understanding of NCS but also advocate for a renewed emphasis on enzyme tunnel engineering for optimizing THIQs biosynthesis. The research sets the stage for translating these findings into practical enzyme modifications. Our results highlight the potential of NCS as a biocatalyst to overcome the limitations of current synthetic methodologies, such as low yields and environmental impacts, and provide a theoretical contribution to the efficient, eco-friendly production of THIQs-based pharmaceuticals.


Assuntos
Biocatálise , Teoria da Densidade Funcional , Tetra-Hidroisoquinolinas/química , Tetra-Hidroisoquinolinas/metabolismo , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Simulação de Dinâmica Molecular
2.
Acta Crystallogr F Struct Biol Commun ; 80(Pt 10): 278-285, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39291305

RESUMO

Guanosine 5'-monophosphate (GMP) synthetase (GuaA) catalyzes the last step of GMP synthesis in the purine nucleotide biosynthetic pathway. This enzyme catalyzes a reaction in which xanthine 5'-monophosphate (XMP) is converted to GMP in the presence of Gln and ATP through an adenyl-XMP intermediate. A structure of an XMP-bound form of GuaA from the domain Bacteria has not yet been determined. In this study, the crystal structure of an XMP-bound form of GuaA from the thermophilic bacterium Thermus thermophilus HB8 (TtGuaA) was determined at a resolution of 2.20 Šand that of an apo form of TtGuaA was determined at 2.10 Šresolution. TtGuaA forms a homodimer, and the monomer is composed of three domains, which is a typical structure for GuaA. Disordered regions in the crystal structure were obtained from the AlphaFold2-predicted model structure, and a model with substrates (Gln, XMP and ATP) was constructed for molecular-dynamics (MD) simulations. The structural fluctuations of the TtGuaA dimer as well as the interactions between the active-site residues were analyzed by MD simulations.


Assuntos
Modelos Moleculares , Thermus thermophilus , Thermus thermophilus/enzimologia , Cristalografia por Raios X , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Multimerização Proteica , Domínio Catalítico , Especificidade por Substrato , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Conformação Proteica , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/química , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/metabolismo , Carbono-Nitrogênio Ligases com Glutamina como Doadora de N-Amida/genética
3.
Biomol NMR Assign ; 18(2): 309-314, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39313636

RESUMO

Propionyl CoA carboxylase (PCC) is a multimeric enzyme composed of two types of subunits, α and ß arranged in α6ß6 stoichiometry. The α-subunit consists of an N-terminal carboxylase domain, a carboxyl transferase domains, and a C-terminal biotin carboxyl carrier protein domain (BCCP). The ß-subunit is made up of an N- and a C- carboxyl transferase domain. During PCC catalysis, the BCCP domain plays a central role by transporting a carboxyl group from the α-subunit to the ß-subunit, and finally to propionyl CoA carboxylase, resulting in the formation of methyl malonyl CoA. A point mutation in any of the subunits interferes with multimer assembly and function. Due to the association of this enzyme with propionic acidemia, a genetic metabolic disorder found in humans, PCC has become an enzyme of wide spread interest. Interestingly, unicellular eukaryotes like Leishmania also possess a PCC in their mitochondria that displays high sequence conservation with the human enzyme. Thus, to understand the function of this enzyme at the molecular level, we have initiated studies on Leishmania major PCC (LmPCC). Here we report chemical shift assignments of LmPCC BCCP domain using NMR. Conformational changes in LmPCC BCCP domain upon biotinylation, as well as upon interaction with its cognate biotinylating enzyme (Biotin protein ligase from L. major) have also been reported. Our studies disclose residues important for LmPCC BCCP interaction and function.


Assuntos
Leishmania major , Ressonância Magnética Nuclear Biomolecular , Domínios Proteicos , Leishmania major/enzimologia , Metilmalonil-CoA Descarboxilase/metabolismo , Metilmalonil-CoA Descarboxilase/química , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Ligação Proteica , Propionil-Coenzima A Carboxilase , Acetil-CoA Carboxilase , Sulfurtransferases , Ácido Graxo Sintase Tipo II
4.
J Mol Biol ; 436(20): 168750, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39173734

RESUMO

The final step in the de novo synthesis of cytidine 5'-triphosphate (CTP) is catalyzed by CTP synthase (CTPS), which can form cytoophidia in all three domains of life. Recently, we have discovered that CTPS binds to ribonucleotides (NTPs) to form filaments, and have successfully resolved the structures of Drosophila melanogaster CTPS bound with NTPs. Previous biochemical studies have shown that CTPS can bind to deoxyribonucleotides (dNTPs) to produce 2'-deoxycytidine-5'-triphosphate (dCTP). However, the structural basis of CTPS binding to dNTPs is still unclear. In this study, we find that Drosophila CTPS can also form filaments with dNTPs. Using cryo-electron microscopy, we are able to resolve the structure of Drosophila melanogaster CTPS bound to dNTPs with a resolution of up to 2.7 Å. By combining these structural findings with biochemical analysis, we compare the binding and reaction characteristics of NTPs and dNTPs with CTPS. Our results indicate that the same enzyme can act bifunctionally as CTP/dCTP synthase in vitro, and provide a structural basis for these activities.


Assuntos
Carbono-Nitrogênio Ligases , Microscopia Crioeletrônica , Drosophila melanogaster , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Citidina Trifosfato/metabolismo , Citidina Trifosfato/química , Nucleotídeos de Desoxicitosina/metabolismo , Nucleotídeos de Desoxicitosina/química , Drosophila melanogaster/enzimologia , Modelos Moleculares , Ligação Proteica , Conformação Proteica
5.
Biochem Biophys Res Commun ; 733: 150601, 2024 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-39213703

RESUMO

Biotin is an essential coenzyme involved in various metabolic processes across all known organisms, with biotinylation being crucial for the activity of carboxylases. BirA from Haemophilus influenzae is a bifunctional protein that acts as a biotin protein ligase and a transcriptional repressor. This study reveals the crystal structures of Hin BirA in both its apo- and holo-(biotinyl-5'-AMP bound) forms. As a class II BirA, it consists of three domains: N-terminal DNA binding domain, central catalytic domain, and C-terminal SH3-like domain. The structural analysis shows that the biotin-binding loop forms an ordered structure upon biotinyl-5'-AMP binding. This facilitates its interaction with the ligand and promotes protein dimerization. Comparative studies with other BirA homologs from different organisms indicate that the residues responsible for binding biotinyl-5'-AMP are highly conserved. This study also utilized AlphaFold2 to model the potential heterodimeric interaction between Hin BirA and biotin carboxyl carrier protein, thereby providing insights into the structural basis for biotinylation. These findings enhance our understanding of the structural and functional characteristics of Hin BirA, highlighting its potential as a target for novel antibiotics that disrupt the bacterial biotin synthesis pathways.


Assuntos
Proteínas de Bactérias , Biotina , Carbono-Nitrogênio Ligases , Haemophilus influenzae , Modelos Moleculares , Proteínas Repressoras , Haemophilus influenzae/metabolismo , Haemophilus influenzae/enzimologia , Biotina/metabolismo , Biotina/química , Biotina/análogos & derivados , Proteínas Repressoras/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Cristalografia por Raios X , Sequência de Aminoácidos , Monofosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/análogos & derivados , Multimerização Proteica , Ligação Proteica , Conformação Proteica , Sítios de Ligação , Biotinilação , Acetil-CoA Carboxilase , Ácido Graxo Sintase Tipo II
6.
Carbohydr Res ; 544: 109243, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39182394

RESUMO

We designed metabolically engineered non-pathogenic strains of Escherichia coli to produce unsulfated chondroitin with and without chondroitin lyase to produce the chondroitin polymer or its related oligosaccharides. Chondroitin was synthesized using chondroitin synthase KfoC and chondroitin was degraded using Pl35, a chondroitin lyase from Pedobacter heparinus. Pl35 behaved as a true endo-enzyme generating a large panel of oligosaccharides ranging from trimers to 18-mers instead of the di- and tetramers obtained with most chondroitin lyases. Two series of oligosaccharides were characterized, sharing an unsaturated uronic acid (4-deoxy-α-L-threo-hex-4-enepyranosyluronic acid, △UA) residue at their non-reducing end. The major "even-numbered" series was characterized by a terminal reducing N-acetylgalactosaminyl residue. The minor "odd-numbered" series oligosaccharides carried a terminal reducing glucuronic acid residue instead. Cultures were conducted in fed-batch conditions, and led to the production of up to 10 g L-1 chondroitin or chondroitin oligosaccharides. All products were purified and fully characterized using NMR and mass spectrometry analyses. This is the first report of the microbial production of large chondro-oligosaccharides.


Assuntos
Condroitina , Escherichia coli , Oligossacarídeos , Escherichia coli/metabolismo , Escherichia coli/genética , Condroitina/química , Condroitina/metabolismo , Oligossacarídeos/química , Oligossacarídeos/síntese química , Pedobacter/enzimologia , Pedobacter/metabolismo , Condroitina Liases/metabolismo , Condroitina Liases/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Engenharia Metabólica , N-Acetilgalactosaminiltransferases
7.
Protein Expr Purif ; 221: 106520, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38833752

RESUMO

Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.


Assuntos
Proteínas de Bactérias , Carbono-Nitrogênio Ligases , Staphylococcus aureus , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/isolamento & purificação , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/biossíntese , Expressão Gênica , Simulação de Acoplamento Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese
8.
J Chem Inf Model ; 64(11): 4462-4474, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38776464

RESUMO

The (S)-norcoclaurine synthase from Thalictrum flavum (TfNCS) stereoselectively catalyzes the Pictet-Spengler reaction between dopamine and 4-hydroxyphenylacetaldehyde to give (S)-norcoclaurine. TfNCS can catalyze the Pictet-Spengler reaction with various aldehydes and ketones, leading to diverse tetrahydroisoquinolines. This substrate promiscuity positions TfNCS as a highly promising enzyme for synthesizing fine chemicals. Understanding carbonyl-containing substrates' structural and electronic signatures that influence TfNCS activity can help expand its applications in the synthesis of different compounds and aid in protein optimization strategies. In this study, we investigated the influence of the molecular properties of aldehydes and ketones on their reactivity in the TfNCS-catalyzed Pictet-Spengler reaction. Initially, we compiled a library of reactive and unreactive compounds from previous publications. We also performed enzymatic assays using nuclear magnetic resonance to identify some reactive and unreactive carbonyl compounds, which were then included in the library. Subsequently, we employed QSAR and DFT calculations to establish correlations between substrate-candidate structures and reactivity. Our findings highlight correlations of structural and stereoelectronic features, including the electrophilicity of the carbonyl group, to the reactivity of aldehydes and ketones toward the TfNCS-catalyzed Pictet-Spengler reaction. Interestingly, experimental data of seven compounds out of fifty-three did not correlate with the electrophilicity of the carbonyl group. For these seven compounds, we identified unfavorable interactions between them and the TfNCS. Our results demonstrate the applications of in silico techniques in understanding enzyme promiscuity and specificity, with a particular emphasis on machine learning methodologies, DFT electronic structure calculations, and molecular dynamic (MD) simulations.


Assuntos
Aldeídos , Cetonas , Aldeídos/química , Aldeídos/metabolismo , Cetonas/química , Cetonas/metabolismo , Especificidade por Substrato , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Thalictrum/enzimologia , Thalictrum/metabolismo , Thalictrum/química , Simulação de Dinâmica Molecular , Biocatálise
9.
PLoS One ; 19(4): e0297122, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38662671

RESUMO

Site specific biotinylation of AviTagged recombinant proteins using BirA enzyme is a widely used protein labeling technology. However, due to the incomplete biotinylation reactions and the lack of a purification method specific for the biotinylated proteins, it is challenging to purify the biotinylated sample when mixed with the non-biotinylated byproduct. Here, we have developed a monoclonal antibody that specifically recognizes the non-biotinylated AviTag but not the biotinylated sequence. After a ten-minute incubation with the resin that is conjugated with the antibody, the non-biotinylated AviTagged protein is trapped on the resin while the fully biotinylated material freely passes through. Therefore, our AviTrap (anti-AviTag antibody conjugated resin) provides an efficient solution for enriching biotinylated AviTagged proteins via a simple one-step purification.


Assuntos
Anticorpos Monoclonais , Biotinilação , Anticorpos Monoclonais/química , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Humanos , Biotina/química , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo
10.
Nat Chem Biol ; 20(7): 894-905, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38658655

RESUMO

Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.


Assuntos
Biotinilação , Sinalização do Cálcio , Cálcio , Neurônios , Cálcio/metabolismo , Neurônios/metabolismo , Animais , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Humanos , Camundongos , Células HEK293 , Proteínas Repressoras , Proteínas de Escherichia coli
11.
Int J Biol Macromol ; 267(Pt 2): 131510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608989

RESUMO

Bacterial diseases caused substantial yield losses worldwide, with the rise of antibiotic resistance, there is a critical need for alternative antibacterial compounds. Natural products (NPs) from microorganisms have emerged as promising candidates due to their potential as cost-effective and environmentally friendly bactericides. However, the precise mechanisms underlying the antibacterial activity of many NPs, including Guvermectin (GV), remain poorly understood. Here, we sought to explore how GV interacts with Guanosine 5'-monophosphate synthetase (GMPs), an enzyme crucial in bacterial guanine synthesis. We employed a combination of biochemical and genetic approaches, enzyme activity assays, site-directed mutagenesis, bio-layer interferometry, and molecular docking assays to assess GV's antibacterial activity and its mechanism targeting GMPs. The results showed that GV effectively inhibits GMPs, disrupting bacterial guanine synthesis. This was confirmed through drug-resistant assays and direct enzyme inhibition studies. Bio-layer interferometry assays demonstrated specific binding of GV to GMPs, with dependency on Xanthosine 5'-monophosphate. Site-directed mutagenesis identified key residues crucial for the GV-GMP interaction. This study elucidates the antibacterial mechanism of GV, highlighting its potential as a biocontrol agent in agriculture. These findings contribute to the development of novel antibacterial agents and underscore the importance of exploring natural products for agricultural disease management.


Assuntos
Adenosina/análogos & derivados , Antibacterianos , Ivermectina , Antibacterianos/farmacologia , Antibacterianos/química , Ivermectina/farmacologia , Ivermectina/análogos & derivados , Ivermectina/química , Simulação de Acoplamento Molecular , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Mutagênese Sítio-Dirigida
12.
mBio ; 15(5): e0341423, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38572988

RESUMO

Acetyl-CoA carboxylases (ACCs) convert acetyl-CoA to malonyl-CoA, a key step in fatty acid biosynthesis and autotrophic carbon fixation pathways. Three functionally distinct components, biotin carboxylase (BC), biotin carboxyl carrier protein (BCCP), and carboxyltransferase (CT), are either separated or partially fused in different combinations, forming heteromeric ACCs. However, an ACC with fused BC-BCCP and separate CT has not been identified, leaving its catalytic mechanism unclear. Here, we identify two BC isoforms (BC1 and BC2) from Chloroflexus aurantiacus, a filamentous anoxygenic phototroph that employs 3-hydroxypropionate (3-HP) bi-cycle rather than Calvin cycle for autotrophic carbon fixation. We reveal that BC1 possesses fused BC and BCCP domains, where BCCP could be biotinylated by E. coli or C. aurantiacus BirA on Lys553 residue. Crystal structures of BC1 and BC2 at 3.2 Å and 3.0 Å resolutions, respectively, further reveal a tetramer of two BC1-BC homodimers, and a BC2 homodimer, all exhibiting similar BC architectures. The two BC1-BC homodimers are connected by an eight-stranded ß-barrel of the partially resolved BCCP domain. Disruption of ß-barrel results in dissociation of the tetramer into dimers in solution and decreased biotin carboxylase activity. Biotinylation of the BCCP domain further promotes BC1 and CTß-CTα interactions to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-HP via co-expression with a recombinant malonyl-CoA reductase in E. coli cells. This study revealed a heteromeric ACC that evolves fused BC-BCCP but separate CTα and CTß to complete ACC activity.IMPORTANCEAcetyl-CoA carboxylase (ACC) catalyzes the rate-limiting step in fatty acid biosynthesis and autotrophic carbon fixation pathways across a wide range of organisms, making them attractive targets for drug discovery against various infections and diseases. Although structural studies on homomeric ACCs, which consist of a single protein with three subunits, have revealed the "swing domain model" where the biotin carboxyl carrier protein (BCCP) domain translocates between biotin carboxylase (BC) and carboxyltransferase (CT) active sites to facilitate the reaction, our understanding of the subunit composition and catalytic mechanism in heteromeric ACCs remains limited. Here, we identify a novel ACC from an ancient anoxygenic photosynthetic bacterium Chloroflexus aurantiacus, it evolves fused BC and BCCP domain, but separate CT components to form an enzymatically active ACC, which converts acetyl-CoA to malonyl-CoA in vitro and produces 3-hydroxypropionate (3-HP) via co-expression with recombinant malonyl-CoA reductase in E. coli cells. These findings expand the diversity and molecular evolution of heteromeric ACCs and provide a structural basis for potential applications in 3-HP biosynthesis.


Assuntos
Acetil-CoA Carboxilase , Carbono-Nitrogênio Ligases , Chloroflexus , Acetil-CoA Carboxilase/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/química , Carbono-Nitrogênio Ligases/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Chloroflexus/genética , Chloroflexus/metabolismo , Chloroflexus/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Biotina/metabolismo , Biotina/biossíntese , Malonil Coenzima A/metabolismo , Acetilcoenzima A/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Ácido Graxo Sintase Tipo II
13.
Proteins ; 92(4): 435-448, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37997490

RESUMO

Biotin (vitamin H or B7) is a coenzyme essential for all forms of life. Biotin has biological activity only when covalently attached to a few key metabolic enzyme proteins. Most organisms have only one attachment enzyme, biotin protein ligase (BPL), which attaches biotin to all target proteins. The sequences of these proteins and their substrate proteins are strongly conserved throughout biology. Structures of both the biotin ligase- and biotin-acceptor domains of mammals, plants, several bacterial species, and archaea have been determined. These, together with mutational analyses of ligases and their protein substrates, illustrate the exceptional specificity of this protein modification. For example, the Escherichia coli BPL biotinylates only one of the >4000 cellular proteins. Several bifunctional bacterial biotin ligases transcriptionally regulate biotin synthesis and/or transport in concert with biotinylation. The human BPL has been demonstrated to play an important role in that mutations in the BPL encoding gene cause one form of the disease, biotin-responsive multiple carboxylase deficiency. Promiscuous mutant versions of several BPL enzymes release biotinoyl-AMP, the active intermediate of the ligase reaction, to solvent. The released biotinoyl-AMP acts as a chemical biotinylation reagent that modifies lysine residues of neighboring proteins in vivo. This proximity-dependent biotinylation (called BioID) approach has been heavily utilized in cell biology.


Assuntos
Carbono-Nitrogênio Ligases , Proteínas de Escherichia coli , Animais , Humanos , Biotinilação , Biotina/química , Biotina/metabolismo , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Proteínas/metabolismo , Escherichia coli/metabolismo , Ligases/genética , Ligases/metabolismo , Bactérias/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mamíferos/metabolismo
14.
Cell Mol Life Sci ; 79(10): 534, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180607

RESUMO

Tissue architecture determines its unique physiology and function. How these properties are intertwined has remained unclear. Here we show that the metabolic enzyme CTP synthase (CTPS) form filamentous structures termed cytoophidia along the adipocyte cortex in Drosophila adipose tissue. Loss of cytoophidia, whether due to reduced CTPS expression or a point mutation that specifically abrogates its polymerization ability, causes impaired adipocyte adhesion and defective adipose tissue architecture. Moreover, CTPS influences integrin distribution and dot-like deposition of type IV collagen (Col IV). Col IV-integrin signaling reciprocally regulates the assembly of cytoophidia in adipocytes. Our results demonstrate that a positive feedback signaling loop containing both cytoophidia and integrin adhesion complex couple tissue architecture and metabolism in Drosophila adipose tissue.


Assuntos
Carbono-Nitrogênio Ligases , Colágeno Tipo IV , Animais , Tecido Adiposo/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Carbono-Nitrogênio Ligases/metabolismo , Drosophila/metabolismo , Integrinas
15.
Exp Cell Res ; 418(1): 113250, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35691380

RESUMO

CTP synthase (CTPS) catalyzes the final step of de novo synthesis of the nucleotide CTP. In 2010, CTPS has been found to form filamentous structures termed cytoophidia in Drosophila follicle cells and germline cells. Subsequently, cytoophidia have been reported in many species across three domains of life: bacteria, eukaryotes and archaea. Forming cytoophidia appears to be a highly conserved and ancient property of CTPS. To our surprise, here we find that polar cells and stalk cells, two specialized types of cells composing Drosophila interfollicular stalks, do not possess obvious cytoophidia. We show that Myc level is low in these two types of cells. Treatment with a glutamine analog, 6-diazo-5-oxo-l-norleucine (DON), increases cytoophidium assembly in main follicle cells, but not in polar cells or stalk cells. Moreover, overexpressing Myc induces cytoophidium formation in stalk cells. When CTPS is overexpressed, cytoophidia can be observed both in stalk cells and polar cells. Our findings provide an interesting paradigm for the in vivo study of cytoophidium assembly and disassembly among different populations of follicle cells.


Assuntos
Carbono-Nitrogênio Ligases , Drosophila , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Células Germinativas , Glutamina
16.
Elife ; 102021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734801

RESUMO

Many metabolic enzymes self-assemble into micron-scale filaments to organize and regulate metabolism. The appearance of these assemblies often coincides with large metabolic changes as in development, cancer, and stress. Yeast undergo cytoplasmic acidification upon starvation, triggering the assembly of many metabolic enzymes into filaments. However, it is unclear how these filaments assemble at the molecular level and what their role is in the yeast starvation response. CTP Synthase (CTPS) assembles into metabolic filaments across many species. Here, we characterize in vitro polymerization and investigate in vivo consequences of CTPS assembly in yeast. Cryo-EM structures reveal a pH-sensitive assembly mechanism and highly ordered filament bundles that stabilize an inactive state of the enzyme, features unique to yeast CTPS. Disruption of filaments in cells with non-assembly or pH-insensitive mutations decreases growth rate, reflecting the importance of regulated CTPS filament assembly in homeotstasis.


Assuntos
Carbono-Nitrogênio Ligases/química , Saccharomyces cerevisiae/enzimologia , Microscopia Crioeletrônica , Concentração de Íons de Hidrogênio , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química
17.
J Biol Chem ; 297(4): 101091, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34416230

RESUMO

Cryptococcus neoformans is a fungus that causes life-threatening systemic mycoses. During infection of the human host, this pathogen experiences a major change in the availability of purines; the fungus can scavenge the abundant purines in its environmental niche of pigeon excrement, but must employ de novo biosynthesis in the purine-poor human CNS. Eleven sequential enzymatic steps are required to form the first purine base, IMP, an intermediate in the formation of ATP and GTP. Over the course of evolution, several gene fusion events led to the formation of multifunctional purine biosynthetic enzymes in most organisms, particularly the higher eukaryotes. In C. neoformans, phosphoribosyl-glycinamide synthetase (GARs) and phosphoribosyl-aminoimidazole synthetase (AIRs) are fused into a bifunctional enzyme, while the human ortholog is a trifunctional enzyme that also includes GAR transformylase. Here we functionally, biochemically, and structurally characterized C. neoformans GARs and AIRs to identify drug targetable features. GARs/AIRs are essential for de novo purine production and virulence in a murine inhalation infection model. Characterization of GARs enzymatic functional parameters showed that C. neoformans GARs/AIRs have lower affinity for substrates glycine and PRA compared with the trifunctional metazoan enzyme. The crystal structure of C. neoformans GARs revealed differences in the glycine- and ATP-binding sites compared with the Homo sapiens enzyme, while the crystal structure of AIRs shows high structural similarity compared with its H. sapiens ortholog as a monomer but differences as a dimer. The alterations in functional and structural characteristics between fungal and human enzymes could potentially be exploited for antifungal development.


Assuntos
Antifúngicos/química , Carbono-Nitrogênio Ligases , Criptococose , Cryptococcus neoformans , Sistemas de Liberação de Medicamentos , Inibidores Enzimáticos/química , Proteínas Fúngicas , Animais , Antifúngicos/uso terapêutico , Carbono-Nitrogênio Ligases/antagonistas & inibidores , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Criptococose/tratamento farmacológico , Criptococose/enzimologia , Criptococose/genética , Cryptococcus neoformans/enzimologia , Cryptococcus neoformans/genética , Cristalografia por Raios X , Inibidores Enzimáticos/uso terapêutico , Proteínas Fúngicas/antagonistas & inibidores , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Humanos , Camundongos , Domínios Proteicos
18.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301892

RESUMO

Cytidine triphosphate synthase (CTPS), which comprises an ammonia ligase domain and a glutamine amidotransferase domain, catalyzes the final step of de novo CTP biosynthesis. The activity of CTPS is regulated by the binding of four nucleotides and glutamine. While glutamine serves as an ammonia donor for the ATP-dependent conversion of UTP to CTP, the fourth nucleotide GTP acts as an allosteric activator. Models have been proposed to explain the mechanisms of action at the active site of the ammonia ligase domain and the conformational changes derived by GTP binding. However, actual GTP/ATP/UTP binding modes and relevant conformational changes have not been revealed fully. Here, we report the discovery of binding modes of four nucleotides and a glutamine analog 6-diazo-5-oxo-L-norleucine in Drosophila CTPS by cryo-electron microscopy with near-atomic resolution. Interactions between GTP and surrounding residues indicate that GTP acts to coordinate reactions at both domains by directly blocking ammonia leakage and stabilizing the ammonia tunnel. Additionally, we observe the ATP-dependent UTP phosphorylation intermediate and determine interacting residues at the ammonia ligase. A noncanonical CTP binding at the ATP binding site suggests another layer of feedback inhibition. Our findings not only delineate the structure of CTPS in the presence of all substrates but also complete our understanding of the underlying mechanisms of the allosteric regulation and CTP synthesis.


Assuntos
Trifosfato de Adenosina/metabolismo , Amônia/metabolismo , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/metabolismo , Drosophila melanogaster/enzimologia , Glutamina/metabolismo , Uridina Trifosfato/metabolismo , Regulação Alostérica , Animais , Sítios de Ligação , Catálise , Microscopia Crioeletrônica , Hidrólise , Cinética , Ligantes , Conformação Proteica
19.
ACS Chem Biol ; 16(7): 1201-1207, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34129316

RESUMO

Red blood cells (RBCs) can serve as vascular carriers for drugs, proteins, peptides, and nanoparticles. Human RBCs remain in the circulation for ∼120 days, are biocompatible, and are immunologically largely inert. RBCs are cleared by the reticuloendothelial system and can induce immune tolerance to foreign components attached to the RBC surface. RBC conjugates have been pursued in clinical trials to treat cancers and autoimmune diseases and to correct genetic disorders. Still, most methods used to modify RBCs require multiple steps, are resource-intensive and time-consuming, and increase the risk of inflicting damage to the RBCs. Here, we describe direct conjugation of peptides and proteins onto the surface of RBCs in a single step, catalyzed by a highly efficient, recombinant asparaginyl ligase under mild, physiological conditions. In mice, the modified RBCs remain intact in the circulation, display a normal circulatory half-life, and retain their immune tolerance-inducing properties, as shown for protection against an accelerated model for type 1 diabetes. We conjugated different nanobodies to RBCs with retention of their binding properties, and these modified RBCs can target cancer cells in vitro. This approach provides an appealing alternative to current methods of RBC engineering. It provides ready access to more complex RBC constructs and highlights the general utility of asparaginyl ligases for the modification of native cell surfaces.


Assuntos
Carbono-Nitrogênio Ligases/química , Membrana Eritrocítica/metabolismo , Peptídeos/química , Anticorpos de Domínio Único/química , Animais , Carbono-Nitrogênio Ligases/genética , Engenharia Celular , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Diabetes Mellitus Experimental/prevenção & controle , Membrana Eritrocítica/química , Transfusão de Eritrócitos , Feminino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Oldenlandia/enzimologia , Proteínas de Plantas/genética
20.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 510-521, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33825711

RESUMO

Biotin protein ligase catalyses the post-translational modification of biotin carboxyl carrier protein (BCCP) domains, a modification that is crucial for the function of several carboxylases. It is a two-step process that results in the covalent attachment of biotin to the ϵ-amino group of a conserved lysine of the BCCP domain of a carboxylase in an ATP-dependent manner. In Leishmania, three mitochondrial enzymes, acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase and propionyl-CoA carboxylase, depend on biotinylation for activity. In view of the indispensable role of the biotinylating enzyme in the activation of these carboxylases, crystal structures of L. major biotin protein ligase complexed with biotin and with biotinyl-5'-AMP have been solved. L. major biotin protein ligase crystallizes as a unique dimer formed by cross-handshake interactions of the hinge region of the two monomers formed by partial unfolding of the C-terminal domain. Interestingly, the substrate (BCCP domain)-binding site of each monomer is occupied by its own C-terminal domain in the dimer structure. This was observed in all of the crystals that were obtained, suggesting a closed/inactive conformation of the enzyme. Size-exclusion chromatography studies carried out using high protein concentrations (0.5 mM) suggest the formation of a concentration-dependent dimer that exists in equilibrium with the monomer.


Assuntos
Carbono-Nitrogênio Ligases/química , Proteínas de Transporte/química , Leishmania major/enzimologia , Leishmaniose Cutânea/microbiologia , Proteínas de Protozoários/química , Sítios de Ligação , Biotinilação , Dimerização , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA