Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
ACS Appl Mater Interfaces ; 16(10): 13234-13246, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38411590

RESUMO

Carnitine palmitoyltransferase 1A (CPT1A), which resides on the mitochondrial outer membrane, serves as the rate-limiting enzyme of fatty acid ß-oxidation. Identifying the compounds targeting CPT1A warrants a promising candidate for modulating lipid metabolism. In this study, we developed a CPT1A-overexpressed mitochondrial membrane chromatography (MMC) to screen the compounds with affinity for CPT1A. Cells overexpressing CPT1A were cultured, and subsequently, their mitochondrial membrane was isolated and immobilized on amino-silica gel cross-linked by glutaraldehyde. After packing the mitochondrial membrane column, retention components of MMC were performed with LC/MS, whose analytic peaks provided structural information on compounds that might interact with mitochondrial membrane proteins. With the newly developed MMC-LC/MS approach, several Chinese traditional medicine extracts, such as Scutellariae Radix and Polygoni Cuspidati Rhizoma et Radix (PCRR), were analyzed. Five noteworthy compounds, baicalin, baicalein, wogonoside, wogonin, and resveratrol, were identified as enhancers of CPT1A enzyme activity, with resveratrol being a new agonist for CPT1A. The study suggests that MMC serves as a reliable screening system for efficiently identifying modulators targeting CPT1A from complex extracts.


Assuntos
Carnitina O-Palmitoiltransferase , Metabolismo dos Lipídeos , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Resveratrol , Membranas Mitocondriais , Cromatografia
2.
Biol Pharm Bull ; 47(1): 23-27, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38171776

RESUMO

Mammalian type 2 carnitine parmitoyltransferase (EC 2.3.1.21), abbreviated as CPT2, is an enzyme involved in the translocation of fatty acid into the mitochondrial matrix space, and catalyzes the reaction acylcarnitine + CoA = acyl-CoA + carnitine. When rat CPT2 was expressed in Escherichia coli, its behavior was dependent on the presence or absence of i) its mitochondrial localization sequence and ii) a short amino acid sequence thought to anchor it to the mitochondrial inner membrane: CPT2 containing both sequences behaved as a hydrophobic protein, while recombinant CPT2 lacking both regions behaved as a water soluble protein; if only one region was present, the resultant proteins were observed in both fractions. Because relatively few protein species could be obtained from bacterial lysates as insoluble pellets under the experimental conditions used, selective enrichment of recombinant CPT2 protein containing both hydrophobic sequences was easily achieved. Furthermore, when CPT2 enriched in insoluble fraction was resuspended in an appropriate medium, it showed catalytic activity typical of CPT2: it was completely suppressed by the CPT2 inhibitor, ST1326, but not by the CPT1 inhibitor, malonyl-CoA. Therefore, we conclude that the bacterial expression system is an effective tool for characterization studies of mammalian CPT2.


Assuntos
Carnitina O-Palmitoiltransferase , Mitocôndrias , Ratos , Animais , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Mitocôndrias/metabolismo , Malonil Coenzima A/metabolismo , Malonil Coenzima A/farmacologia , Ácidos Graxos/metabolismo , Proteínas Recombinantes/genética , Carnitina/metabolismo , Mamíferos/metabolismo
3.
J Mol Graph Model ; 112: 108125, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101729

RESUMO

The Carnitine Palmitoyltranferase I (CPT1) catalyzes the rate-limiting step of long-chain fatty acid (LCFA) mitochondrial ß-oxidation. The enzyme promotes the conjugation of LCFA with l-carnitine, which allows LCFA to enter the mitochondria matrix. The structural features involved in CPT1 and LCFA-CoA interactions have not been fully elucidated, mainly due to the absence of CPT1 crystallographic data. Previous studies reported important residues (Lys556, Lys560, and Lys561) crucial to the CPT1 mechanism. Nonetheless, these studies have not explored the LCFA bindings. Using molecular modeling strategies, we aimed to understand the conformational changes in CPT1 structure induced by LCFA-CoA. For this purpose, a tridimensional CPT1A model was built by homology modeling using CRAT protein (PBD:1t7q, resolution 1.8 Å) as a template. We simulated the CPT1 structure in the presence and absence of LCFA-CoA by molecular dynamics (MD). By applying a principal component analysis (PCA), two states of apostructure CPT1 based on CoA-Loop (688-711) were observed. In contrast, just one state was evidenced along with smaller conformational subspaces in ligand-complexed simulations using LCFA-CoA. The CoA moiety of ligands interacts with charged residues, namely Lys560, Lys556, Arg563, and Arg645. The frequency of interactions observed for each of these residues is <60% of simulation time, suggesting a dynamic profile of interactions in synergy with long-chain carbon interactions over α-I (478-492). Collectively, these features may be associated with the catalytic conformation of LCFA-CoA to CPT1a. Further calculations of free-energy for different fatty acids, such as alpha-linolenic (ALA), gamma-linolenic (GLA), and arachidonic (ARA) acids, yielded energy values ranging from -76.9 ± 15.9 to -68.5 ± 10.0 kcal mol-1. In conclusion, the present structural model and simulations provide molecular-level insights into LCFA-CoA and CPT1a interactions. These findings may help to further knowledge on the conformational changes of CPT1a induced by LCFA-CoA derivates.


Assuntos
Acil Coenzima A , Carnitina O-Palmitoiltransferase , Carnitina , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos , Ligantes , Oxirredução
4.
Artigo em Inglês | MEDLINE | ID: mdl-30735773

RESUMO

Carnitine palmitoyltransferase 1 (CPT1) plays an essential role in maintaining energy supply via fatty acid oxidation, especially under fasting. In this study, the complete cDNA sequence of cpt1a was cloned from liver of large yellow croaker (Larimichthys crocea), with an open reading frame of 2319 bp encoding a protein of 772 amino acids. Bioinformatics analysis predicted the presence of conserved functional motifs and amino acid residues. The highest mRNA expression of cpt1a was observed in the liver. Phylogenetic tree clearly shows that CPT1A protein is a homologue of mammalian CPT1A. Recombinant protein rCPT1A showed catalytic activity, with Michaelis constant (km) (≈1.38 mM) and maximal reaction rates (Vmax) for carnitine (≈12.66 nmols/min/mg protein). The cpt1a mRNA expression dramatically increased and CPT1 activity remained unchanged after fasting. Fasting did not significantly change Vmax and free carnitine (FC) content in liver. Interestingly, catalytic efficiency (Vmax/Km) and FC/Km increased in fish fasted for 4 days, implying FC contents might be enough to ensure the optimal fatty acid oxidation. Contrarily, both indicators declined when fish fasted for 12 days. The present results demonstrated cpt1a has a biological function and showed that the transcriptional and kinetic regulation of CPT1 during fasting, emphasizing that fasting-induced fatty acid oxidation depends on changes in kinetic properties instead of CPT1 activity and transcription.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Jejum , Regulação Enzimológica da Expressão Gênica , Perciformes/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , DNA Complementar/genética , Humanos , Cinética , Metabolismo dos Lipídeos , Fígado/metabolismo , Perciformes/metabolismo , Perciformes/fisiologia , Filogenia , Alinhamento de Sequência
5.
J Bioenerg Biomembr ; 50(6): 461-466, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30604089

RESUMO

The phospholipid environment of the mitochondrial inner membrane, which contains large amounts of cardiolipin, could play a key role in transport of the long chain fatty acids. In the present study, the pre-incubation of cardiolipin with the wild type carnitine palmitoyltransferase (CPT) II led to a more than 1.5-fold increase of enzyme activity at physiological temperatures. At higher temperatures, however, there was a pronounced loss of activity. The most frequent variant S113L showed even at 37 °C a great activity loss. Pre-incubation of the wild type with both malonyl-CoA and cardiolipin counteracted the positive effect of cardiolipin. Malonyl-CoA, however, showed no inhibition effect on the variant in presence of cardiolipin. The activity loss in presence of cardiolipin at fever simulating situations was more pronounced for the variant comparing to the wild type. The reason might be a disturbed membrane association or a blockage of the active center of the mutated enzyme.


Assuntos
Cardiolipinas/química , Carnitina O-Palmitoiltransferase/química , Cardiolipinas/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Ativação Enzimática , Humanos , Malonil Coenzima A/química , Malonil Coenzima A/metabolismo
6.
Biochem Biophys Res Commun ; 495(4): 2573-2578, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29287726

RESUMO

Normal extracellular secretion of nephroblastoma overexpressed (NOV, also known as CCN3) is important for the adhesion, migration, and differentiation of cells. In previous studies, we have shown that the intracellular accumulation of CCN3 inhibits the growth of prominent neurons. Increased intracellular CCN3 can be induced through various processes, such as transcription, detoxification, and posttranslational modification. In general, posttranslational modifications are very important for protein secretion. However, it is unclear whether posttranslational modification is necessary for CCN3 secretion. In this study, we have conducted mutational analysis of CCN3 to demonstrate that its thrombospondin type-1 (TSP1) domain is important for CCN3 secretion and intracellular function. Point mutation analysis confirmed that CCN3 secretion was inhibited by cysteine (C)241 mutation, and overexpression of CCN3-C241A inhibited neuronal axonal growth in vivo. Furthermore, we demonstrated that palmitoylation is important for the extracellular secretion of CCN3 and that zinc finger DHHC-type containing 22 (ZDHHC22), a palmityoltransferase, can interact with CCN3. Taken together, our results suggest that palmitoylation by ZDHHC22 at C241 in the CCN3 TSP1 domain may be required for the secretion of CCN3. Aberrant palmitoylation induces intracellular accumulation of CCN3, inhibiting neuronal axon growth.


Assuntos
Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Lipoilação/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/química , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Neurônios/metabolismo , Animais , Sítios de Ligação , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neurônios/química , Neurônios/citologia , Ligação Proteica , Relação Estrutura-Atividade
7.
Artigo em Inglês | MEDLINE | ID: mdl-27593560

RESUMO

The carnitine palmitoyltransferase (CPT) gene family plays an essential role in fatty acid ß-oxidation in the mitochondrion. We identified six isoforms of the CPT family in grass carp and obtained their complete coding sequences (CDS). The isoforms included CPT 1α1a, CPT 1α1b, CPT 1α2a, CPT 1α2b, CPT 1ß, and CPT 2, which may have resulted from fish-specific genome duplication. Sequence analysis showed that the predicted protein structure was different among the CPT gene family members in grass carp. The N-terminal domain of grass carp CPT 1α1a, CPT 1α1b, CPT 1α2a, and CPT 1α2b contained two transmembrane region domains and two acyltransferase choActase domains that exist in human and mouse proteins also; however, only one acyltransferase choActase domain was found in grass carp CPT 1ß. The grass carp CPT 2 had two acyltransferase choActase domains. The grass carp CPT 1α1b, CPT 1α2a, CPT 1α2b, and CPT 1ß contained 18 coding exons, while CPT 1α1a and CPT 2 consisted of 17 coding exons and 5 coding exons, respectively. The mRNA of the six CPT isoforms was expressed in a wide range of tissues, but the mRNA abundance of each CPT showed tissue-dependent expression patterns. The expression of CPT 1α1a, CPT 1α2a, and CPT 1ß at 48h post-feeding was significantly increased in the liver (P<0.01, P<0.05, and P<0.01, respectively). The diverse responses of multiple isoforms in the liver during nutritional limitation suggest that they may play different roles in fatty acid ß-oxidation.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Carpas/genética , Carpas/metabolismo , Sequência de Aminoácidos , Animais , Carnitina O-Palmitoiltransferase/química , Jejum/metabolismo , Ácidos Graxos/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredução , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Análise de Sequência de DNA
8.
Chirality ; 29(1): 10-13, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27901292

RESUMO

The elevated activity of fatty acid synthase has been reported in a number of cancer types. Inhibition of this enzyme has been demonstrated to induce cancer cell death and reduce tumor growth. In addition, the fatty acid synthase inhibitor drug C75 has been reported to synergistically enhance the cancer-killing ability of ionizing radiation. However, clinical use of C75 has been limited due to its producing weight loss, believed to be caused by alterations in the activity of carnitine palmitoyltransferase-1. C75 is administered in the form of a racemic mixture of (-) and (+) enantiomers that may differ in their regulation of fatty acid synthase and carnitine palmitoyltransferase-1. Therefore, we assessed the relative cancer-killing potency of different enantiomeric forms of C75 in prostate cancer cells. These results suggest that (-)-C75 is the more cytotoxic enantiomer and has greater radiosensitizing capacity than (+)-C75. These observations will stimulate the development of fatty acid synthase inhibitors that are selective for cancer cells and enhance the tumor-killing activity of ionizing radiation, while minimizing weight loss in cancer patients.


Assuntos
Carnitina O-Palmitoiltransferase/química , Ácido Graxo Sintases/química , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Humanos , Masculino , Estereoisomerismo
9.
Sci Rep ; 6: 39182, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27982131

RESUMO

CREB3L3 is involved in fatty acid oxidation and ketogenesis in a mutual manner with PPARα. To evaluate relative contribution, a combination of knockout and transgenic mice was investigated. On a ketogenic-diet (KD) that highlights capability of hepatic ketogenesis, Creb3l3-/- mice exhibited reduction of expression of genes for fatty oxidation and ketogenesis comparable to Ppara-/- mice. Most of the genes were further suppressed in double knockout mice indicating independent contribution of hepatic CREB3L3. During fasting, dependency of ketogenesis on CREB3L3 is lesser extents than Ppara-/- mice suggesting importance of adipose PPARα for supply of FFA and hyperlipidemia in Creb3l3-/- mice. In conclusion CREB3L3 plays a crucial role in hepatic adaptation to energy starvation via two pathways: direct related gene regulation and an auto-loop activation of PPARα. Furthermore, as KD-fed Creb3l3-/- mice exhibited severe fatty liver, activating inflammation, CREB3L3 could be a therapeutic target for NAFLD.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Ácidos Graxos/química , PPAR alfa/genética , Adenoviridae/genética , Animais , Glicemia/análise , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/deficiência , Dieta Cetogênica , Metabolismo Energético , Ácidos Graxos/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/sangue , Expressão Gênica , Peroxidação de Lipídeos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , PPAR alfa/deficiência , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/metabolismo , Triglicerídeos/sangue
10.
J Nutr Biochem ; 37: 76-82, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27637001

RESUMO

Eicosapentaenoic acid (EPA), a n-3 long-chain polyunsaturated fatty acid, has been reported to have beneficial effects in obesity-associated metabolic disorders. The objective of the present study was to determine the effects of EPA on the regulation of genes involved in lipid metabolism, and the ability of EPA to induce mitochondrial biogenesis and beiging in subcutaneous adipocytes from overweight subjects. Fully differentiated human subcutaneous adipocytes from overweight females (BMI: 28.1-29.8kg/m2) were treated with EPA (100-200 µM) for 24 h. Changes in mRNA expression levels of genes involved in lipogenesis, fatty acid oxidation and mitochondrial biogenesis were determined by qRT-PCR. Mitochondrial content was evaluated using MitoTracker® Green stain. The effects on peroxisome proliferator-activated receptor gamma, co-activator 1 alpha (PGC-1α) and AMP-activated protein kinase (AMPK) were also characterized. EPA down-regulated lipogenic genes expression while up-regulated genes involved in fatty acid oxidation. Moreover, EPA-treated adipocytes showed increased mitochondrial content, accompanied by an up-regulation of nuclear respiratory factor-1, mitochondrial transcription factor A and cytochrome c oxidase IV mRNA expression. EPA also promoted the activation of master regulators of mitochondrial biogenesis such as sirtuin 1, PGC1-α and AMPK. In parallel, EPA induced the expression of genes that typify beige adipocytes such as fat determination factor PR domain containing 16, uncoupling protein 1 and cell death-inducing DFFA-like effector A, T-Box protein 1 and CD137. Our results suggest that EPA induces a remodeling of adipocyte metabolism preventing fat storage and promoting fatty acid oxidation, mitochondrial biogenesis and beige-like markers in human subcutaneous adipocytes from overweight subjects.


Assuntos
Adipócitos Bege/metabolismo , Adipócitos Brancos/metabolismo , Ácido Eicosapentaenoico/metabolismo , Regulação Enzimológica da Expressão Gênica , Dinâmica Mitocondrial , Biogênese de Organelas , Gordura Subcutânea Abdominal/metabolismo , Acil-CoA Oxidase/química , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Adipócitos Bege/enzimologia , Adipócitos Bege/patologia , Adipócitos Brancos/enzimologia , Adipócitos Brancos/patologia , Adipogenia , Biomarcadores/metabolismo , Índice de Massa Corporal , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Células Cultivadas , Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Metabolismo Energético , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Feminino , Humanos , Metabolismo dos Lipídeos , Concentração Osmolar , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Gordura Subcutânea Abdominal/enzimologia , Gordura Subcutânea Abdominal/patologia
11.
Biochim Biophys Acta ; 1861(1): 34-40, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26477380

RESUMO

Carnitine palmitoyltransferases (CPT), located both in the outer (CPT I) and inner membrane (CPT II) of mitochondria, are the key players for an efficient transport of long chain fatty acids into this cell compartment. The metabolite malonyl-CoA is known to inhibit CPT I, but not CPT II. His6-N-hCPT2 (wild type) and His6-N-hCPT2/ S113L (variant) were produced recombinantly in prokaryotic host, purified and characterized according to their functional and regulatory properties. The wild type and the variant showed the same enzymatic activity and were both inhibited by malonyl-CoA and malonate in a time-dependent manner. The inhibition was, however, significantly more pronounced in the mutated enzyme. The residual activities were 40% and 5% at temperatures of 4 °C and 30 °C, respectively. The inhibitory effect proceeded irreversibly with no recovery after postincubation of palmitoyl-CoA (Pal-CoA) as native substrate. A model of malonyl-CoA and malonate binding to human CPT II was suggested by docking studies to explain the action of the inhibitors regarding to the effect of the mutation on the protein conformation. Results indicated that not only CPT I, but also CPT II can be inhibited by malonyl-CoA. Thus, the complete inhibition of total CPT (i.e. CPT I and CPT II) in muscle homogenates by an established assay is not due to a lack of enzymatically active CPT II, but rather due to an abnormal regulation of the enzyme.


Assuntos
Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Malonil Coenzima A/farmacologia , Carnitina O-Palmitoiltransferase/química , Humanos , Malonatos/farmacologia , Simulação de Acoplamento Molecular
12.
Gene ; 576(1 Pt 3): 429-40, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26506441

RESUMO

We cloned seven complete CPT I cDNA sequences (CPT I α1a-1a, CPT I α1a-1b, CPT I α1a-1c, CPT I α1a-2, CPT I α2a, CPT I α2b1a, CPT I ß) and a partial cDNA sequence (CPT I α2b1b) from Synechogobius hasta. Phylogenetic analysis shows that there are four CPT I duplications in S. hasta, CPT I duplication resulting in CPT I α and CPT I ß, CPT I α duplication producing CPT I α1 and CPT I α2, CPT I α2 duplication generating CPT I α2a and CPT I α2b, and CPT I α2b duplication creating CPT I α2b1a and CPT I α2b1b. Alternative splicing of CPT Iα1a results in the generation of four CPT I isoforms, CPT I α1a-1a, CPT I α1a-1b, CPT I α1a-1c and CPT I α1a-2. Five CPT I transcripts (CPT I α1a, CPT I α2a, CPT I α2b1a, CPT I α2b1b and CPT I ß) mRNAs are expressed in a wide range of tissues, but their abundance of each CPT I mRNA shows the tissue-dependent expression patterns. Insulin incubation significantly reduces the mRNA expression of CPT Iα1a and CPT Iα2a, but not other transcripts in hepatocytes of S. hasta. For the first time, our study demonstrates CPT Iα2b duplication and CPT I α1a alternative splicing in fish at transcriptional level, and the CPT I mRNAs are differentially regulated by insulin in vitro, suggesting that four CPT I isoforms may play different physiological roles during insulin signaling.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Peixes/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , RNA Mensageiro/genética , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sequência de Bases , Carnitina O-Palmitoiltransferase/química , Clonagem Molecular , DNA Complementar , Hepatócitos/enzimologia , Técnicas In Vitro , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
13.
Sci Rep ; 5: 7805, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25588812

RESUMO

The brain's impotence to utilize long-chain fatty acids as fuel, one of the dogmas in neuroscience, is surprising, since the nervous system is the tissue most energy consuming and most vulnerable to a lack of energy. Challenging this view, we here show in vivo that loss of the Drosophila carnitine palmitoyltransferase 2 (CPT2), an enzyme required for mitochondrial ß-oxidation of long-chain fatty acids as substrates for energy production, results in the accumulation of triacylglyceride-filled lipid droplets in adult Drosophila brain but not in obesity. CPT2 rescue in glial cells alone is sufficient to restore triacylglyceride homeostasis, and we suggest that this is mediated by the release of ketone bodies from the rescued glial cells. These results demonstrate that the adult brain is able to catabolize fatty acids for cellular energy production.


Assuntos
Drosophila melanogaster/metabolismo , Metabolismo Energético , Neuroglia/metabolismo , Envelhecimento/metabolismo , Sequência de Aminoácidos , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Homeostase , Humanos , Larva/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Dados de Sequência Molecular , Mutação , Obesidade/patologia , Oxirredução , Fosfolipídeos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sobrevida , Triglicerídeos/metabolismo
14.
J Sci Food Agric ; 95(4): 828-35, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25348739

RESUMO

BACKGROUND: Carnosic acid (CA), a major bioactive component of rosemary (Rosmarinus officinalis) leaves, is known to possess antioxidant and anti-adipogenic activities. In this study it was hypothesized that CA would ameliorate obesity-induced glucose intolerence and hepatic fat accumulation, and possible mechanisms are suggested. RESULTS: It was observed that a 0.02% (w/w) CA diet effectively decreased body weight, liver weight and blood triglyceride (TG) and total cholesterol levels (P < 0.05) compared with the control diet. CA at 0.02% significantly improved glucose tolerance, and hepatic TG accumulation was reduced in a dose-dependent manner. Hepatic lipogenic-related gene (L-FABP, SCD1 and FAS) expression decreased whereas lipolysis-related gene (CPT1) expression increased in animals fed the 0.02% CA diet (P < 0.05). Long-chain fatty acid content and the ratio of C18:1/C18:0 fatty acids were decreased in adipose tissue of animals fed the 0.02% CA diet (P < 0.05). Serum inflammatory mediators were also decreased significantly in animals fed the 0.02% CA diet compared with those of the obese control group (P < 0.05). CONCLUSION: These results suggest that CA is an effective anti-obesity agent that regulates fatty acid metabolism in C57BL/6J-ob/ob mice.


Assuntos
Abietanos/uso terapêutico , Fármacos Antiobesidade/uso terapêutico , Suplementos Nutricionais , Regulação Enzimológica da Expressão Gênica , Intolerância à Glucose/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/dietoterapia , Extratos Vegetais/uso terapêutico , Abietanos/administração & dosagem , Animais , Fármacos Antiobesidade/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/uso terapêutico , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Intolerância à Glucose/etiologia , Hiperlipidemias/etiologia , Hiperlipidemias/prevenção & controle , Fígado/enzimologia , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Tamanho do Órgão , Extratos Vegetais/administração & dosagem , Estearoil-CoA Dessaturase/antagonistas & inibidores , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Redução de Peso
15.
Mol Cell Biochem ; 394(1-2): 307-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24898781

RESUMO

Carnitine/acylcarnitine translocase and carnitine palmitoyltransferase 2 are members of the carnitine system, which are responsible of the regulation of the mitochondrial CoA/acyl-CoA ratio and of supplying substrates for the ß-oxidation to mitochondria. This study, using cross-Linking reagent, Blue native electrophoresis and immunoprecipitation followed by detection with immunoblotting, shows conclusive evidence about the interaction between carnitine palmitoyltransferase 2 and carnitine/acylcarnitine translocase supporting the channeling of acylcarnitines and carnitine at level of the inner mitochondrial membrane.


Assuntos
Carnitina Aciltransferases/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias Hepáticas/enzimologia , Membranas Mitocondriais/enzimologia , Animais , Western Blotting , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/química , Reagentes de Ligações Cruzadas/química , Formaldeído/química , Imunoprecipitação , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Eletroforese em Gel de Poliacrilamida Nativa , Ligação Proteica , Conformação Proteica , Ratos
16.
Biopolymers ; 101(4): 398-405, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24037959

RESUMO

Neurons contain a mammalian-specific isoform of the enzyme carnitine palmitoyltransferase 1 (CPT1C) that couples malonyl-CoA to ceramide levels thereby contributing to systemic energy homeostasis and feeding behavior. In contrast to CPT1A, which controls the rate-limiting step of long-chain fatty acid ß-oxidation in all tissues, the biochemical context and regulatory mechanism of CPT1C are unknown. CPT1 enzymes are comprised of an N-terminal regulatory domain and a C-terminal catalytic domain (CD) that are separated by two transmembrane helices. In CPT1A, the regulatory domain, termed N, adopts an inhibitory and non-inhibitory state, Nα and Nß, respectively, which differ in their association with the CD. To provide insight into the regulatory mechanism of CPT1C, we have determined the structure of its regulatory domain (residues Met1-Phe50) by NMR spectroscopy. In relation to CPT1A, the inhibitory Nα state was found to be structurally homologues whereas the non-inhibitory Nß state was severely destabilized, suggesting a change in overall regulation. The destabilization of Nß may contribute to the low catalytic activity of CPT1C relative to CPT1A and makes its association with the CD unlikely. In analogy to the stabilization of Nß by the CPT1A CD, non-inhibitory interactions of N of CPT1C with another protein may exist.


Assuntos
Encéfalo/enzimologia , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Sequência de Aminoácidos , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Estabilidade Enzimática , Humanos , Espectroscopia de Ressonância Magnética , Dados de Sequência Molecular , Peptídeos/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Soluções
17.
Biochim Biophys Acta ; 1832(6): 773-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23485643

RESUMO

Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid ß-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Carnitina O-Acetiltransferase/química , Carnitina O-Acetiltransferase/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Carnitina O-Acetiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/genética , Humanos , Especificidade por Substrato/fisiologia
18.
Genomics ; 101(3): 195-203, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23238057

RESUMO

Up to date, only limited information is available on genetically and functionally different isoforms of CPT I enzyme in fish. In the study, molecular characterization and their tissue expression profile of three CPT Iα isoforms (CPT Iα1a, CPT Iα1b and CPT Iα2a) and a CPT Iß isoform from yellow catfish Pelteobagrus fulvidraco is determined. The activities and kinetic features of CPT I from several tissues have also been analyzed. The four CPT I isoforms in yellow catfish present distinct differences in amino acid sequences and structure. They are widely expressed in liver, heart, white muscle, spleen, intestine and mesenteric adipose tissue of yellow catfish at the mRNA level, but with the varying levels. CPT I activity and kinetics show tissue-specific differences stemming from co-expression of different isoforms, indicating more complex pathways of lipid utilization in fish than in mammals, allowing for precise control of lipid oxidation in individual tissue.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Isoformas de Proteínas/genética , Sequência de Aminoácidos , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/metabolismo , Regulação Enzimológica da Expressão Gênica , Peroxidação de Lipídeos/genética , Fígado/metabolismo , Mitocôndrias Cardíacas/metabolismo , Dados de Sequência Molecular , Oxirredução , Isoformas de Proteínas/metabolismo , Distribuição Tecidual
19.
BMC Biochem ; 13: 23, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23098614

RESUMO

BACKGROUND: Carnitine Palmitoyltransferase-1c (CPT1c) is a neuron specific homologue of the carnitine acyltransferase family of enzymes. CPT1 isoenzymes transfer long chain acyl groups to carnitine. This constitutes a rate setting step for mitochondrial fatty acid beta-oxidation by facilitating the initial step in acyl transfer to the mitochondrial matrix. In general, neurons do not heavily utilize fatty acids for bioenergetic needs and definitive enzymatic activity has been unable to be demonstrated for CPT1c. Although there are studies suggesting an enzymatic role of CPT1c, its role in neurochemistry remains elusive. RESULTS: In order to better understand how CPT1c functions in neural metabolism, we performed unbiased metabolomic profiling on wild-type (WT) and CPT1c knockout (KO) mouse brains. Consistent with the notion that CPT1c is not involved in fatty acid beta-oxidation, there were no changes in metabolites associated with fatty acid oxidation. Endocannabinoids were suppressed in the CPT1c KO, which may explain the suppression of food intake seen in CPT1c KO mice. Although products of beta-oxidation were unchanged, small changes in carnitine and carnitine metabolites were observed. Finally, we observed changes in redox homeostasis including a greater than 2-fold increase in oxidized glutathione. This indicates that CPT1c may play a role in neural oxidative metabolism. CONCLUSIONS: Steady-state metabolomic analysis of CPT1c WT and KO mouse brains identified a small number of metabolites that differed between CPT1c WT and KO mice. The subtle changes in a broad range of metabolites in vivo indicate that CPT1c does not play a significant or required role in fatty acid oxidation; however, it could play an alternative role in neuronal oxidative metabolism.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metaboloma , Neurônios/metabolismo , Animais , Encéfalo/enzimologia , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Ingestão de Alimentos , Endocanabinoides/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Oxirredução
20.
J Biol Chem ; 286(49): 42545-42554, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-21990363

RESUMO

The enzyme carnitine palmitoyltransferase 1 (CPT1), which is anchored in the outer mitochondrial membrane (OMM), controls the rate-limiting step in fatty acid ß-oxidation in mammalian tissues. It is inhibited by malonyl-CoA, the first intermediate of fatty acid synthesis, and it responds to OMM curvature and lipid characteristics, which reflect long term nutrient/hormone availability. Here, we show that the N-terminal regulatory domain (N) of CPT1A can adopt two complex amphiphilic structural states, termed Nα and Nß, that interchange in a switch-like manner in response to offered binding surface curvature. Structure-based site-directed mutageneses of native CPT1A suggest Nα to be inhibitory and Nß to be noninhibitory, with the relative Nα/Nß ratio setting the prevalent malonyl-CoA sensitivity of the enzyme. Based on the amphiphilic nature of N and molecular modeling, we propose malonyl-CoA sensitivity to be coupled to the properties of the OMM by Nα-OMM associations that alter the Nα/Nß ratio. For enzymes residing at the membrane-water interface, this constitutes an integrative regulatory mechanism of exceptional sophistication.


Assuntos
Carnitina O-Palmitoiltransferase/química , Sequência de Aminoácidos , Animais , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Espectroscopia de Ressonância Magnética/métodos , Camundongos , Micelas , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Conformação Molecular , Dados de Sequência Molecular , Oxigênio/química , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA