Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.251
Filtrar
1.
Nat Commun ; 15(1): 8464, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39349471

RESUMO

The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm system to translocate over 330 effectors into the host cytosol. These virulence factors modify a variety of cell processes, including pathways involved in cell death and survival, to promote bacterial proliferation. Here, we show that the effector LegK3 is a eukaryotic-like Ser/Thr kinase that functions to suppress host apoptosis. Mechanistically, LegK3 directly phosphorylates multiple caspases involved in apoptosis signaling, including Caspase-3, Caspase-7, and Caspase-9. LegK3-induced phosphorylation of these caspases occurs at serine (Ser29 in Caspase-3 and Ser199 in Caspase-7) or threonine (Thr102 in Caspase-9) residues located in the prodomain or interdomain linkers. These modifications interfere with the suitability of the caspases as the substrates of initiator caspases or upstream regulators without impacting their proteolytic activity. Collectively, our study reveals a novel strategy used by L. pneumophila to maintain the integrity of infected cells for its intracellular growth.


Assuntos
Apoptose , Proteínas de Bactérias , Caspases , Legionella pneumophila , Legionella pneumophila/patogenicidade , Legionella pneumophila/enzimologia , Fosforilação , Humanos , Caspases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Animais , Interações Hospedeiro-Patógeno , Células HEK293 , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Doença dos Legionários/microbiologia , Doença dos Legionários/metabolismo , Camundongos , Caspase 7/metabolismo , Células HeLa , Caspase 3/metabolismo
2.
Front Immunol ; 15: 1423086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224595

RESUMO

Molecular chaperons stabilize protein folding and play a vital role in maintaining tissue homeostasis. To this intent, mitochondrial molecular chaperons may be involved in the regulation of oxidative phosphorylation and apoptosis during stress events such as infections. However, specific human infectious diseases relatable to defects in molecular chaperons have yet to be identified. To this end, we performed whole exome sequencing and functional immune assessment in a previously healthy Asian female, who experienced severe respiratory failure due to Pneumocystis jiroveci pneumonia and non-HIV-related CD4 lymphocytopenia. This revealed that a chaperon, the mitochondrial paralog of HSP90, TRAP1, may have been involved in the patient's susceptibility to an opportunistic infection. Two rare heterozygous variants in TRAP1, E93Q, and A64T were detected. The patient's peripheral blood mononuclear cells displayed diminished TRAP1 expression, but had increased active, cleaved caspase-3, caspase-7, and elevated IL-1ß production. Transfection of A64T and E93Q variants in cell lines yielded decreased TRAP1 compared to transfected wildtype TRAP1 and re-capitulated the immunotypic phenotype of enhanced caspase-3 and caspase-7 activity. When infected with live P. jiroveci, the E93Q or A64T TRAP1 mutant expressing cells also exhibited reduced viability. Patient cells and cell lines transfected with the TRAP1 E93Q/A64T mutants had impaired respiration, glycolysis, and increased ROS production. Of note, co-expression of E93Q/A64T double mutants caused more functional aberration than either mutant singly. Taken together, our study uncovered a previously unrecognized role of TRAP1 in CD4+ lymphocytopenia, conferring susceptibility to opportunistic infections.


Assuntos
Apoptose , Proteínas de Choque Térmico HSP90 , Pneumocystis carinii , Pneumonia por Pneumocystis , Humanos , Pneumonia por Pneumocystis/imunologia , Pneumonia por Pneumocystis/genética , Feminino , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Pneumocystis carinii/genética , Apoptose/genética , Predisposição Genética para Doença , Mitocôndrias/metabolismo , Sequenciamento do Exoma , Suscetibilidade a Doenças , Pessoa de Meia-Idade , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 7/genética
3.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273277

RESUMO

Our study highlights the apoptosis, cell cycle, DNA ploidy, and autophagy molecular mechanisms network to identify prostate pathogenesis and its prognostic role. Caspase 3/7 expressions, cell cycle, adhesion glycoproteins, autophagy, nuclear shrinkage, and oxidative stress by flow-cytometry analysis are used to study the BPH microenvironment's heterogeneity. A high late apoptosis expression by caspases 3/7 activity represents an unfavorable prognostic biomarker, a dependent predictor factor for cell adhesion, growth inhibition by arrest in the G2/M phase, and oxidative stress processes network. The heterogeneous aggressive phenotype prostate adenoma primary cell cultures present a high S-phase category (>12%), with an increased risk of death or recurrence due to aneuploid status presence, representing an unfavorable prognostic biomarker, a dependent predictor factor for caspase 3/7 activity (late apoptosis and necrosis), and cell growth inhibition (G2/M arrest)-linked mechanisms. Increased integrin levels in heterogenous BPH cultures suggest epithelial-mesenchymal transition (EMT) that maintains an aggressive phenotype by escaping cell apoptosis, leading to the cell proliferation necessary in prostate cancer (PCa) development. As predictor biomarkers, the biological mechanisms network involved in apoptosis, the cell cycle, and autophagy help to establish patient prognostic survival or target cancer therapy development.


Assuntos
Apoptose , Autofagia , Ciclo Celular , Hiperplasia Prostática , Humanos , Masculino , Hiperplasia Prostática/patologia , Hiperplasia Prostática/metabolismo , Hiperplasia Prostática/genética , Prognóstico , Cultura Primária de Células , Transição Epitelial-Mesenquimal/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/genética , Fenótipo , Idoso , Caspase 3/metabolismo , Proliferação de Células , Caspase 7/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo
4.
Eur J Pharmacol ; 982: 176885, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39128803

RESUMO

The distinct chemical structure of thiourea derivatives provides them with an advantage in selectively targeting cancer cells. In our previous study, we selected the most potent compounds, 2 and 8, with 3,4-dichloro- and 3-trifluoromethylphenyl substituents, respectively, across colorectal (SW480 and SW620), prostate (PC3), and leukemia (K-562) cancer cell lines, as well as non-tumor HaCaT cells. Our research has demonstrated their anticancer potential by targeting key molecular pathways involved in cancer progression, including caspase 3/7 activation, NF-κB (Nuclear Factor Kappa-light-chain-enhancer of activated B cells) activation decrease, VEGF (Vascular Endothelial Growth Factor) secretion, ROS (Reactive Oxygen Species) production, and metabolite profile alterations. Notably, these processes exhibited no significant alterations in HaCaT cells. The effectiveness of the studied compounds was also tested on spheroids (3D culture). Both derivatives 2 and 8 increased caspase activity, decreased ROS production and NF-κB activation, and suppressed the release of VEGF in cancer cells. Metabolomic analysis revealed intriguing shifts in cancer cell metabolic profiles, particularly in lipids and pyrimidines metabolism. Assessment of cell viability in 3D spheroids showed that SW620 cells exhibited better sensitivity to compound 2 than 8. In summary, structural modifications of the thiourea terminal components, particularly dihalogenophenyl derivative 2 and para-substituted analog 8, demonstrate their potential as anticancer agents while preserving safety for normal cells.


Assuntos
Antineoplásicos , NF-kappa B , Espécies Reativas de Oxigênio , Tioureia , Fator A de Crescimento do Endotélio Vascular , Humanos , Tioureia/farmacologia , Tioureia/análogos & derivados , Antineoplásicos/farmacologia , Antineoplásicos/química , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Linhagem Celular Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Caspase 7/metabolismo , Caspase 3/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Relação Estrutura-Atividade
5.
Future Med Chem ; 16(14): 1449-1464, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39190475

RESUMO

Aim: This study explores the cytotoxic and apoptotic effects of novel thiazolidinone-1,2,3-triazole hybrids on HT-1080, A-549, and MDA-MB-231 cancer cell lines.Methods & results: The synthesized compounds underwent comprehensive characterization (NMR and HRMS) to confirm their structures and purity. Subsequent anticancer activity screening across diverse cancer cell lines revealed promising antitumor potential notably, compounds 6f and 6g. Mechanistic investigations unveiled that compound 6f triggers apoptosis through the caspase-3/7 pathway. In terms of in silico studies, the compound 6f was identified as a potent inhibitor of caspase-3 and caspase-7.Conclusion: The present study underscores the therapeutic potential of thiazolidinone-1,2,3-triazole hybrids against certain cancer cells. These findings highlight a promising avenue for the development of cancer treatment strategies utilizing these (R)-Carvone-based derivatives.


[Box: see text].


Assuntos
Antineoplásicos , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Tiazolidinas , Triazóis , Humanos , Triazóis/química , Triazóis/farmacologia , Triazóis/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Tiazolidinas/química , Tiazolidinas/farmacologia , Tiazolidinas/síntese química , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Caspase 3/metabolismo , Estrutura Molecular , Caspase 7/metabolismo , Simulação de Acoplamento Molecular , Monoterpenos Cicloexânicos
6.
J Lipid Res ; 65(7): 100579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38880128

RESUMO

Sterol-regulatory element binding proteins (SREBPs) are a conserved transcription factor family governing lipid metabolism. When cellular cholesterol level is low, SREBP2 is transported from the endoplasmic reticulum to the Golgi apparatus where it undergoes proteolytic activation to generate a soluble N-terminal fragment, which drives the expression of lipid biosynthetic genes. Malfunctional SREBP activation is associated with various metabolic abnormalities. In this study, we find that overexpression of the active nuclear form SREBP2 (nSREBP2) causes caspase-dependent lytic cell death in various types of cells. These cells display typical pyroptotic and necrotic signatures, including plasma membrane ballooning and release of cellular contents. However, this phenotype is independent of the gasdermin family proteins or mixed lineage kinase domain-like (MLKL). Transcriptomic analysis identifies that nSREBP2 induces expression of p73, which further activates caspases. Through whole-genome CRISPR-Cas9 screening, we find that Pannexin-1 (PANX1) acts downstream of caspases to promote membrane rupture. Caspase-3 or 7 cleaves PANX1 at the C-terminal tail and increases permeability. Inhibition of the pore-forming activity of PANX1 alleviates lytic cell death. PANX1 can mediate gasdermins and MLKL-independent cell lysis during TNF-induced or chemotherapeutic reagents (doxorubicin or cisplatin)-induced cell death. Together, this study uncovers a noncanonical function of SREBPs as a potentiator of programmed cell death and suggests that PANX1 can directly promote lytic cell death independent of gasdermins and MLKL.


Assuntos
Morte Celular , Conexinas , Proteínas do Tecido Nervoso , Proteína de Ligação a Elemento Regulador de Esterol 2 , Humanos , Caspase 3/metabolismo , Caspase 7/metabolismo , Morte Celular/efeitos dos fármacos , Conexinas/metabolismo , Conexinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
7.
Virology ; 596: 110095, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38761641

RESUMO

Dengue virus (DENV) is a major global health concern, causing millions of infections annually. Understanding the cellular response to DENV infection is crucial for developing effective therapies. This study provides an in-depth analysis of the cellular response to Dengue virus (DENV) infection, with a specific focus on the interplay between microRNAs (miRNAs), apoptosis, and viral load across different DENV serotypes. Utilizing a variety of cell lines infected with four DENV serotypes, the research methodically quantifies viral load, and the expression levels of miRNA-15, miRNA-16, and BCL2 protein, alongside measuring apoptosis markers. Methodologically, the study employs quantitative PCR for viral load and miRNA expression analysis, and Western blot for apoptosis and BCL2 detection, with a statistical framework that includes ANOVA and correlation analysis to discern significant differences and relationships. The findings reveal that despite similar viral loads across DENV serotypes, DENV-2 exhibits a marginally higher load. A notable upregulation of miRNA-15 and miRNA-16 correlates positively with increased viral load, suggesting their potential role in modulating viral replication. Concurrently, a marked activation of caspases 3 and 7, along with changes in BCL2 protein levels, underscores the role of apoptosis in the cellular response to DENV infection. Conclusively, the study enhances the understanding of miRNA involvement in DENV pathogenesis, highlighting miRNA-15 and miRNA-16 as potential regulatory agents in viral replication and apoptosis. These findings pave the way for further exploration into miRNA-based therapeutic strategies against DENV infection.


Assuntos
Apoptose , Vírus da Dengue , Dengue , MicroRNAs , Proteínas Proto-Oncogênicas c-bcl-2 , Carga Viral , Replicação Viral , MicroRNAs/genética , MicroRNAs/metabolismo , Vírus da Dengue/fisiologia , Vírus da Dengue/genética , Humanos , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Dengue/virologia , Linhagem Celular , Caspase 3/metabolismo , Caspase 3/genética , Caspase 7/metabolismo , Caspase 7/genética , Sorogrupo
8.
Biol Res ; 57(1): 33, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802872

RESUMO

BACKGROUND: There is a need for novel treatments for neuroblastoma, despite the emergence of new biological and immune treatments, since refractory pediatric neuroblastoma is still a medical challenge. Phyto cannabinoids and their hemisynthetic derivatives have shown evidence supporting their anticancer potential. The aim of this research was to examine Phytocannabinoids or hemisynthetic cannabinoids, which reduce the SHSY-5Y, neuroblastoma cell line's viability. METHODS: Hexane and acetyl acetate extracts were produced starting with Cannabis sativa L. as raw material, then, 9-tetrahidrocannabinol, its acid counterpart and CBN were isolated. In addition, acetylated derivatives of THC and CBN were synthesized. The identification and purity of the chemicals was determined by High Performance Liquid Chromatography and 1H y 13C Magnetic Nuclear Resonance. Then, the capacity to affect the viability of SHSY-5Y, a neuroblastoma cell line, was examined using the resazurin method. Finally, to gain insight into the mechanism of action of the extracts, phytocannabinoids and acetylated derivatives on the examined cells, a caspase 3/7 determination was performed on cells exposed to these compounds. RESULTS: The structure and purity of the isolated compounds was demonstrated. The extracts, the phytocannabinoids and their acetylated counterparts inhibited the viability of the SHSY 5Y cells, being CBN the most potent of all the tested molecules with an inhibitory concentration of 50 percent of 9.5 µM. CONCLUSION: Each of the evaluated molecules exhibited the capacity to activate caspases 3/7, indicating that at least in part, the cytotoxicity of the tested phytocannabinoids and their hemi-synthetic derivatives is mediated by apoptosis.


Assuntos
Canabinoides , Cannabis , Caspase 3 , Sobrevivência Celular , Neuroblastoma , Extratos Vegetais , Humanos , Cannabis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Linhagem Celular Tumoral , Neuroblastoma/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/efeitos dos fármacos , Canabinoides/farmacologia , Canabinoides/química , Caspase 7/metabolismo , Apoptose/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão
9.
Sci Rep ; 14(1): 9598, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671063

RESUMO

Allergic conjunctivitis (AC) is the most common form of allergic eye disease and an increasingly prevalent condition. Topical eye drop treatments are the usual approach for managing AC, although their impact on the ocular surface is not frequently investigated. The aim of this study was to perform a comparative physicochemical characterization, and in vitro biological evaluations in primary conjunctival and corneal epithelial cells of the new multidose preservative-free bilastine 0.6% and main commercially available eye drops. MTT assay was used to measure cell viability; oxidative stress was analyzed with a ROS-sensitive probe; and apoptosis was evaluated monitoring caspase 3/7 activation. Differences in pH value, osmolarity, viscosity and phosphate levels were identified. Among all formulations, bilastine exhibited pH, osmolarity and viscosity values closer to tear film (7.4, 300 mOsm/l and ~ 1.5-10 mPa·s, respectively), and was the only phosphates-free solution. Single-dose ketotifen did not induce ROS production, and single-dose azelastine and bilastine only induced a mild increase. Bilastine and single-dose ketotifen and azelastine showed high survival rates attributable to the absence of preservative in its formulation, not inducing caspase-3/7-mediated apoptosis after 24 h. Our findings support the use of the new bilastine 0.6% for treating patients with AC to preserve and maintain the integrity of the ocular surface.


Assuntos
Apoptose , Benzimidazóis , Caspase 3 , Sobrevivência Celular , Soluções Oftálmicas , Conservantes Farmacêuticos , Soluções Oftálmicas/farmacologia , Humanos , Conservantes Farmacêuticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Benzimidazóis/farmacologia , Benzimidazóis/química , Caspase 3/metabolismo , Apoptose/efeitos dos fármacos , Piperidinas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Túnica Conjuntiva/efeitos dos fármacos , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/patologia , Caspase 7/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Conjuntivite Alérgica/tratamento farmacológico , Conjuntivite Alérgica/patologia , Conjuntivite Alérgica/metabolismo , Ftalazinas/farmacologia , Concentração Osmolar , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/metabolismo , Células Cultivadas , Viscosidade
10.
Biofactors ; 50(5): 980-996, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488303

RESUMO

Currently, a diagnosis with KRAS mutant pancreatic ductal adenocarcinoma (PDAC) means a death warrant, so finding efficient therapeutic options is a pressing issue. Here, we presented that pharmacologic ascorbate, chloroquine and resveratrol co-treatment exerted a synergistic cytotoxic effect on PDAC cell lines. The observed synergistic cytotoxicity was a general feature in all investigated cancer cell lines independent of the KRAS mutational status and seems to be independent of the autophagy inhibitory effect of chloroquine. Furthermore, it seems that apoptosis and necroptosis are also not likely to play any role in the cytotoxicity of chloroquine. Both pharmacologic ascorbate and resveratrol caused double-strand DNA breaks accompanied by cell cycle arrest. It seems resveratrol-induced cytotoxicity is independent of reactive oxygen species (ROS) generation and accompanied by a significant elevation of caspase-3/7 activity, while pharmacologic ascorbate-induced cytotoxicity shows strong ROS dependence but proved to be caspase-independent. Our results are particularly important since ascorbate and resveratrol are natural compounds without significant harmful effects on normal cells, and chloroquine is a known antimalarial drug that can easily be repurposed.


Assuntos
Apoptose , Ácido Ascórbico , Cloroquina , Espécies Reativas de Oxigênio , Resveratrol , Resveratrol/farmacologia , Humanos , Cloroquina/farmacologia , Ácido Ascórbico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Sinergismo Farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 3/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores , Autofagia/efeitos dos fármacos , Caspase 7/metabolismo , Caspase 7/genética , Antineoplásicos/farmacologia , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos
11.
Phytomedicine ; 128: 155536, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38513379

RESUMO

BACKGROUND: Lung cancer, a chronic and heterogeneous disease, is the leading cause of cancer-related death on a global scale. Presently, despite a variety of available treatments, their effectiveness is limited, often resulting in considerable toxicity and adverse effects. Additionally, the development of chemoresistance in cancer cells poses a challenge. Trilobolide-6-O-isobutyrate (TBB), a natural sesquiterpene lactone extracted from Sphagneticola trilobata, has exhibited antitumor effects. Its pharmacological properties in NSCLC lung cancer, however, have not been explored. PURPOSE: This study evaluated the impact of TBB on the A549 and NCI-H460 tumor cell lines in vitro, examining its antiproliferative properties and initial mechanisms of cell death. METHODS: TBB, obtained at 98 % purity from S. trilobata leaves, was characterized using chromatographic techniques. Subsequently, its impact on inhibiting tumor cell proliferation in vitro, TBB-induced cytotoxicity in LLC-MK2, THP-1, AMJ2-C11 cells, as well as its effects on sheep erythrocytes, and the underlying mechanisms of cell death, were assessed. RESULTS: In silico predictions have shown promising drug-likeness potential for TBB, indicating high oral bioavailability and intestinal absorption. Treatment of A549 and NCI-H460 human tumor cells with TBB demonstrated a direct impact, inducing significant morphological and structural alterations. TBB also reduced migratory capacity without causing toxicity at lower concentrations to LLC-MK2, THP-1 and AMJ2-C11 cell lines. This antiproliferative effect correlated with elevated oxidative stress, characterized by increased levels of ROS, superoxide anion radicals and NO, accompanied by a decrease in antioxidant markers: SOD and GSH. TBB-stress-induced led to changes in cell metabolism, fostering the accumulation of lipid droplets and autophagic vacuoles. Stress also resulted in compromised mitochondrial integrity, a crucial aspect of cellular function. Additionally, TBB prompted apoptosis-like cell death through activation of caspase 3/7 stressors. CONCLUSION: These findings underscore the potential of TBB as a promising candidate for future studies and suggest its viability as an additional component in the development of novel anticancer drugs prototypes.


Assuntos
Butiratos , Neoplasias Pulmonares , Sesquiterpenos , Sesquiterpenos/farmacologia , Butiratos/farmacologia , Traqueófitas/química , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Humanos , Células A549 , Células THP-1 , Testes de Toxicidade , Movimento Celular/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 7/metabolismo , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Animais
12.
Biomed Mater ; 19(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38215478

RESUMO

Hepatocellular carcinoma remains a challenging contributor to the global cancer and related mortality, and claims approximately 800,000 deaths each year. Dysregulation or loss of function mutations involving the tumor suppressor gene, phosphatase and tensin homolog deleted on chromosome ten (PTEN), has been well-characterized in various cancers to elicit anomalous cell proliferation and oncogenic transformation. However, the delivery and bioavailability of genes/drugs of interest to carcinomas remains a serious bottleneck behind the success of any anti-cancer formulation. In this study, we have engineered nanoliposomes containing PTEN plasmids, plumbagin, and antioxidant cerium oxide nanoparticles (Lipo-PTEN-Plum) to restore the PTEN expression and inhibit the AKT/PI3K pathway. The Lipo-PTEN-Plum was quasi-spherical in shape with ∼110 nm diameter and ∼64% plumbagin loading efficiency. The Lipo-PTEN-Plum was successfully internalized HepG2 cells, restore PTEN expression and inhibit PI3K/AKT pathway to induce death in cells grown in monolayer and in form of spheroids. Mechanistically, the formulation showed G2/M cell cycle arrest, DNA damage and apoptosis in hepatic cancer cells. Other cellular events such as Caspase-7 overexpression and PI3K (phosphoinositide 3-kinase), AKT (a serine/threonine protein kinase), PARP [Poly (ADP-ribose) polymerases], and mTOR (Mammalian target of rapamycin) inhibition led to the apoptosis in hepatic cancer cells. The mRNA expression profile of PTEN, PI3K, AKT3, Caspase-7, PARP and mTOR proteins, primarily controlling the cancer cell proliferation and apoptosis, suggest that exogenous supply of PTEN could regulate the expression of oncogenic proteins and thus cancer progression.


Assuntos
Neoplasias Hepáticas , Naftoquinonas , Fosfatidilinositol 3-Quinases , Humanos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/farmacologia , Caspase 7/genética , Caspase 7/farmacologia , Antioxidantes , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Apoptose , Plasmídeos , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo
13.
Cell Death Differ ; 30(9): 2120-2134, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37591921

RESUMO

GSDMB is associated with several inflammatory diseases, such as asthma, sepsis and colitis. GZMA is released by cytotoxic lymphocytes and cleaves GSDMB at the K244 site and to induce GSDMB N-terminus dependent pyroptosis. This cleavage of GSDMB is noncell autonomous. In this study, we demonstrated that the GSDMB-N domain (1-91 aa) was important for a novel cell-autonomous function and that GSDMB could bind caspase-4 and promote noncanonical pyroptosis. Furthermore, activated caspase-7 cleaved GSDMB at the D91 site to block GSDMB-mediated promotion of noncanonical pyroptosis during apoptosis. Mechanistically, the cleaved GSDMB-C-terminus (92-417 aa) binds to the GSDMB-N-terminus (1-91 aa) to block the function of GSDMB. During E. coli and S. Typhimurium infection, inhibition of the caspase-7/GSDMB axis resulted in more pyroptotic cells. Furthermore, in a septic mouse model, caspase-7 inhibition or deficiency in GSDMB-transgenic mice led to more severe disease phenotypes. Overall, we demonstrate that apoptotic caspase-7 activation inhibits non-canonical pyroptosis by cleaving GSDMB and provide new targets for sepsis therapy.


Assuntos
Piroptose , Sepse , Animais , Camundongos , Apoptose , Caspase 7 , Escherichia coli , Camundongos Transgênicos
14.
Sci Rep ; 13(1): 11346, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443185

RESUMO

In the current study, we designed and synthesized a series of new quinoline derivatives 10a-p as antiproliferative agents targeting cancer through inhibition of VEGFR-2. Preliminary molecular docking to assess the interactions of the designed derivatives with the binding site of VEGFR-2 (PDB code: 4ASD) displayed binding poses and interactions comparable to sorafenib. The synthesized compounds exhibited VEGFR-2 inhibitory activity with IC50 ranging from 36 nM to 2.23 µM compared to sorafenib (IC50 = 45 nM), where derivative 10i was the most potent. Additionally, the synthesized derivatives were evaluated in vitro for their cytotoxic activity against HepG2 cancer cell line. Seven compounds 10a, 10c, 10d, 10e, 10i, 10n and 10o (IC50 = 4.60, 4.14, 1.07, 0.88, 1.60, 2.88 and 2.76 µM respectively) displayed better antiproliferative activity than sorafenib (IC50 = 8.38 µM). Compound 10i was tested against Transformed Human Liver Epithelial-2 normal cell line (THLE-2) to evaluate its selective cytotoxicity. Furthermore, 10i, as a potent representative of the series, was assayed for its apoptotic activity and cell cycle kinetics' influence on HepG2, its effects on the gene expression of VEGFR-2, and protein expression of the apoptotic markers Caspase-7 and Bax. Compound 10i proved to have a potential role in apoptosis by causing significant increase in the early and late apoptotic quartiles, a remarkable activity in elevating the relative protein expression of Bax and Caspase-7 and a significant reduction of VEGFR-2 gene expression. Collectively, the obtained results indicate that compound 10i has a promising potential as a lead compound for the development of new anticancer agents.


Assuntos
Antineoplásicos , Quinolonas , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Caspase 7/metabolismo , Sorafenibe/farmacologia , Quinolonas/farmacologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Simulação de Acoplamento Molecular , Proteína X Associada a bcl-2 , Inibidores de Proteínas Quinases/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Proliferação de Células , Desenho de Fármacos
15.
Arch Pharm (Weinheim) ; 356(9): e2300105, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37401845

RESUMO

New halogenated thiourea derivatives were synthesized via the reaction of substituted phenylisothiocyanates with aromatic amines. Their cytotoxic activity was examined in in vitro studies against solid tumors (SW480, SW620, PC3), a hematological malignance (K-562), and normal keratinocytes (HaCaT). Most of the compounds were more effective against SW480 (1a, 3a, 3b, 5j), K-562 (2b, 3a, 4a), or PC3 (5d) cells than cisplatin, with favorable selectivity. Their anticancer mechanisms were studied by Annexin V-fluorescein-5-isothiocyanate apoptosis, caspase-3/caspase-7 assessment, cell cycle analysis, interleukin-6 (IL-6) release inhibition, and reactive oxygen species (ROS) generation assay. Thioureas 1a, 2b, 3a, and 4a were the most potent activators of early apoptosis in K-562 cells, and substances 1a, 3b, 5j triggered late-apoptosis or necrosis in SW480 cells. This proapoptotic effect was proved by the significant increase of caspase-3/caspase-7 activation. Cell cycle analysis revealed that derivatives 1a, 3a, 5j increased the number of SW480 and K-562 cells in the sub-G1 and/or G0/G1 phases, and one evoked cycle arrest at the G2 phase. The most potent thioureas inhibited IL-6 cytokine secretion from PC3 cells and both colon cancer cell lines. Apoptosis-inducing compounds also increased ROS production in all tumor cell cultures, which may enhance their anticancer properties.


Assuntos
Antineoplásicos , Neoplasias , Caspase 3/metabolismo , Caspase 7/metabolismo , Relação Estrutura-Atividade , Feniltioureia/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Interleucina-6/farmacologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Apoptose , Proliferação de Células
16.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176099

RESUMO

Smart pH-responsive niosomes loaded with either Oxaliplatin (Ox), Ylang ylang essential oil (Y-oil), or co-loaded with both compounds (Ox-Y) (Ox@NSs, Y@NSs, and Ox-Y@NSs, respectively) were formulated utilizing the thin film method. The developed nanocontainers had a spherical morphology with mean particle sizes lower than 170 nm and showed negative surface charges, high entrapment efficiencies, and a pH-dependent release over 24 h. The prepared pH-responsive niosomes' cytotoxicity was tested against the invasive triple-negative breast cancer (MDA-MB-231) cells, compared to free OX and Y-oil. All niosomal formulations loaded with Ox and/or Y-oil significantly improved cytotoxic activity relative to their free counterparts. The Ox-Y@NSs demonstrated the lowest IC50 (0.0002 µg/mL) when compared to Ox@NSs (0.006 µg/mL) and Y@NSs (18.39 µg/mL) or unloaded Ox (0.05 µg/mL) and Y-oil (29.01 µg/mL). In addition, the percentages of the MDA-MB-231 cell population in the late apoptotic and necrotic quartiles were profoundly higher in cells treated with the smart Ox-Y@NSs (8.38% and 5.06%) than those exposed to free Ox (7.33% and 1.93%) or Y-oil (2.3% and 2.13%) treatments. Gene expression analysis and protein assays were performed to provide extra elucidation regarding the molecular mechanism by which the prepared pH-sensitive niosomes induce apoptosis. Ox-Y@NSs significantly induced the gene expression of the apoptotic markers Tp53, Bax, and Caspase-7, while downregulating the antiapoptotic Bcl2. As such, Ox-Y@NSs are shown to activate the intrinsic pathway of apoptosis. Moreover, the protein assay ascertained the apoptotic effects of Ox-Y@NSs, generating a 4-fold increase in the relative protein quantity of the late apoptotic marker Caspase-7. Our findings suggest that combining natural essential oil with synthetic platinum-based drugs in pH-responsive nanovesicles is a promising approach to breast cancer therapy.


Assuntos
Antineoplásicos , Cananga , Óleos Voláteis , Neoplasias de Mama Triplo Negativas , Humanos , Oxaliplatina/farmacologia , Caspase 7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Lipossomos , Óleos Voláteis/farmacologia , Óleos de Plantas , Antineoplásicos/farmacologia , Concentração de Íons de Hidrogênio
17.
Chemistry ; 29(40): e202300872, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37005499

RESUMO

Caspase-7 (C7), a cysteine protease involved in apoptosis, is a valuable drug target for its role in human diseases (e. g., Parkinson's, Alzheimer's, sepsis). The C7 allosteric site has great potential for small-molecule targeting, but numerous drug discovery efforts have identified precious few allosteric inhibitors. Here we present the first selective, drug-like inhibitor of C7 along with several other improved inhibitors based on our previous fragment hit. We also provide a rational basis for the impact of allosteric binding on the C7 catalytic cycle by using an integrated approach including X-ray crystallography, stopped-flow kinetics, and molecular dynamics simulations. Our findings suggest allosteric binding disrupts C7 pre-acylation by neutralization of the catalytic dyad, displacement of substrate from the oxyanion hole, and altered dynamics of substrate binding loops. This work advances drug targeting efforts and bolsters our understanding of allosteric structure-activity relationships (ASARs).


Assuntos
Simulação de Dinâmica Molecular , Humanos , Caspase 7/metabolismo , Regulação Alostérica , Conformação Proteica , Sítio Alostérico , Cristalografia por Raios X
18.
Artigo em Inglês | MEDLINE | ID: mdl-37114104

RESUMO

Objective: LncRNAs are closely correlated with chronic obstructive pulmonary disease (COPD). We investigated the molecular mechanism of lncRNA RP11-521C20.3, which targets the action of the Bcl-2 modifying factor (BMF) signaling pathway in the apoptosis of cigarette smoke extract (CSE)-treated A549 cells. Methods: Lung tissues derived from cigarette smoke exposed rats (COPD group) and controls were examined using TUNEL assay for apoptotic cells and using immunohistochemistry for BMF expression levels. Overexpression and knockdown of BMF by lentiviral vector transfection were used to explore the role of BMF on the apoptosis of CSE-treated A549 cells. Overexpression and knockdown of RP11-521C20.3 were used to assess the effect of RP11-521C20.3 on the expression levels of BMF and apoptosis in CSE-treated A549 cells. Cell proliferation, mitochondrial morphology, and apoptosis were assessed in A549 cells. Real-time quantitative polymerase chain reactions and Western blotting detected the expression of apoptosis-related molecules. Results: The number of apoptotic cells and the level of BMF protein were significantly increased in lung tissues of the COPD group compared to the control group. Overexpression of BMF or knockdown of RP11-521C20.3 in CSE-treated A549 cells increased apoptosis, inhibited cell proliferation, and exacerbated mitochondrial damage. There were also increased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and decreased protein levels of Bcl-2 and survivin. Knockdown of BMF or overexpression of RP11-521C20.3 in CSE-treated A549 cells attenuated apoptosis, promoted cell proliferation, and alleviated mitochondrial damage. Observed effects also included decreased protein levels of p53, cleaved caspase-3, and cleaved caspase-7, and increased protein levels of Bcl-2 and survivin. In CSE-treated A549 cells, overexpression of RP11-521C20.3 suppressed the expression of BMF mRNA and protein. Conclusion: In CSE-treated A549 cells, BMF promoted apoptosis and RP11-521C20.3 might target the BMF signaling axis to protect CSE-treated A549 cells from apoptosis.


Assuntos
Fumar Cigarros , Doença Pulmonar Obstrutiva Crônica , RNA Longo não Codificante , Ratos , Animais , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , RNA Longo não Codificante/genética , Células A549 , Survivina/genética , Survivina/metabolismo , Survivina/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Caspase 7/farmacologia , Fumar Cigarros/efeitos adversos , Proteína Supressora de Tumor p53 , Apoptose , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Transdução de Sinais , Nicotiana , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/farmacologia
19.
Appl Biochem Biotechnol ; 195(11): 6927-6941, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36951939

RESUMO

We investigated the possible anticancer mechanisms of Pteris vittata [PV] n-hexane extract on MCF-7 [breast cancer cell line]. Cultured cell lines were treated with various concentrations of this extract ± Baf-A1 [autophagic inhibitor]. Cells' viability, apoptotic markers [caspase-7, Bax, and Bcl-2], autophagic markers [light chain 3 [LC-3] and P62/SQSTM1]], and the tumor suppressor P53 and its mRNA were checked by their corresponding methods. Treated cell lines showed significant concentration and time-dependent reductions in cell viability in response to PV-n-hexane extract and also exhibited a concomitant induction of apoptosis [increased chromatin condensation, nuclear fragmentation, and pro-apoptotic Bax, and cleaved caspase-7 levels while decreased Bcl-2 levels] and autophagy [increased autophagosomes vacuoles, and LC3B II levels while decreased P62/SQSTM1 levels]. Moreover, PV-n-hexane extract-treated cells showed significant increases in the P53 and its mRNA levels. The addition of Baf-A1 reversed the PV-n-hexane extract autophagic effects and increased apoptotic cell percentage with a much increase in the cleaved caspase-7 and P53 protein and its mRNA levels. We concluded that the PV-n-hexane extract exhibits cytotoxic effects on the MCF-7 cell line with significant reductions in cell viability and concomitant autophagy and apoptosis induction. Inhibition of autophagy in the PV-treated MCF-7 cells enhances apoptosis via a p35-dependent pathway.


Assuntos
Antineoplásicos , Neoplasias da Mama , Pteris , Humanos , Feminino , Linhagem Celular Tumoral , Caspase 7/metabolismo , Caspase 7/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Pteris/metabolismo , Proteína X Associada a bcl-2/metabolismo , Egito , Proteína Sequestossoma-1/metabolismo , Apoptose , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Células MCF-7 , Neoplasias da Mama/metabolismo , RNA Mensageiro , Autofagia
20.
Anatol J Cardiol ; 27(3): 135-145, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36856595

RESUMO

BACKGROUND: Pistacia vera L. (green pistachio) has been shown to increase antioxidant capacity and protect against cardiovascular diseases and cancer. This study investigated the protective effect of the Pistacia vera L. hull in rats with experimental cardiac damage induced by doxorubicin. METHODS: Sixty adult Wistar albino rats were randomly divided into 5 groups (n = 12). Sham, doxorubicin, doxorubicin + Pistacia vera L. extract 50 mg/kg, doxorubicin + Pistacia vera L. extract 100 mg/kg, and Pistacia vera L. extract 100 mg/kg. Biochemistry parameters, total antioxidant status, total oxidant status, oxidative stress index, 8-hydroxydeoxy guanosine, and caspase 3/7 values were measured in serum samples. Excised heart tissues were examined histopathologically. RESULTS: The groups were statistically significantly different in 8hydroxydeoxy guanosine, caspase 3/7, total antioxidant status, total oxidant status, oxidative stress index, and basal biochemical parameter values (P <.05, P <.001). In group II, 8-hydroxydeoxy guanosine, caspase 3/7, and total oxidant status values increased while the total antioxidant status value decreased (P <.001). In the treatment groups (group III and group IV), 8-hydroxydeoxy guano sine and caspase 3/7 values decreased compared to group II (P < .001). While total oxidant status and oxidative stress index values decreased in the treatment groups, total antioxidant status values increased (P <.001). The histopathological examination of the heart revealed fewer areas of focal necrosis in the treatment groups compared to group II. CONCLUSION: In this study, the cardioprotective effect of Pistacia vera L. hull extract was investigated in vivo. It was shown that Pistacia vera L. hull extract reduced apoptosis and deoxyribonucleic acid damage in the face of cardiac damage and had antioxidant activity. Future studies will increase our knowledge on this subject.


Assuntos
Antioxidantes , Pistacia , Animais , Ratos , Caspase 3 , Doxorrubicina , Guanosina , Oxidantes , Extratos Vegetais , Ratos Wistar , Caspase 7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA