Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Circ Res ; 134(7): e17-e33, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420756

RESUMO

BACKGROUND: Microvascular complications are the major outcome of type 2 diabetes progression, and the underlying mechanism remains to be determined. METHODS: High-throughput RNA sequencing was performed using human monocyte samples from controls and diabetes. The transgenic mice expressing human CTSD (cathepsin D) in the monocytes was constructed using CD68 promoter. In vivo 2-photon imaging, behavioral tests, immunofluorescence, transmission electron microscopy, Western blot analysis, vascular leakage assay, and single-cell RNA sequencing were performed to clarify the phenotype and elucidate the molecular mechanism. RESULTS: Monocytes expressed high-level CTSD in patients with type 2 diabetes. The transgenic mice expressing human CTSD in the monocytes showed increased brain microvascular permeability resembling the diabetic microvascular phenotype, accompanied by cognitive deficit. Mechanistically, the monocytes release nonenzymatic pro-CTSD to upregulate caveolin expression in brain endothelium triggering caveolae-mediated transcytosis, without affecting the paracellular route of brain microvasculature. The circulating pro-CTSD activated the caveolae-mediated transcytosis in brain endothelial cells via its binding with low-density LRP1 (lipoprotein receptor-related protein 1). Importantly, genetic ablation of CTSD in the monocytes exhibited a protective effect against the diabetes-enhanced brain microvascular transcytosis and the diabetes-induced cognitive impairment. CONCLUSIONS: These findings uncover the novel role of circulatory pro-CTSD from monocytes in the pathogenesis of cerebral microvascular lesions in diabetes. The circulatory pro-CTSD is a potential target for the intervention of microvascular complications in diabetes.


Assuntos
Catepsina D , Diabetes Mellitus Tipo 2 , Monócitos , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Precursores Enzimáticos , Camundongos Transgênicos , Monócitos/metabolismo , Transcitose/fisiologia
2.
Curr Pharm Des ; 29(30): 2387-2395, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37855363

RESUMO

BACKGROUND: In this study, we aimed to clarify the role and mechanism by which Cathepsin D (CTSD) mediates the advanced glycation end products (AGEs)-induced proliferation of vascular smooth muscle cells (VSMCs). METHODS: We conducted a Western blotting assay and co-immunoprecipitation assay to detect the expression of target proteins and the interaction between different proteins. Cell Counting Kit-8 (CCK-8) assay and 5- ethynyl-2'-deoxyuridine (EdU) were used to evaluate the proliferation. RESULTS: AGEs significantly promoted phenotypic switching and proliferation of VSMCs in a concentration-dependent manner. This effect of AGEs was accompanied by inhibition of CTSD. Both the proliferation of VSMCs and inhibition of CTSD induced by AGEs could be attenuated by the specific inhibitor of the receptor for advanced glycation end products (RAGE), FPS-ZM1. Overexpression of CTSD significantly alleviated these effects of AGEs on VSMCs. The mechanism of CTSD action in VSMCs was also explored. Overexpression of CTSD reduced the activation of p-ERK caused by AGEs. By contrast, the knockdown of CTSD, elicited using a plasmid containing short hairpin RNA (shRNA) against CTSD, further increased the activation of p-ERK compared to AGEs alone. Additionally, co-immunoprecipitation studies revealed an endogenous interaction between CTSD, a protease, and p-ERK, its potential substrate. CONCLUSION: It has been demonstrated that CTSD downregulates the level of phosphorylated ERK by degrading its target, and this interaction plays a critical role in the proliferation of VSMCs induced by the AGE/RAGE axis. These results provide a novel insight into the prevention and treatment of vascular complications in diabetes.


Assuntos
Produtos Finais de Glicação Avançada , Músculo Liso Vascular , Humanos , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Produtos Finais de Glicação Avançada/farmacologia , Produtos Finais de Glicação Avançada/metabolismo , Músculo Liso Vascular/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo
3.
J Neuroimmunol ; 382: 578101, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536050

RESUMO

Ginkgo biloba extract (EGb-761) is well-recognized to have neuroprotective properties. Meanwhile, autophagy machinery is extensively involved in the pathophysiological processes of ischemic stroke. The EGb-761 is widely used in the clinical treatment of stroke patients. However, its neuroprotective mechanisms against ischemic stroke are still not fully understood. The present study was conducted to uncover whether the pharmacological effects of EGb-761 can be executed by modulation of the autophagic/lysosomal signaling axis. A Sprague-Dawley rat model of ischemic stroke was established by middle cerebral artery occlusion (MCAO) for 90 min, followed by reperfusion. The EGb-761 was then administered to the MCAO rats once daily for a total of 7 days. Thereafter, the penumbral tissues were acquired to detect proteins involved in the autophagic/lysosomal pathway including Beclin1, LC-3, SQSTM1/p62, ubiquitin, cathepsin B, and cathepsin D by western blot and immunofluorescence, respectively. Subsequently, the therapeutic outcomes were evaluated by measuring the infarct volume, neurological deficits, and neuron survival. The results showed that the autophagic activities of Beclin1 and LC3-II in neurons were markedly promoted by 7 days of EGb-761 therapy. Meanwhile, the autophagic cargoes of insoluble p62 and ubiquitinated proteins were effectively degraded by EGb-761-augmented lysosomal activity of cathepsin B and cathepsin D. Moreover, the infarction size, neurological deficiencies, and neuron death were also substantially attenuated by EGb-761 therapy. Taken together, our study suggests that EGb-761 exerts a neuroprotective effect against ischemic stroke by promoting autophagic/lysosomal signaling in neurons at the penumbra. Thus, it might be a new therapeutic target for treating ischemic stroke.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Fármacos Neuroprotetores , Acidente Vascular Cerebral , Ratos , Animais , Neuroproteção , Catepsina B/metabolismo , Catepsina B/farmacologia , Catepsina D/metabolismo , Catepsina D/farmacologia , Catepsina D/uso terapêutico , Proteína Beclina-1/farmacologia , Ratos Sprague-Dawley , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais , Autofagia , Lisossomos/metabolismo , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo
4.
Brain Res ; 1815: 148462, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315723

RESUMO

Mounting evidence suggests a role for oxidative stress and accumulation of dysfunctional organelle and misfolded proteins in PD. Autophagosomes mediate the clearance of these cytoplasmic proteins via delivery to lysosomes to form autophagolysosomes, followed by degradation of the protein by lysosomal enzymes. In PD, autophagolysosome accumulation occurs initiating a plethora of events resulting in neuronal death by apoptosis. This study evaluated the effect of Dimethylfumarate (DMF), an Nrf2 activator in the rotenone-induced mouse PD model. In PD mice, there was decreased expression of LAMP2 and LC3, which resulted in inhibition of autophagic flux and increased expression of cathepsin D, which mediated apoptosis. The role of Nrf2 activation in alleviating oxidative stress is well known. Our study elucidated the novel mechanism underlying the neuroprotective effect of DMF. The loss of dopaminergic neurons induced by rotenone was lessened to a significant extent by pre-treatment with DMF. DMF promoted autophagosome formation and inhibited apoptosis by removing the inhibitory effect of p53 on TIGAR. TIGAR expression upregulated LAMP2 expression and downregulated Cathepsin D, promoting autophagy and inhibiting apoptosis. Thus, it was proved that DMF confers neuroprotection against rotenone-induced dopaminergic neurodegeneration and could be used as a potential therapeutic agent for PD and its progression.


Assuntos
Fumarato de Dimetilo , Fator 2 Relacionado a NF-E2 , Camundongos , Animais , Fumarato de Dimetilo/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Catepsina D/farmacologia , Rotenona , Modelos Animais de Doenças , Autofagia , Apoptose , Monoéster Fosfórico Hidrolases , Proteínas Reguladoras de Apoptose
5.
Photodermatol Photoimmunol Photomed ; 39(5): 487-497, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37253092

RESUMO

BACKGROUND: Lysosomal cathepsin D (CTSD) can degrade internalized advanced glycation end products (AGEs) in dermal fibroblasts. CTSD expression is decreased in photoaged fibroblasts, which contributes to intracellular AGEs deposition and further plays a role in AGEs accumulation of photoaged skin. The mechanism under downregulated CTSD expression is unclear. OBJECTIVE: To explore possible mechanism of regulating CTSD expression in photoaged fibroblasts. METHODS: Dermal fibroblasts were induced into photoaging with repetitive ultraviolet A (UVA) irradiation. The competing endogenous RNA (ceRNA) networks were constructed to predict candidate circRNAs or miRNAs related with CTSD expression. AGEs-BSA degradation by fibroblasts was studied with flow cytometry, ELISA, and confocal microscopy. Effects of overexpressing circRNA-406918 via lentiviral transduction on CTSD expression, autophagy, AGE-BSA degradation were analyzed in photoaged fibroblasts. The correlation between circRNA-406918 and CTSD expression or AGEs accumulation in sun-exposed and sun-protected skin was studied. RESULTS: CTSD expression, autophagy, and AGEs-BSA degradation were significantly decreased in photoaged fibroblasts. CircRNA-406918 was identified to regulate CTSD expression, autophagy, and senescence in photoaged fibroblasts. Overexpressing circRNA-406918 potently decreased senescence and increased CTSD expression, autophagic flux, and AGEs-BSA degradation in photoaged fibroblasts. Moreover, circRNA-406918 level was positively correlated with CTSD mRNA expression and negatively associated with AGEs accumulation in photodamaged skin. Further, circRNA-406918 was predicted to mediate CTSD expression through sponging eight miRNAs. CONCLUSION: These findings suggest that circRNA-406918 regulates CTSD expression and AGEs degradation in UVA-induced photoaged fibroblasts and might exert a role in AGEs accumulation in photoaged skin.


Assuntos
MicroRNAs , Envelhecimento da Pele , Humanos , Catepsina D/genética , Catepsina D/metabolismo , Catepsina D/farmacologia , Fibroblastos/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , MicroRNAs/genética , RNA Circular/genética , RNA Circular/metabolismo , RNA Circular/farmacologia , Pele/metabolismo , Envelhecimento da Pele/genética , Raios Ultravioleta/efeitos adversos
6.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166703, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37001704

RESUMO

This study examined autophagy-lysosome pathway (ALP) perturbations in synovial monocytes/macrophages from patients with gouty arthritis (GA) and the associations of ALP perturbations with cell death. Synovial fluid mononuclear cells (SFMCs) and synovial tissues (STs) from patients with GA, as well as monosodium urate (MSU) crystal-exposed macrophages, underwent immunoblotting, quantitative polymerase chain reaction, and immunofluorescence analyses of markers linked to the ALP (microtubule-associated protein 1 light chain 3B [LC3B], p62, cathepsin D [CTSD], and lysosome-associated membrane protein 2 [LAMP2]) and cell death (caspase-3). GA STs underwent immunohistochemistry and immunofluorescence analyses to determine the distributions of LC3B-positive autophagosomes and macrophages. GA SFMCs and STs exhibited impaired autophagic degradation, indicated by elevated levels of LC3B and p62, along with CTSD upregulation and caspase-3 activation. Macrophages from GA STs exhibited significant accumulation of LC3B-positive autophagosomes. The temporal effects of MSU crystals on the ALP and the associations of these effects with cell death were investigated using a macrophage model of GA. MSU crystal-exposed macrophages exhibited early (2 h) autophagosome formation but later (6-24 h) autophagic flux impairment, demonstrated by p62 accumulation, lysosomal inhibitor failure to increase LC3B accumulation, and LC3B colocalization with p62. These macrophages exhibited autophagic flux impairment because of CTSD inactivation-mediated lysosomal dysfunction, which caused immature CTSD to accumulate within damaged LAMP2-positive lysosomes. This accumulation coincided with caspase-3-dependent cell death (24 h) that was unaffected by CTSD inhibition. These findings indicate that GA involves MSU crystal-induced impairment of autophagic degradation via CTSD inactivation-mediated lysosomal dysfunction, which promotes apoptosis in macrophages.


Assuntos
Artrite Gotosa , Humanos , Artrite Gotosa/induzido quimicamente , Artrite Gotosa/metabolismo , Caspase 3/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Ácido Úrico/farmacologia , Ácido Úrico/metabolismo , Apoptose , Autofagia , Macrófagos/metabolismo , Lisossomos/metabolismo
7.
Inflammopharmacology ; 30(6): 2521-2535, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35913649

RESUMO

Long-term sun exposure is the commonest cause of photoaging, where mutual interplay between autophagy, oxidative stress, and apoptosis is incriminated. In combating photoaging, pharmacological approaches targeted to modulate autophagy are currently gaining more ground. This study aimed to examine repurposing metformin use in such context with or without the antioxidant coenzyme Q10 (coQ10) in ultraviolet A (UVA) irradiation-induced skin damage. The study was conducted on 70 female CD1 mice that were randomly assigned into seven groups (10/group): normal control, vehicle-treated-UVA-exposed mice, three metformin UVA-exposed groups (Topical 1 and 10%, and oral 300 mg/kg), topical coQ10 (1%)-treated mice, and combined oral metformin with topical coQ10-treated UVA-exposed mice. After UVA-exposure for 10 weeks (3 times/week), macroscopic signs of photoaging were evaluated. Mice were then euthanized, and the skin was harvested for biochemical estimation of markers for oxidative stress, inflammation, matrix breakdown, and lysosomal function. Histopathological signs of photoaging were also evaluated with immunohistochemical detection of associated changes in autophagic and apoptotic markers. Metformin, mainly by topical application, improved clinical and histologic signs of photoaging. This was associated with suppression of the elevated oxidative stress, IL-6, matrix metalloproteinase 1, and caspase, with induction of cathepsin D and subsequent change in anti-LC3 and P62 staining in skin tissue. In addition to metformin antioxidant, anti-inflammatory, and antiapoptotic activities, its anti-photoaging effect is mainly attributed to enhancing autophagic flux by inducing cathepsin D. Its protective effect is boosted by coQ10, which supports their potential use in photoaging.


Assuntos
Metformina , Envelhecimento da Pele , Dermatopatias , Feminino , Camundongos , Animais , Catepsina D/metabolismo , Catepsina D/farmacologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Metformina/farmacologia , Raios Ultravioleta , Pele , Autofagia , Estresse Oxidativo , Apoptose
8.
Mol Neurobiol ; 59(5): 3091-3109, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35262870

RESUMO

We aim to investigate the mechanisms underlying the beneficial effects of exercise rehabilitation (ER) and/or astragaloside (AST) in counteracting amyloid-beta (Aß) pathology. Aß oligomers were microinjected into the bilateral ventricles to induce Aß neuropathology in rats. Neurobehavioral functions were evaluated. Cortical and hippocampal expressions of both BDNF/TrkB and cathepsin D were determined by the western blotting method. The rat primary cultured cortical neurons were incubated with BDNF and/or AST and ANA12 followed by exposure to aggregated Aß for 24 h. In vivo results showed that ER and/or AST reversed neurobehavioral disorders, downregulation of cortical and hippocampal expression of both BDNF/TrkB and cathepsin D, neural pathology, Aß accumulation, and altered microglial polarization caused by Aß. In vitro studies also confirmed that topical application of BDNF and/or AST reversed the Aß-induced cytotoxicity, apoptosis, mitochondrial distress, and synaptotoxicity and decreased expression of p-TrkB, p-Akt, p-GSK3ß, and ß-catenin in rat cortical neurons. The beneficial effects of combined ER (or BDNF) and AST therapy in vivo and in vitro were superior to ER (or BDNF) or AST alone. Furthermore, we observed that any gains from ER (or BDNF) and/or AST could be significantly eliminated by ANA-12, a potent BDNF/TrkB antagonist. These results indicate that whereas ER (or BDNF) and/or AST attenuate Aß pathology by reversing BDNF/TrkB signaling deficits and mitochondrial dysfunction, combining these two potentiates each other's therapeutic effects. In particular, AST can be an alternative therapy to replace ER.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Catepsina D , Peptídeos beta-Amiloides/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Hipocampo/metabolismo , Mitocôndrias/metabolismo , Ratos , Receptor trkB/metabolismo , Transdução de Sinais
9.
Mol Inform ; 39(1-2): e1900095, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31815371

RESUMO

Machine learning approaches are widely used to evaluate ligand activities of chemical compounds toward potential target proteins. Especially, exploration of highly selective ligands is important for the development of new drugs with higher safety. One difficulty in constructing well-performing model predicting such a ligand activity is the absence of data on true negative ligand-protein interactions. In other words, in many cases we can access to plenty of information on ligands that bind to specific protein, but less or almost no information showing that compounds don't bind to proteins of interest. In this paper, we suggested an approach to comprehensively explore candidates for ligands specifically targeting toward proteins without using information on the true negative interaction. The approach consists of 4 steps: 1) constructing a model that distinguishes ligands for the target proteins of interest from those targeting proteins that cause off-target effects, by using graph convolution neural network (GCNN); 2) extracting feature vectors after convolution/pooling processes and mapping their principal components in two dimensions; 3) specifying regions with higher density for two ligand groups through kernel density estimation; and 4) investigating the distribution of compounds for exploration on the density map using the same classifier and decomposer. If compounds for exploration are located in higher-density regions of ligand compounds, these compounds can be regarded as having relatively high binding affinity to the major target or off-target proteins compared with other compounds. We applied the approach to the exploration of ligands for ß-site amyloid precursor protein [APP]-cleaving enzyme 1 (BACE1), a major target for Alzheimer Disease (AD), with less off-target effect toward cathepsin D. We demonstrated that the density region of BACE1 and cathepsin D ligands are well-divided, and a group of natural compounds as a target for exploration of new drug candidates also has significantly different distribution on the density map.


Assuntos
Algoritmos , Secretases da Proteína Precursora do Amiloide/química , Ácido Aspártico Endopeptidases/química , Catepsina D/química , Redes Neurais de Computação , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Catepsina D/farmacologia , Humanos , Ligantes
10.
Mol Med Rep ; 11(5): 3866-71, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25573060

RESUMO

In the present study, it was demonstrated that the protein level of the apoptosis inhibitor Aven is regulated by the Akt signaling pathway, evidenced by the observation that Aven levels were significantly increased in MCF7 constitutively active (CA)­Akt cells and significantly inhibited following treatment with LY294002. This increase in Aven appears not to be mediated by transcriptional regulation and protein stabilization. However, the level of Aven was inversely correlated with the level of cathepsin D, which is a protease responsible for generating the C­terminal of Aven, ΔN­Aven, indicating that the level of Aven appears to be regulated by cathepsin D activity. It has previously been reported that ΔN­Aven is the active form of Aven, which functions as an anti­apoptotic molecule. Notably, low levels of ΔN­Aven were detected in MCF7 CA­Akt cells, which were more sensitive to anticancer drugs. Taken together, the current results suggest that the expression of Aven is regulated by the Akt signaling pathway through cathepsin D activity, which contributes to the sensitivity of cancer cells to chemotherapeutic agents.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/genética , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Membrana/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Catepsina D/farmacologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estabilidade Proteica , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica
11.
Mol Genet Metab ; 114(2): 138-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25541102

RESUMO

Mucopolysaccharidosis type I (MPS I) is due to deficient alpha-L-iduronidase (IDUA) which leads to storage of undegraded glycosaminoglycans (GAG). The severe form of the disease is characterized by mental retardation of unknown etiology. Trying to unveil the mechanisms that lead to cognitive impairment in MPS I, we studied alterations in the proteome from MPS I mouse hippocampus. Eight-month old mice presented increased LAMP-1 expression, GAG storage in neurons and glial cells, and impaired aversive and non-aversive memory. Shotgun proteomics was performed and 297 proteins were identified. Of those, 32 were differentially expressed. We found elevation in proteins such as cathepsins B and D; however their increase did not lead to cell death in MPS I brains. Glial fibrillary acid protein (GFAP) was markedly elevated, and immunohistochemistry confirmed a neuroinflammatory process that could be responsible for neuronal dysfunction. We didn't observe any differences in ubiquitin expression, as well as in other proteins related to protein folding, suggesting that the ubiquitin system is working properly. Finally, we observed alterations in several proteins involved in synaptic plasticity, including overexpression of post synaptic density-95 (PSD95) and reduction of microtubule-associated proteins 1A and 1B. These results together suggest that the cognitive impairment in MPS I mice is not due to massive cell death, but rather to neuronal dysfunction caused by multiple processes, including neuroinflammation and alterations in synaptic plasticity.


Assuntos
Transtornos Cognitivos/etiologia , Cognição , Hipocampo/metabolismo , Mucopolissacaridose I/complicações , Mucopolissacaridose I/metabolismo , Proteoma/análise , Proteômica , Animais , Encéfalo/fisiopatologia , Catepsina B/metabolismo , Catepsina D/metabolismo , Catepsina D/farmacologia , Modelos Animais de Doenças , Proteína Glial Fibrilar Ácida/metabolismo , Glicosaminoglicanos/metabolismo , Hipocampo/fisiopatologia , Iduronidase/deficiência , Proteínas de Membrana Lisossomal/genética , Proteínas de Membrana Lisossomal/metabolismo , Camundongos , Mucopolissacaridose I/fisiopatologia , Neuroglia/metabolismo , Neurônios/metabolismo
12.
Mutat Res ; 755(1): 6-10, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-23643527

RESUMO

Mycotoxins are considered to be significant contaminants of food and animal feed. Zearalenone (ZEA) is a hepatotoxic mycotoxin with estrogenic and anabolic activity found in cereal grains worldwide. ZEA affects hematological and immunological parameters in humans and rodents. The compound can induce cell death, cause lipid peroxidation, inhibit protein and DNA synthesis, and exert genotoxic effects. ZEA may cause increased phagolysosomal fragility in the kidney. Our research showed that exposure of human embryonic kidney (HEK293) cells to ZEA (10 or 20µM) resulted in a concentration-dependent increase in DNA strand breaks measured with the comet assay. Damage was reduced in cells pretreated with NH4Cl, pepstatin A, or desipramine for 1h. Production of reactive oxygen species (ROS) was increased in cells exposed to ZEA, but DNA strand break induction could not be inhibited by the antioxidant hydroxytyrosol (HT). These results suggest that oxidative stress does not play a key role in DNA strand breaks induced by ZEA, that lysosomal injury precedes DNA strand breaks, and that the lysosome may be a primary target for ZEA in HEK293 cells.


Assuntos
Dano ao DNA/efeitos dos fármacos , Estrogênios não Esteroides/farmacologia , Lisossomos/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Zearalenona/farmacologia , Catepsina D/farmacologia , Ensaio Cometa , Células HEK293 , Humanos , Lisossomos/metabolismo , Esfingomielina Fosfodiesterase/metabolismo
13.
PLoS One ; 7(3): e34308, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479596

RESUMO

The Tumor Susceptibility Gene 101 (Tsg101) encodes a multi-domain protein that mediates a variety of molecular and biological processes including the trafficking and lysosomal degradation of cell surface receptors. Conventional and conditional knockout models have demonstrated an essential requirement of this gene for cell cycle progression and cell viability, but the consequences of a complete ablation of Tsg101 on intracellular processes have not been examined to date. In this study, we employed mouse embryonic fibroblasts that carry two Tsg101 conditional knockout alleles to investigate the expression of ErbB receptor tyrosine kinases as well as stress-induced intracellular processes that are known to be associated with a defect in growth and cell survival. The conditional deletion of the Tsg101 gene in this well-controlled experimental model resulted in a significant reduction in the steady-state levels of the EGFR and ErbB2 but a stress-induced elevation in the phosphorylation of mitogen activated protein (MAP) kinases independent of growth factor stimulation. As part of an integrated stress response, Tsg101-deficient cells exhibited extensive remodeling of actin filaments and greatly enlarged lysosomes that were enriched with the autophagy-related protein LC3. The increase in the transcriptional activation and expression of LC3 and its association with Lamp1-positive lysosomes in a PI3K-dependent manner suggest that Tsg101 knockout cells utilize autophagy as a survival mechanism prior to their ultimate death. Collectively, this study shows that a knockout of the Tsg101 gene causes complex intracellular changes associated with stress response and cell death. These multifaceted alterations need to be recognized as they have an impact on defining particular functions for Tsg101 in processes such as signal transduction and lysosomal/endosomal trafficking.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Receptores ErbB/metabolismo , Fibroblastos/citologia , Receptor ErbB-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Actinas/química , Adenina/análogos & derivados , Adenina/metabolismo , Animais , Apoptose , Autofagia , Catepsina D/farmacologia , Ciclo Celular , Morte Celular , Deleção de Genes , Regulação da Expressão Gênica , Concentração de Íons de Hidrogênio , Lisossomos/metabolismo , Sistema de Sinalização das MAP Quinases , Macrolídeos/farmacologia , Camundongos , Camundongos Knockout
14.
Glia ; 60(3): 422-31, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22161990

RESUMO

Neuroaxonal degeneration is a pathological hallmark of multiple sclerosis (MS) contributing to irreversible neurological disability. Pathological mechanisms leading to axonal damage include autoimmunity to neuronal antigens. In actively demyelinating lesions, myelin is phagocytosed by microglia and blood-borne macrophages, whereas the fate of degenerating or damaged axons is unclear. Phagocytosis is essential for clearing neuronal debris to allow repair and regeneration. However, phagocytosis may lead to antigen presentation and autoimmunity, as has been described for neuroaxonal antigens. Despite this notion, it is unknown whether phagocytosis of neuronal antigens occurs in MS. Here, we show using novel, well-characterized antibodies to axonal antigens, that axonal damage is associated with HLA-DR expressing microglia/macrophages engulfing axonal bulbs, indicative of axonal damage. Neuronal proteins were frequently observed inside HLA-DR(+) cells in areas of axonal damage. In vitro, phagocytosis of neurofilament light (NF-L), present in white and gray matter, was observed in human microglia. The number of NF-L or myelin basic protein (MBP) positive cells was quantified using the mouse macrophage cell line J774.2. Intracellular colocalization of NF-L with the lysosomal membrane protein LAMP1 was observed using confocal microscopy confirming that NF-L is taken up and degraded by the cell. In vivo, NF-L and MBP was observed in cerebrospinal fluid cells from patients with MS, suggesting neuronal debris is drained by this route after axonal damage. In summary, neuroaxonal debris is engulfed, phagocytosed, and degraded by HLA-DR(+) cells. Although uptake is essential for clearing neuronal debris, phagocytic cells could also play a role in augmenting autoimmunity to neuronal antigens.


Assuntos
Microglia/fisiologia , Esclerose Múltipla/patologia , Neurônios/patologia , Fagocitose/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Catepsina D/farmacologia , Catepsinas/farmacologia , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microscopia Confocal , Pessoa de Meia-Idade , Esclerose Múltipla/líquido cefalorraquidiano , Proteína Básica da Mielina/líquido cefalorraquidiano , Proteína Básica da Mielina/metabolismo , Fibras Nervosas Mielinizadas/metabolismo , Fibras Nervosas Mielinizadas/patologia , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Proteínas de Neurofilamentos/efeitos dos fármacos , Proteínas de Neurofilamentos/metabolismo , Neurônios/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fatores de Tempo
15.
J Neurochem ; 117(4): 712-23, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21395581

RESUMO

The potent pro-inflammatory cytokine, interleukin-1ß (IL-1ß), is synthesized as an inactive 33-kDa precursor (pro-IL-1ß) and is processed by caspase 1 into the bioactive 17-kDa mature form. The P2X7 receptor, an ATP-gated cation channel, plays an essential role in caspase 1 activation, production and release of mature bioactive 17-kDa form. We recently reported ATP induces the release of an unconventional 20-kDa form of IL-1ß (p20-IL-1ß) from lipopolysaccharide-primed microglial cells. Emerging evidence suggests physiological relevance for p20-IL-1ß; however, the underlying mechanisms for its production and release remain unknown. Here, we investigated the pathways involved in the ATP-induced production of p20-IL-1ß using lipopolysaccharide-primed mouse microglial cells. The activation of P2X7 receptor by ATP triggered p20-IL-1ß production under acidic extracellular conditions. ATP-induced p20-IL-1ß production was blocked by pepstatin A, a potent inhibitor of the lysosomal protease, cathepsin D. The removal of extracellular Ca(2+) inhibited the p20-IL-1ß production as well as ATP-induced cathepsin D release via lysosome exocytosis. The acidic extracellular pH also facilitated the dilatation of membrane pore after ATP stimulation. Since facilitation of pore dilatation results in cytolysis accompanied with cytoplasmic pro-IL-1ß leakage, our data suggest the leaked pro-IL-1ß is processed into p20-IL-1ß by cathepsin D released after ATP stimulation under acidic extracellular conditions.


Assuntos
Catepsina D/farmacologia , Espaço Extracelular/metabolismo , Interleucina-1beta/biossíntese , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Receptores Purinérgicos P2X7/efeitos dos fármacos , Trifosfato de Adenosina/farmacologia , Animais , Western Blotting , Caspase 1/metabolismo , Linhagem Celular , Exocitose/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Imuno-Histoquímica , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/biossíntese , Pepstatinas/farmacologia
16.
Neurobiol Aging ; 32(2): 257-71, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19278755

RESUMO

Apolipoprotein-E (apoE) plays important roles in neurobiology and the apoE4 isoform increases risk for Alzheimer's disease (AD). ApoE peptides are biologically active and may be produced in the brain. It is unclear if apoE proteolysis is dependent on isoform or AD status and this was addressed here. Hippocampus, frontal cortex, occipital lobe and cerebellum samples were homogenized into fractions that were soluble in Tris-buffered saline (TBS), Triton X-100 or guanidine hydrochloride and analysed for apoE fragmentation by Western blotting. Approximately 20% of apoE3 was detected as fragments and this was predominantly as a 25 kDa peptide in TBS-soluble fractions. The concentration of TBS-soluble apoE fragments was two- to three-fold higher in apoE3 compared to apoE4 subjects. This difference was observed in all areas of the brain examined and was not related to AD status. Cathepsin-D treatment generated apoE fragments that were very similar to those detected in brain, however, no apoE isoform-specific differences in susceptibility to cathepsin-D proteolysis were detected. This indicates that proteolytic processing of apoE to form soluble fragments in the human brain is dependent on apoE isoform but not AD status.


Assuntos
Doença de Alzheimer/patologia , Apolipoproteínas E/metabolismo , Encéfalo/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E3/efeitos dos fármacos , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Apolipoproteína E4/efeitos dos fármacos , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/classificação , Apolipoproteínas E/efeitos dos fármacos , Apolipoproteínas E/genética , Catepsina D/farmacologia , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Hemostáticos/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Neuroblastoma/patologia , Fragmentos de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Estatísticas não Paramétricas , Trombina/farmacologia , Transfecção/métodos
17.
Cancer Res ; 68(12): 4666-73, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18559512

RESUMO

Cathepsin D (CD) up-regulation has been associated with human malignancy and poor prognosis. Thrombin up-regulated CD mRNA and protein in eight tumor cell lines as well as in human umbilical vascular endothelial cells (HUVEC). Thrombin increased the secretion of CD by 3- to 8-fold and enhanced chemotaxis ( approximately 2-fold) in 4T1 murine mammary CA cells, which was completely inhibited with the knockdown of CD. Secreted 4T1 CD induced neoangiogenesis by 2.4-fold on a chick chorioallantoic membrane, which was blocked in CD-KD cells. The addition of pure CD (2 ng) to the chick chorioallantoic membrane increased angiogenesis by 2.1-fold, which was completely inhibited by Pepstatin A (Pep A). CD enhanced human HUVEC chemotaxis and Matrigel tube formation by 2-fold, which was then blocked by Pep A. CD enhanced HUVEC matrix metalloproteinase 9 (MMP-9) activity by approximately 2-fold, which was completely inhibited by Pep A as well as a generic MMP inhibitor, GM6001. The injection of CD-KD 4T1 cells into syngeneic mice inhibited tumor growth by 3- to 4-fold compared with empty vector (EV) cells. Hirudin, a specific thrombin inhibitor, inhibited the growth of wild-type and EV cells by 2- to 3-fold, compatible with thrombin up-regulation of CD. CD and thrombin also contributed to spontaneous pulmonary metastasis; 4-fold nodule inhibition with CD versus EV and 4.6-fold inhibition with hirudin versus EV (P < 0.02). Thus, thrombin-induced CD contributes to the malignant phenotype by inducing tumor cell migration, nodule growth, metastasis, and angiogenesis. CD-induced angiogenesis requires the proteolytic activation of MMP-9.


Assuntos
Catepsina D/genética , Endotélio Vascular/efeitos dos fármacos , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/etiologia , Trombina/farmacologia , Animais , Western Blotting , Catepsina D/metabolismo , Catepsina D/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiotaxia , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ensaio de Imunoadsorção Enzimática , Hirudinas/farmacologia , Humanos , Imunoprecipitação , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/patologia , Pepstatinas/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Trombina/antagonistas & inibidores , Veias Umbilicais/citologia , Regulação para Cima
18.
J Am Soc Nephrol ; 19(2): 396-404, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18216317

RESUMO

Autoreactive T cells in patients with Goodpasture's disease are specific for epitopes in the Goodpasture antigen (the NC1 domain of the alpha3 chain of type IV collagen) that are rapidly destroyed during antigen processing to a degree that diminishes their presentation to T cells. We hypothesized that patients' autoreactive T cells exist because antigen processing prevents presentation of the self-epitopes they recognize, circumventing specific tolerance mechanisms. We predicted that autoreactive T cells specific for these peptides should also exist in healthy individuals, albeit at low frequency and in an unprimed state. We obtained blood from healthy unrelated donors and, using a panel of 45 alpha3(IV)NC1 peptides, identified alpha3(IV)NC1-specific T cells in all donors. Thirty-six of 45 peptides elicited a proliferative T cell response from at least one subject, and 6 of the peptides evoked a response in >50% of the individuals. This consistency was not caused by selectivity of HLA class II molecules because the donors expressed a diversity of HLA antigens, but was largely a result of the substrate-specificity of the endosomal proteases Cathepsin D and E. There was a significant correlation between high susceptibility to Cathepsin D digestion and the capacity to stimulate primary T cell responses (P = 0.00006). In summary, healthy individuals have low frequencies of unstimulated alpha3(IV)NC1-reactive T cells with similar specificities to the autoreactive T cells found in patients with Goodpasture disease. In both cases, existence of the alpha3(IV)NC1-reactive T cells can be accounted for by destructive processing.


Assuntos
Doença Antimembrana Basal Glomerular/imunologia , Autoantígenos/imunologia , Autoantígenos/metabolismo , Colágeno Tipo IV/imunologia , Colágeno Tipo IV/metabolismo , Tolerância Imunológica/imunologia , Linfócitos T/imunologia , Doadores de Sangue , Catepsina D/metabolismo , Catepsina D/farmacologia , Divisão Celular/imunologia , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Humanos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Linfócitos T/citologia , Linfócitos T/metabolismo
19.
J Am Soc Nephrol ; 18(3): 771-9, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17287425

RESUMO

The most abundant autoreactive T cells in patients with Goodpasture's disease are specific for peptides in the autoantigen that have high affinity for the disease-associated HLA class II molecule, DR15. How can such T cells escape self-tolerance mechanisms? This study showed that these peptides are highly susceptible to destruction in the earliest stages of antigen processing, and some must be cleaved for antigen digestion to be possible ("unlocking"). Goodpasture autoantigen [collagen alpha3(IV)NC1; approximately 31 kD] that was incubated with B cell lysosomes was cleaved within a few minutes to form approximately 9- and approximately 22-kD fragments, then increasing quantities of smaller peptides. The processing was completely abrogated by pepstatin A, a specific inhibitor of cathepsin D/E, even though lysosomal extracts contain a rich array of proteases. Purified cathepsin D generated the same major alpha3(IV)NC1 fragments as entire lysosomes, suggesting that cathepsin D cleavages are required to initiate alpha3(IV)NC1 processing. The initial unlocking cleavages destroyed two major self-epitopes, and subsequent preferred cleavages destroyed all of the other T cell epitopes that are recognized by most patients' autoreactive T cells. The responses of T cell clones that are specific for a major disease-associated peptide to antigen-pulsed intact antigen-presenting cells were substantially enhanced by pepstatin A treatment. Therefore, cathepsin D activity significantly diminishes presentation of alpha3(IV)NC1 peptides that are recognized by patients' T cells by destroying the peptides in early processing. These observations can explain why the mature T cell repertoire includes reactivity toward these self-peptides and suggests that a key factor in disease initiation is likely to be a shift in antigen processing.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Ácido Aspártico Endopeptidases/metabolismo , Autoantígenos/metabolismo , Catepsina D/farmacologia , Colágeno Tipo IV/metabolismo , Proteínas Serina-Treonina Quinases/imunologia , Linfócitos T/imunologia , Doença Antimembrana Basal Glomerular , Ácido Aspártico Endopeptidases/imunologia , Autoantígenos/efeitos dos fármacos , Catepsina D/antagonistas & inibidores , Catepsina E/antagonistas & inibidores , Colágeno Tipo IV/efeitos dos fármacos , Epitopos/imunologia , Humanos , Lisossomos/enzimologia , Lisossomos/fisiologia , Pepstatinas/farmacologia , Proteínas Serina-Treonina Quinases/efeitos dos fármacos
20.
Neuroscience ; 143(3): 689-701, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16997486

RESUMO

Proteolysis of apolipoprotein E (apoE) may be involved in the pathogenesis of Alzheimer's disease (AD). We previously identified aspartic protease(s) as possibly contributing to the proteolysis of apoE in human brain homogenates. The current study used biochemical and immunohistochemical methods to examine whether cathepsin D (catD) and cathepsin E (catE), candidate aspartic proteases, may be involved in apoE proteolysis. CatD was found to proteolyze both lipid-free recombinant full-length human apoE and lipidated human plasma full-length apoE (apoE4/dipalmitoylphosphatidylcholine-reconstituted discs). CatE was found to proteolyze lipid-free recombinant human apoE to a much greater extent than lipidated apoE. This proteolysis, as well as proteolysis of human apoE added to brain homogenates from apoE-deficient mice, was inhibited by pepstatin A (an aspartic protease inhibitor), but not by phenylmethanesulfonyl fluoride (a serine protease inhibitor). The major apoE fragment obtained with catD included the receptor-binding domain and had an apparent molecular weight similar to that found in human brain homogenates. There was little immunoreactivity for catE in AD brain tissue sections. In contrast, qualitative and quantitative analyses of immunostained sections of the frontal cortex revealed that catD and apoE are colocalized in a subset of predominantly dense-core neuritic plaques and in some neurofibrillary tangles. A positive correlation was observed between estimated duration of illness and the percentage of apoE-positive plaques that were also catD-positive. These results suggest that aspartic proteases, catD in particular, may be involved in proteolysis of apoE and perhaps contribute to the generation of apoE fragments previously implicated in AD pathology.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Catepsina D/metabolismo , Catepsina E/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Animais , Apolipoproteínas E/deficiência , Western Blotting/métodos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Catepsina D/farmacologia , Catepsina E/farmacologia , Interações Medicamentosas , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Pepstatinas/farmacologia , Fluoreto de Fenilmetilsulfonil/farmacologia , Fosfopiruvato Hidratase/metabolismo , Placa Amiloide/efeitos dos fármacos , Placa Amiloide/metabolismo , Mudanças Depois da Morte , Inibidores de Proteases/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA