Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
J Histochem Cytochem ; 72(8-9): 495-515, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39263893

RESUMO

Chronic kidney disease is detected in 8-15% of the world's population. Along with fibrotic changes, it can lead to a complete loss of organ function. Therefore, a better understanding of the onset of the pathological process is required. To address this issue, we examined the interaction between mast cells (MCs) and cells in fibrous and intact regions, focusing on the role of MC proteases such as tryptase, chymase, and carboxypeptidase A3 (CPA3). MCs appear to be involved in the development of inflammatory and fibrotic changes through the targeted secretion of tryptase, chymase, and CPA3 to the vascular endothelium, nephron epithelium, interstitial cells, and components of intercellular substances. Protease-based phenotyping of renal MCs showed that tryptase-positive MCs were the most common phenotype at all anatomic sites. The infiltration of MC in different anatomic sites of the kidney with an associated release of protease content was accompanied by a loss of contact between the epithelium and the basement membrane, indicating the active participation of MCs in the formation and development of fibrogenic niches in the kidney. These findings may contribute to the development of novel strategies for the treatment of tubulointerstitial fibrosis.


Assuntos
Quimases , Fibrose , Rim , Mastócitos , Triptases , Mastócitos/patologia , Mastócitos/enzimologia , Humanos , Rim/patologia , Rim/enzimologia , Quimases/metabolismo , Triptases/metabolismo , Animais , Carboxipeptidases A/metabolismo , Peptídeo Hidrolases/metabolismo
2.
Biochemistry ; 63(15): 1969-1979, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39046854

RESUMO

The chelation of protein-bound metal ions is typically thought to follow either a dissociative (D) or an associative (A) path. While the former mechanism involves the spontaneous dissociation of the metal from the protein prior to chelation, the latter route is characterized by the formation of an intermediate protein-metal-chelator ternary complex. Using the prototypical zinc protease carboxypeptidase A (CPA) and a variety of charged and neutral chelating agents, we demonstrate that inactivation of the enzyme (and likely other metalloproteins) proceeds through a split pathway with contributions from both D- and A-type mechanisms. In the case of charged chelators such as ethylenediaminetetraacetic acid (EDTA), the proportions of both paths could be tuned over a wide range through variation of the chelator concentration and the ionic strength, I (from ∼95% A type at low I values to ∼5% at high I values). By measuring the EDTA concentration and time dependence of CPA inactivation and fitting the obtained kinetic data to a modified time-dependent inhibition model, we obtained the rate constants for the A and D paths (kinact and koff, respectively) and the inhibition constant (KI) for the formation of the CPA-Zn2+-EDTA ternary complex, indicating that the decreased contribution of the A-type mechanism at high ionic strengths originates from a large (40-fold; at I = 0.5 M) increase in KI. This observation might be related to a triarginine motif in CPA that electrostatically steers negatively charged substrates into the active site and may therefore also guide carboxylate-bearing chelators toward the Zn2+ ion.


Assuntos
Carboxipeptidases A , Quelantes , Ácido Edético , Quelantes/química , Quelantes/metabolismo , Ácido Edético/química , Carboxipeptidases A/metabolismo , Carboxipeptidases A/química , Carboxipeptidases A/antagonistas & inibidores , Cinética , Zinco/metabolismo , Zinco/química , Animais , Concentração Osmolar
3.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786055

RESUMO

Infertility is an important personal and society disease, of which the male factor represents half of all causes. One of the aspects less studied in male infertility is the immunological testicular microenvironment. Mast cells (MCs), having high potential for regulating spermatogenesis due to fine-tuning the state of the integrative buffer metabolic environment, are one of the most crucial cellular subpopulations of the testicular interstitium. One important component of the MC secretome is proteases that can act as proinflammatory agents and in extracellular matrix (ECM) remodeling. In the testis, MCs are an important cell component of the testicular interstitial tissue (TIT). However, there are still no studies addressing the analysis of a specific MC protease-carboxypeptidase A3 (CPA3)-in cases with altered spermatogenesis. The cytological and histotopographic features of testicular CPA3+ MCs were examined in a study involving 34 men with azoospermia. As revealed, in cases with non-obstructive azoospermia, a higher content of CPA3+ MCs in the TIT and migration to the microvasculature and peritubular tissue of seminiferous tubules were observed when compared with cases with obstructive azoospermia. Additionally, a high frequency of CPA3+ MCs colocalization with fibroblasts, Leydig cells, and elastic fibers was detected in cases with NOA. Thus, CPA3 seems to be of crucial pathogenetic significance in the formation of a profibrogenic background of the tissue microenvironment, which may have direct and indirect effects on spermatogenesis.


Assuntos
Azoospermia , Mastócitos , Testículo , Adulto , Humanos , Masculino , Azoospermia/patologia , Azoospermia/metabolismo , Carboxipeptidases A/metabolismo , Mastócitos/metabolismo , Mastócitos/patologia , Espermatogênese , Testículo/metabolismo , Testículo/patologia
4.
Medicine (Baltimore) ; 103(20): e38117, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758896

RESUMO

Human immunodeficiency virus (HIV) infection continues to pose significant global health challenges, necessitating advancements in diagnostic and prognostic approaches to optimize disease management. While primarily recognized for their roles in allergic responses, mast cells have emerged as potential markers with diagnostic and prognostic significance in the context of HIV/AIDS. This paper aims to synthesize current insights and delineate future directions regarding the utility of mast cell markers in diagnosing HIV infection, predicting disease progression, and guiding therapeutic strategies. Mast cells, equipped with distinct markers such as tryptase, chymase, carboxypeptidase A3, and c-kit/CD117 receptors, exhibit tissue-specific expression patterns that offer potential as diagnostic indicators for HIV infection. Understanding the dynamics of these markers in different tissues and body fluids holds promise for accurate HIV diagnosis, disease staging, and monitoring treatment responses. Moreover, the prognostic significance of mast cell markers in HIV/AIDS lies in their potential to predict disease progression, immune dysregulation, and clinical outcomes. The integration of mast cell markers into clinical applications offers promising avenues for refining diagnostic assays, patient monitoring protocols, and therapeutic strategies in HIV/AIDS. Future research directions involve the development of novel diagnostic tools and targeted therapies based on mast cell-specific markers, potentially revolutionizing clinical practice and enhancing patient care in the management of HIV/AIDS. Continued investigations into mast cell markers' diagnostic and prognostic implications hold immense potential to advance our understanding and improve outcomes in HIV/AIDS management.


Assuntos
Biomarcadores , Infecções por HIV , Mastócitos , Humanos , Mastócitos/metabolismo , Biomarcadores/metabolismo , Biomarcadores/análise , Prognóstico , Infecções por HIV/diagnóstico , Triptases/sangue , Triptases/metabolismo , Progressão da Doença , Carboxipeptidases A/metabolismo , Quimases/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Síndrome da Imunodeficiência Adquirida/diagnóstico
5.
Thyroid ; 34(9): 1150-1162, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38666696

RESUMO

Background: The density of tumor-associated macrophages in the tumor microenvironment of anaplastic thyroid cancer (ATC) is associated with poor prognosis. However, the crosstalk between macrophages and ATC cells is poorly understood. This study aimed to examine the impact of macrophages on cancer cell phenotypes. We found a new mediator between M2 macrophages and ATC cells through proteomics analysis. Methods: The role of macrophages in proliferation, migration, and invasion of ATC cells was evaluated using coculture assay and conditioned medium (CM). Secretory factors in the CM from single or coculture were identified using liquid chromatography-tandem mass spectrometry proteomics analysis. We evaluated the role of the secretory factor in proliferation, migration, and invasion of cancer cells. In vivo xenograft model was used to evaluate the effect of the factor. Results: M2 macrophages significantly increased the proliferation, migration, and invasion of ATC cells, whereas M1 macrophages decreased the proliferation, migration, and invasion of ATC cells. Based on proteomic analysis of CM, we identify carboxypeptidase A4 (CPA4) as a mediator of the crosstalk between macrophages and ATC cells. CPA4 was only detected in the coculture media of M2 macrophage/8505C, and its expression in cancer cells increased by M2 macrophage. The expression of CPA4 protein was significantly higher in human thyroid cancers, particularly in ATCs, than normal and benign tissues. A bioinformatics analysis of public data revealed that CPA4 expression was associated with poor prognosis and dedifferentiation of thyroid cancer. Knockdown of CPA4 suppressed proliferation, colony formation, migration, and invasion of ATC cells, consistent with the decrease of STAT3, ERK, and AKT/mTOR phosphorylation and epithelial-mesenchymal transition (EMT) marker expression. In addition, the increased expression of CPA4 in cancer cells by M2 macrophage stimulation induced the polarization of macrophages to the M2 phenotype, which formed a positive feedback loop. Xenograft tumors did not develop after CPA4 knockdown. Conclusions: Our data suggest that CPA4 stimulates the progression of thyroid cancer by mediating between M2 macrophages and ATC cells. CPA4 can be a new therapeutic target for the treatment of patients with ATC.


Assuntos
Carboxipeptidases A , Movimento Celular , Proliferação de Células , Progressão da Doença , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Carcinoma Anaplásico da Tireoide/patologia , Carcinoma Anaplásico da Tireoide/metabolismo , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Linhagem Celular Tumoral , Animais , Carboxipeptidases A/metabolismo , Carboxipeptidases A/genética , Microambiente Tumoral , Camundongos , Macrófagos Associados a Tumor/metabolismo , Macrófagos/metabolismo , Técnicas de Cocultura , Invasividade Neoplásica , Proteômica
6.
Cells ; 13(8)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38667325

RESUMO

Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.


Assuntos
COVID-19 , Pulmão , Mastócitos , SARS-CoV-2 , Triptases , Humanos , COVID-19/imunologia , COVID-19/patologia , Mastócitos/patologia , Mastócitos/imunologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Triptases/metabolismo , Pulmão/patologia , Pulmão/virologia , Pulmão/imunologia , Degranulação Celular , Quimases/metabolismo , Carboxipeptidases A/metabolismo , Adulto , Idoso de 80 Anos ou mais , Estudos de Casos e Controles
7.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4950-4964, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147994

RESUMO

Molting is an important physiological phenomenon of many metamorphosis insects, during which the old and new epidermis are separated by enzymes present in the molting fluid. Various proteomic studies have discovered the presence of Bombyx mori carboxypeptidase A (Bm-CPA) in the molting fluid of silkworm, but its function remains unclear. In order to better understand the role of Bm-CPA in the molting process of silkworm, Bm-CPA was analyzed by bioinformatics analysis, real-time fluorescence quantitative PCR, antibody preparation, immunofluorescence staining, and expression in Pichia pastoris. The results showed that Bm-CPA had a conserved M14 zinc carboxypeptidase domain and glycosylation site. Its expression was regulated by ecdysone 20E, and large expression was observed in the epidermis of the upper cluster stage. Immunofluorescence staining showed that Bm-CPA was enriched in the epidermis during the molting stage, and the inhibitor of Bm-CPA led to the larval death due to the inability to molt. We also successfully obtained a large number of recombinant Bm-CPA proteins by Pichia pastoris expression in vitro. These results may facilitate further understanding the molting development process of silkworm.


Assuntos
Bombyx , Muda , Animais , Muda/genética , Bombyx/genética , Carboxipeptidases A/metabolismo , Proteômica , Larva/metabolismo , Imunofluorescência , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
8.
Arch Toxicol ; 97(3): 769-785, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36481916

RESUMO

Drug-induced pancreatic injury (DIPI) is an issue seen in drug development both in nonclinical and clinical contexts. DIPI is typically monitored by measurement of lipase and/or amylase, however, both enzymes lack sensitivity and specificity. Although candidate protein biomarkers specific to pancreas exist, antibody-based assay development is difficult due to their small size or the rapid cleavage by proteolytic enzymes released during pancreatic injury. Here we report the development of a novel multiplexed immunoaffinity-based liquid chromatography mass spectrometric assay (IA-LC-MS/MS) for trypsinogen activation peptide (TAP) and carboxypeptidases A1 and A2 (CPA1, CPA2). This method is based on the enzymatic digestion of the target proteins, immunoprecipitation of the peptides with specific antibodies and LC-MS/MS analysis. This assay was used to detect TAP, CPA1, and CPA2 in 470 plasma samples collected from 9 in-vivo rat studies with pancreatic injury and 8 specificity studies with injury in other organs to assess their performance in monitoring exocrine pancreas injury. The TAP, CPA1, and CPA2 response was compared to histopathology, lipase, amylase and microRNA217. In summary, TAP, CPA1, and CPA2 proteins measured in rat plasma were sensitive and specific biomarkers for monitoring drug-induced pancreatic injury; outperforming lipase and amylase both by higher sensitivity of detection and by sustained increases in plasma observed over a longer time period. These protein-based assays and potentially others under development, are valuable tools for use in nonclinical drug development and as future translatable biomarkers for assessment in clinical settings to further improve patient safety.


Assuntos
Amilases , Espectrometria de Massas em Tandem , Ratos , Animais , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem/métodos , Carboxipeptidases A/metabolismo , Biomarcadores , Lipase
9.
Artigo em Inglês | MEDLINE | ID: mdl-36231642

RESUMO

Cyanobacteria of the Nostoc genus belong to the most prolific sources of bioactive metabolites. In our previous study on Nostoc edaphicum strain CCNP1411, the occurrence of cyanopeptolins and nostocyclopeptides was documented. In the current work, the production of anabaenopeptins (APs) by the strain was studied using genetic and chemical methods. Compatibility between the analysis of the apt gene cluster and the structure of the identified APs was found. Three of the APs, including two new variants, were isolated as pure compounds and tested against four serine proteases and carboxypeptidase A (CPA). The in vitro enzymatic assays showed a typical activity of this class of cyanopeptides, i.e., the most pronounced effects were observed in the case of CPA. The activity of the detected compounds against important metabolic enzymes confirms the pharmaceutical potential of anabaenopeptins.


Assuntos
Nostoc , Peptídeos Cíclicos , Carboxipeptidases A/metabolismo , Nostoc/genética , Nostoc/metabolismo , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Serina Proteases/metabolismo
10.
Dev Comp Immunol ; 127: 104273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34619175

RESUMO

Metallo-carboxypeptidases are exopeptidases with diverse expression and function, found in all kingdoms of life from bacteria to mammals. One of them, the carboxypeptidase A3 (CPA3), has become an important component of the mammalian immune system by its expression in mast cells. Mast cells (MCs) are highly specialized sentinel cells, which store large amounts of bioactive mediators, including CPA3, in very abundant cytoplasmic granules. Clinical studies have found an increased CPA3 expression in asthma but the physiological role as well as the evolutionary origin of CPA3 remains largely unexplored. CPA3 belongs to the M14A subfamily of metallo-carboxypeptidases, which among others also includes the digestive enzymes CPA1, CPA2, CPB1 and CPO. To study the appearance of CPA3 during vertebrate evolution, we here performed bioinformatic analyses of homologous genes and gene loci from a broad panel of metazoan animals from invertebrates to mammals. The phylogenetic analysis indicated that CPA3 appeared at the base of tetrapod evolution in a branch closer to CPB1 than to other CPAs. Indeed, CPA3 and CPB1 are also located in the same locus, on chromosome 3 in humans. The presence of CPA3 only in tetrapods and not in fishes, suggested that CPA3 could have appeared by a gene duplication from CPB1 during early tetrapod evolution. However, the apparent loss of CPA3 in several tetrapod lineages, e.g. in birds and monotremes, indicates a complex evolution of the CPA3 gene. Interestingly, in the lack of CPA3 in fishes, zebrafish MCs express instead CPA5 for which the most closely related human carboxypeptidase is CPA1, which has a similar cleavage specificity as CPA3. Collectively, these findings clarify and add to our understanding of the evolution of hematopoietic proteases expressed by mast cells.


Assuntos
Mastócitos , Animais , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Mamíferos , Filogenia , Peixe-Zebra
11.
Anal Biochem ; 642: 114451, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774536

RESUMO

Carboxypeptidases enzymatically cleave the peptide bond of C-terminal amino acids. In humans, it is involved in enzymatic synthesis and maturation of proteins and peptides. Carboxypeptidases A and Y have difficulty hydrolyzing the peptide bond of dipeptides and some other amino acid sequences. Early investigations into different N-blocking groups concluded that larger moieties increased substrate susceptibility to peptide bond hydrolysis with carboxypeptidases. This study conclusively demonstrates that 6-aminoquinoline-N-hydroxysuccimidyl carbamate (AQC) as an N-blocking group greatly enhances substrate hydrolysis with carboxypeptidase. AQC addition to the N-terminus of amino acids and peptides also improves chromatographic peak shapes and sensitivities via mass spectrometry detection. These enzymes have been used for amino acid sequence determination prior to the advent of modern proteomics. However, most modern proteomic methods assume that all peptides are comprised of l-amino acids and therefore cannot distinguish L-from d-amino acids within the peptide sequence. The majority of existing methods that allow for chiral differentiation either require synthetic standards or incur racemization in the process. This study highlights the resistance of d-amino acids within peptides to enzymatic hydrolysis by Carboxypeptidase Y. This stereoselectivity may be advantageous when screening for low abundance peptide stereoisomers.


Assuntos
Carboxipeptidases A/metabolismo , Catepsina A/metabolismo , Peptídeos/metabolismo , Aminoácidos/química , Aminoácidos/metabolismo , Humanos , Espectrometria de Massas , Peptídeos/química
12.
Protein Sci ; 30(12): 2445-2456, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658092

RESUMO

Metallocarboxypeptidases (MCPs) in the mosquito midgut play crucial roles in infection, as well as in mosquito dietary digestion, reproduction, and development. MCPs are also part of the digestive system of plant-feeding insects, representing key targets for inhibitor development against mosquitoes/mosquito-borne pathogens or as antifeedant molecules against plant-feeding insects. Notably, some non-mosquito insect B-type MCPs are primarily insensitive to plant protease inhibitors (PPIs) such as the potato carboxypeptidase inhibitor (PCI; MW 4 kDa), an inhibitor explored for cancer treatment and insecticide design. Here, we report the crystal structure of Aedes aegypti carboxypeptidase-B1 (CPBAe1)-PCI complex and compared the binding with that of PCI-insensitive CPBs. We show that PCI accommodation is determined by key differences in the active-site regions of MCPs. In particular, the loop regions α6-α7 (Leu242 -Ser250 ) and ß8-α8 (Pro269 -Pro280 ) of CPBAe1 are replaced by α-helices in PCI-insensitive insect Helicoverpa zea CPBHz. These α-helices protrude into the active-site pocket of CPBHz, restricting PCI insertion and rendering the enzyme insensitive. We further compared our structure with the only other PCI complex available, bovine CPA1-PCI. The potency of PCI against CPBAe1 (Ki  = 14.7 nM) is marginally less than that of bovine CPA1 (Ki  = 5 nM). Structurally, the above loop regions that accommodate PCI binding in CPBAe1 are similar to that of bovine CPA1, although observed changes in proteases residues that interact with PCI could account for the differences in affinity. Our findings suggest that PCI sensitivity is largely dictated by structural interference, which broadens our understanding of carboxypeptidase inhibition as a mosquito population/parasite control strategy.


Assuntos
Aedes/enzimologia , Carboxipeptidase B/química , Carboxipeptidases A/química , Proteínas de Insetos/química , Inibidores de Proteases/química , Sequência de Aminoácidos , Animais , Carboxipeptidase B/antagonistas & inibidores , Carboxipeptidase B/genética , Carboxipeptidase B/metabolismo , Carboxipeptidases A/antagonistas & inibidores , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Domínio Catalítico , Bovinos , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Insetos/antagonistas & inibidores , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Cinética , Modelos Moleculares , Inibidores de Proteases/farmacologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Especificidade por Substrato
13.
Toxicol Appl Pharmacol ; 433: 115775, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34715074

RESUMO

To identify host responses induced by commensal microbiota in intestine, transcriptomes of four sections of the intestine were compared between germ-free (GF) mice and conventional (CV) controls using RNA-Seq. Cuffdiff revealed that jejunum had the highest number of differentially expressed genes (over 2000) between CV and GF mice, followed by large intestine (LI), duodenum, and ileum. Gene set association analysis identified section-specific alterations in pathways associated with the absence of commensal microbiota. For example, in GF mice, cytochrome P450 (Cyp)-mediated xenobiotic metabolism was preferably down-regulated in duodenum and ileum, whereas intermediary metabolism pathways such as protein digestion and amino acid metabolism were preferably up-regulated in duodenum, jejunum, and LI. In GF mice, carboxypeptidase A1 (Cpa1), which is important for protein digestion, was the top most up-regulated gene within the entire transcriptome in duodenum (53-fold) and LI (142-fold). Conversely, fatty acid binding protein 6 (Fabp6/Ibabp), which is important for bile acid intestinal reabsorption, was the top most down-regulated gene in jejunum (358-fold), and the drug-metabolizing enzyme Cyp1a1 was the top most down-regulated gene in ileum (40-fold). Section-specific host transcriptomic response to the absence of intestinal microbiota was also observed for other important physiological pathways such as cell junction, the absorption of small molecules, bile acid homeostasis, and immune response. In conclusion, the present study has revealed section-specific host gene transcriptional alterations in GF mice, highlighting the importance of intestinal microbiota in facilitating the physiological and drug responses of the host intestine.


Assuntos
Bactérias/metabolismo , Carboxipeptidases A/genética , Sistema Enzimático do Citocromo P-450/genética , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Intestinos/enzimologia , Intestinos/microbiologia , RNA-Seq , Transcriptoma , Animais , Carboxipeptidases A/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Vida Livre de Germes , Interações Hospedeiro-Patógeno , Isoenzimas , Masculino , Camundongos Endogâmicos C57BL , Proteólise
14.
Int J Hyperthermia ; 38(1): 1037-1051, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34233564

RESUMO

BACKGROUND: Thermal ablation is a potentially curative therapy for early-stage non-small cell lung cancer (NSCLC). Early recurrence after thermal ablation necessitates our attention. METHODS: The invasion and migration abilities of NSCLC after sublethal heat stimulus were observed in vitro and in vivo. Sublethal thermal stimulus molecular changes were identified by RNA sequencing. A xenograft model of NSCLC with insufficient ablation was established to explore the epithelial-to-mesenchymal transition (EMT) and metastasis-related phenotypes alteration of residual tumors. RESULTS: In vitro, the invasion and migration abilities of NSCLC cells were enhanced 72 h after 44 °C and 46 °C thermal stimulus. Epithelial-mesenchymal transition (EMT) phenotypes were also upregulated under these conditions. RNA sequencing revealed that the expression of carboxypeptidase A4 (CPA4) was significantly upregulated after thermal stimulus. Significant upregulation of CPA4 and EMT phenotypes was also found in the xenograft model of insufficient NSCLC ablation. The EMT process and invasion and migration abilities can be reversed by silencing CPA4. CONCLUSIONS: This study demonstrates that sublethal heat stimulus caused by insufficient ablation can promote EMT and enhance the metastatic capacity of NSCLC. CPA4 plays an important role in these biological processes. Inhibition of CPA4 might be of great significance for improving early-stage NSCLC survival after ablation.


Assuntos
Carboxipeptidases A/metabolismo , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Carboxipeptidases , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética
15.
J Leukoc Biol ; 110(3): 425-431, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34057753

RESUMO

The immune response plays a critical role in the pathophysiology of SARS-CoV-2 infection ranging from protection to tissue damage and all occur in the development of acute respiratory distress syndrome (ARDS). ARDS patients display elevated levels of inflammatory cytokines and innate immune cells, and T and B cell lymphocytes have been implicated in this dysregulated immune response. Mast cells are abundant resident cells of the respiratory tract and are able to release different inflammatory mediators rapidly following stimulation. Recently, mast cells have been associated with tissue damage during viral infections, but their role in SARS-CoV-2 infection remains unclear. In this study, we examined the profile of mast cell activation markers in the serum of COVID-19 patients. We noticed that SARS-CoV-2-infected patients showed increased carboxypeptidase A3 (CPA3) and decreased serotonin levels in their serum when compared with symptomatic SARS-CoV-2-negative patients. CPA3 levels correlated with C-reactive protein, the number of circulating neutrophils, and quick SOFA. CPA3 in serum was a good biomarker for identifying severe COVID-19 patients, whereas serotonin was a good predictor of SARS-CoV-2 infection. In summary, our results show that serum CPA3 and serotonin levels are relevant biomarkers during SARS-CoV-2 infection. This suggests that mast cells and basophils are relevant players in the inflammatory response in COVID-19 and may represent targets for therapeutic intervention.


Assuntos
COVID-19/diagnóstico , Carboxipeptidases A/metabolismo , Mediadores da Inflamação/metabolismo , Inflamação/diagnóstico , Mastócitos/imunologia , SARS-CoV-2/isolamento & purificação , Serotonina/metabolismo , Biomarcadores/análise , COVID-19/complicações , COVID-19/metabolismo , COVID-19/virologia , Humanos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mastócitos/patologia , Índice de Gravidade de Doença
16.
Int J Med Sci ; 18(8): 1753-1759, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33746592

RESUMO

Background: Triple-negative breast cancer (TNBC) is an aggressive cancer subtype lacking effective treatment options, and p53 is the most frequently mutated or deleted gene. Carboxypeptidase A4 (CPA4) is an extracellular metallocarboxypeptidase, which was closely associated with aggressiveness. Although a recent study indicated that CPA4 could induce epithelial­mesenchymal transition in breast cancer cells, no studies investigated its stemness-related function and the correlation between CPA4 and p53 in TNBC. In this study, we aimed to investigate the CPA4 levels in breast cancer tissues and analyze its association with p53, and study its roles in cancer stemness maintenance. Methods: CPA4 mRNA level and its prognostic value were analyzed by using online database UALCAN (http://ualcan.path.uab.edu) and Kaplan-Meier plotter (www.kmplot.com), respectively. The expression of CPA4, p53 and ALDH1A1 in breast cancer and adjacent normal tissues were evaluated by IHC using the corresponding primary antibodies on a commercial tissue array (Shanghai Biochip Co., Ltd., Shanghai, China). siRNA knockdown was used to study the function of proliferation, colony formation assay and sphere formation in serum-free medium. Results: Analysis of the UALCAN datasets identified that CPA4 mRNA levels were elevated in TNBC, especially in the TP53-mutant subgroup. Furthermore, high levels of CPA4 mRNA were significantly associated with unfavourable overall survival OS in breast cancer patients. Immunohistochemistical analysis demonstrated that CPA4 levels were elevated in 32.1% of breast cancer samples (45/140), and the positive rates of ALDH1A1 and p53 in the breast cancer tissues were 25% (35/140) and 50% (70/140), respectively. Statistical analysis revealed high levels of CPA4 was significantly associated with TNBC phenotype. Correlation analysis indicated that CPA4 over-expression was positively associated with ALDH1A1 (P<0.01) and negatively correlated with p53 (P<0.05). In Kaplan-Meier survival analysis, either high CPA4 or ALDH1A1 levels was significantly correlated with poor survival in breast cancer patients. Functional studies demonstrated that down-regulation of CPA4 significantly inhibited TNBC cell proliferation, colony-formation assays in soft agar and sphere formation in serum-free medium. Conclusion: This study demonstrated for the first time that CPA4 was negatively correlates with p53 expression and inhibition of CPA4 could reduce the number of breast cancer cells with stemness property. It might be a potential target for the TNBC treatment.


Assuntos
Biomarcadores Tumorais/metabolismo , Carboxipeptidases A/metabolismo , Células-Tronco Neoplásicas/patologia , Neoplasias de Mama Triplo Negativas/patologia , Proteína Supressora de Tumor p53/metabolismo , Adulto , Idoso , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Carboxipeptidases A/análise , Carboxipeptidases A/genética , Linhagem Celular Tumoral , Autorrenovação Celular , Conjuntos de Dados como Assunto , Feminino , Seguimentos , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Pessoa de Meia-Idade , Prognóstico , Neoplasias de Mama Triplo Negativas/mortalidade , Proteína Supressora de Tumor p53/análise
17.
Mol Microbiol ; 115(6): 1357-1378, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33469978

RESUMO

Francisella tularensis is a Gram-negative, intracellular bacterium that causes the zoonotic disease tularemia. Intracellular pathogens, including F. tularensis, have evolved mechanisms to survive in the harsh environment of macrophages and neutrophils, where they are exposed to cell envelope-damaging molecules. The bacterial cell wall, primarily composed of peptidoglycan (PG), maintains cell morphology, structure, and membrane integrity. Intracellular Gram-negative bacteria protect themselves from macrophage and neutrophil killing by recycling and repairing damaged PG--a process that involves over 50 different PG synthesis and recycling enzymes. Here, we identified a PG recycling enzyme, L,D-carboxypeptidase A (LdcA), of F. tularensis that is responsible for converting PG tetrapeptide stems to tripeptide stems. Unlike E. coli LdcA and most other orthologs, F. tularensis LdcA does not localize to the cytoplasm and also exhibits L,D-endopeptidase activity, converting PG pentapeptide stems to tripeptide stems. Loss of F. tularensis LdcA led to altered cell morphology and membrane integrity, as well as attenuation in a mouse pulmonary infection model and in primary and immortalized macrophages. Finally, an F. tularensis ldcA mutant protected mice against virulent Type A F. tularensis SchuS4 pulmonary challenge.


Assuntos
Carboxipeptidases A/metabolismo , Parede Celular/metabolismo , Francisella tularensis/patogenicidade , Peptidoglicano/metabolismo , Tularemia/patologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Francisella tularensis/metabolismo , Macrófagos/microbiologia , Camundongos , Camundongos Endogâmicos C3H , Neutrófilos/microbiologia , Alinhamento de Sequência , Virulência
18.
Curr Opin Allergy Clin Immunol ; 21(1): 71-78, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33369571

RESUMO

PURPOSE OF REVIEW: Mast cells have previously been thought to function solely as effector cells in asthma but more recent studies have indicated that mast cells may play a more central role in propagating and regulating lower airway inflammation in asthma. RECENT FINDINGS: Initial studies have found increased numbers of mast cell progenitors (MCPs) in the peripheral blood of patients with asthma and these cells could contribute to the increased number of progenitors identified in the airways of patients with asthma. There are unique subpopulations of mast cells within the asthmatic airway, which are characterized by their physical location and distinguished by their expression profile of mast cell proteases. Intraepithelial mast cells are tightly associated with type-2 (T2) inflammation but additional studies have suggested a role for anti-mast cell therapies as a treatment for T2-low asthma. Mast cells have recently been shown to closely communicate with the airway epithelium and airway smooth muscle to regulate lower airway inflammation and airway hyperresponsiveness. SUMMARY: Recent studies have better illuminated the central role of mast cells in regulating lower airway inflammation and airway hyperresponsiveness.


Assuntos
Asma/imunologia , Diferenciação Celular/imunologia , Mastócitos/imunologia , Mucosa Respiratória/patologia , Asma/sangue , Asma/patologia , Carboxipeptidases A/metabolismo , Quimases/metabolismo , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/patologia , Mastócitos/metabolismo , Mucosa Respiratória/citologia , Mucosa Respiratória/imunologia , Transdução de Sinais/imunologia , Triptases/metabolismo
19.
Mol Cells ; 43(11): 945-952, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33203807

RESUMO

Hypoxia induces the expression of several genes through the activation of a master transcription factor, hypoxia-inducible factor (HIF)-1α. This study shows that hypoxia strongly induced the expression of two carboxypeptidases (CP), CPA4 and CPE, in an HIF-1α-dependent manner. The hypoxic induction of CPA4 and CPE gene was accompanied by the recruitment of HIF-1α and upregulation in the active histone modification, H3K4me3, at their promoter regions. The hypoxic responsiveness of CPA4 and CPE genes was observed in human adipocytes, human adipose-derived stem cells, and human primary fibroblasts but not mouse primary adipocyte progenitor cells. CPA4 and CPE have been identified as secreted exopeptidases that degrade and process other secreted proteins and matrix proteins. This finding suggests that hypoxia changes the microenvironment of the obese hypoxic adipose tissue by inducing the expression of not only adipokines but also peptidases such as CPA4 and CPE.


Assuntos
Carboxipeptidase H/metabolismo , Carboxipeptidases A/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco/metabolismo , Hipóxia Celular , Humanos
20.
PLoS Negl Trop Dis ; 14(7): e0008534, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32735561

RESUMO

Mast cells are innate effector cells that due to their localization in the tissue form the first line of defense against parasites. We have previously shown that specifically mucosal mast cells were essential for the termination of the intestinal Strongyloides ratti infection. Here, we analyze the impact of mast cells on the immune response and defense against the tissue-dwelling filarial nematode Litomosoides sigmodontis using mast cell-deficient Cpa3cre mice. Despite an increase and an activation of mast cells at the site of infection in wildtype BALB/c mice the outcome of L. sigmodontis infection was not changed in mast cell-deficient BALB/c Cpa3cre mice. In Cpa3cre mice neither vascular permeability induced by blood-sucking mites nor the migration of L3 was altered compared to Cpa3 wildtype littermates. Worm burden in the thoracic cavity was alike in the presence and absence of mast cells during the entire course of infection. Although microfilaremiae in the peripheral blood increased in mast cell-deficient mice at some time points, the infection was cleared with comparable kinetics in the presence and absence of mast cells. Moreover, mast cell deficiency had no impact on the cytokine and antibody response to L. sigmodontis. In summary, our findings suggest that mast cells are not mandatory for the initiation of an appropriate immune response and host defense during L. sigmodontis infection in mice.


Assuntos
Filariose/imunologia , Filarioidea/imunologia , Mastócitos/fisiologia , Animais , Permeabilidade Capilar , Carboxipeptidases A/genética , Carboxipeptidases A/metabolismo , Filariose/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Infestações por Ácaros , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA