Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 22(11)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-34071318

RESUMO

Cathepsin K-mediated thyroglobulin proteolysis contributes to thyroid hormone (TH) liberation, while TH transporters like Mct8 and Mct10 ensure TH release from thyroid follicles into the blood circulation. Thus, thyroid stimulating hormone (TSH) released upon TH demand binds to TSH receptors of thyrocytes, where it triggers Gαq-mediated short-term effects like cathepsin-mediated thyroglobulin utilization, and Gαs-mediated long-term signaling responses like thyroglobulin biosynthesis and thyrocyte proliferation. As reported recently, mice lacking Mct8 and Mct10 on a cathepsin K-deficient background exhibit excessive thyroglobulin proteolysis hinting towards altered TSH receptor signaling. Indeed, a combination of canonical basolateral and non-canonical vesicular TSH receptor localization was observed in Ctsk-/-/Mct8-/y/Mct10-/- mice, which implies prolonged Gαs-mediated signaling since endo-lysosomal down-regulation of the TSH receptor was not detected. Inspection of single knockout genotypes revealed that the TSH receptor localizes basolaterally in Ctsk-/- and Mct8-/y mice, whereas its localization is restricted to vesicles in Mct10-/- thyrocytes. The additional lack of cathepsin K reverses this effect, because Ctsk-/-/Mct10-/- mice display TSH receptors basolaterally, thereby indicating that cathepsin K and Mct10 contribute to TSH receptor homeostasis by maintaining its canonical localization in thyrocytes. Moreover, Mct10-/- mice displayed reduced numbers of dead thyrocytes, while their thyroid gland morphology was comparable to wild-type controls. In contrast, Mct8-/y, Mct8-/y/Mct10-/-, and Ctsk-/-/Mct8-/y/Mct10-/- mice showed enlarged thyroid follicles and increased cell death, indicating that Mct8 deficiency results in altered thyroid morphology. We conclude that vesicular TSH receptor localization does not result in different thyroid tissue architecture; however, Mct10 deficiency possibly modulates TSH receptor signaling for regulating thyrocyte survival.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Receptores da Tireotropina/metabolismo , Células Epiteliais da Tireoide/metabolismo , Glândula Tireoide/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/deficiência , Sistemas de Transporte de Aminoácidos Neutros/genética , Animais , Catepsina K/deficiência , Catepsina K/genética , Catepsina K/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Tireoglobulina/metabolismo , Glândula Tireoide/citologia , Hormônios Tireóideos/metabolismo , Tireotropina/sangue , Tireotropina/metabolismo
2.
Cell Prolif ; 54(7): e13058, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34053135

RESUMO

OBJECTIVES: To clarify the possible role and mechanism of Cathepsin K (CTSK) in alveolar bone regeneration mediated by jaw bone marrow mesenchymal stem cells (JBMMSC). MATERIALS AND METHODS: Tooth extraction models of Ctsk knockout mice (Ctsk-/- ) and their wildtype (WT) littermates were used to investigate the effect of CTSK on alveolar bone regeneration. The influences of deletion or inhibition of CTSK by odanacatib (ODN) on proliferation and osteogenic differentiation of JBMMSC were assessed by CCK-8, Western blot and alizarin red staining. To explore the differently expressed genes, RNA from WT and Ctsk-/- JBMMSC was sent to RNA-seq. ECAR, glucose consumption and lactate production were measured to identify the effect of Ctsk deficiency or inhibition on glycolysis. At last, we explored whether Ctsk deficiency or inhibition promoted JBMMSC proliferation and osteogenic differentiation through glycolysis. RESULTS: We found out that Ctsk knockout could promote alveolar bone regeneration in vivo. In vitro, we confirmed that both Ctsk knockout and inhibition by ODN could promote proliferation of JBMMSC, up-regulate expression of Runx2 and ALP, and enhance matrix mineralization. RNA-seq results showed that coding genes of key enzymes in glycolysis were significantly up-regulated in Ctsk-/- JBMMSC, and Ctsk deficiency or inhibition could promote glycolysis in JBMMSC. After blocking glycolysis by 3PO, the effect of Ctsk deficiency or inhibition on JBMMSC's regeneration was blocked subsequently. CONCLUSIONS: Our findings revealed that Ctsk knockout or inhibition could promote alveolar bone regeneration by enhancing JBMMSC regeneration via glycolysis. These results shed new lights on the regulatory mechanism of CTSK on bone regeneration.


Assuntos
Regeneração Óssea , Catepsina K/genética , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/metabolismo , Animais , Células da Medula Óssea/citologia , Catepsina K/deficiência , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Glucose/metabolismo , Glicólise , Arcada Osseodentária/citologia , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese
3.
Int J Mol Sci ; 22(4)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670411

RESUMO

Pycnodysostosis, a rare autosomal recessive skeletal dysplasia, is caused by a deficiency of cathepsin K. Patients have impaired bone resorption in the presence of normal or increased numbers of multinucleated, but dysfunctional, osteoclasts. Cathepsin K degrades collagen type I and generates N-telopeptide (NTX) and the C-telopeptide (CTX) that can be quantified. Levels of these telopeptides are increased in lactating women and are associated with increased bone resorption. Nothing is known about the consequences of cathepsin K deficiency in lactating women. Here we present for the first time normalized blood and CTX measurements in a patient with pycnodysostosis, exclusively related to the lactation period. In vitro studies using osteoclasts derived from blood monocytes during lactation and after weaning further show consistent bone resorption before and after lactation. Increased expression of cathepsins L and S in osteoclasts derived from the lactating patient suggests that other proteinases could compensate for the lack of cathepsin K during the lactation period of pycnodysostosis patients.


Assuntos
Reabsorção Óssea/enzimologia , Catepsina K/deficiência , Catepsina L/metabolismo , Catepsinas/metabolismo , Lactação/metabolismo , Osteoclastos/enzimologia , Picnodisostose/enzimologia , Adulto , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Catepsina K/metabolismo , Catepsina L/genética , Catepsinas/genética , Feminino , Humanos , Osteoclastos/patologia , Picnodisostose/genética , Picnodisostose/patologia
4.
J Hypertens ; 38(8): 1514-1524, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32205563

RESUMO

BACKGROUND: Chronic psychological stress (CPS) is linked to cardiovascular disease initiation and progression. Given that cysteinyl cathepsin K (CatK) participates in vascular remodeling and atherosclerotic plaque growth in several animal models, we investigated the role of CatK in the development of experimental neointimal hyperplasia in response to chronic stress. METHODS AND RESULTS: At first, male wild-type (CatK) mice that underwent carotid ligation injury were subjected to chronic immobilization stress. On postoperative and stressed day 14, the results demonstrated that stress accelerated injury-induced neointima hyperplasia. On day 4, stressed mice showed following: increased levels of monocyte chemoattractant protein-1, gp91phox, toll-like receptor-2 (TLR2), TLR4, and CatK mRNAs or/and proteins, oxidative stress production, aorta-derived smooth muscle cell (SMC) migration, and macrophage infiltration as well as targeted intracellular proliferating-related molecules. Stressed mice showed increased matrix metalloproteinase-2 (MMP-2) and MMP-9 mRNA expressions and activities and elastin disruption in the injured carotid arteries. Second, CatK and CatK deficiency (CatK) mice received ligation injury and stress to explore the role of CatK. The stress-induced harmful changes were prevented by CatK. Finally, CatK mice that had undergone ligation surgery were randomly assigned to one of two groups and administered vehicle or CatK inhibitor for 14 days. Pharmacological CatK intervention produced a vascular benefit. CONCLUSION: These data indicate that CatK deletion protects against the development of experimental neointimal hyperplasia via the attenuation of inflammatory overaction, oxidative stress production, and VSMC proliferation, suggesting that CatK is a novel therapeutic target for the management of CPS-related restenosis after intravascular intervention therapies.


Assuntos
Catepsina K , Neointima/metabolismo , Estresse Psicológico/metabolismo , Túnica Íntima/metabolismo , Animais , Catepsina K/deficiência , Catepsina K/metabolismo , Modelos Animais de Doenças , Hiperplasia , Camundongos
5.
Cell Mol Neurobiol ; 39(6): 823-831, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31065924

RESUMO

Severe haemorrhagic transformation (HT), a common complication of recombinant tissue plasminogen activator (rtPA) treatment, predicts poor clinical outcomes in acute ischaemic stroke. The search for agents to mitigate this effect includes investigating biomolecules involved in neovascularization. This study examines the role of Cathepsin K (Ctsk) in rtPA-induced HT after focal cerebral ischaemia in mice. After knockout of Ctsk, the gene encoding Ctsk, the outcomes of Ctsk+/+ and Ctsk-/- mice were compared 24 h after rtPA-treated cerebral ischaemia with respect to HT severity, neurological deficits, brain oedema, infarct volume, number of apoptotic neurons and activated microglia/macrophage, blood-brain barrier integrity, vascular endothelial growth factor (VEGF) expression and Akt-mTOR pathway activation. We observed that haemoglobin levels, brain oedema and infarct volume were significantly greater and resulted in more severe neurological deficits in Ctsk-/- than in Ctsk+/+ mice. Consistent with our hypothesis, the number of NeuN-positive neurons was lower and the number of TUNEL-positive apoptotic neurons and activated microglia/macrophage was higher in Ctsk-/- than in Ctsk+/+ mice. Ctsk knockout mice exhibited more severe blood-brain barrier (BBB) disruption, with microvascular endothelial cells exhibiting greater VEGF expression and lower ratios of phospo-Akt/Akt and phospo-mTOR/mTOR than in Ctsk+/+ mice. This study is the first to provide molecular insights into Ctsk-regulated HT after cerebral ischaemia, suggesting that Ctsk deficiency may disrupt the BBB via Akt/mTOR/VEGF signalling, resulting in neurological deficits and neuron apoptosis. Ctsk administration has the potential as a novel modality for improving the safety of rtPA treatment following stroke.


Assuntos
Isquemia Encefálica/complicações , Catepsina K/deficiência , Hemorragia Cerebral/etiologia , Animais , Apoptose , Barreira Hematoencefálica/patologia , Catepsina K/metabolismo , Infarto da Artéria Cerebral Média/patologia , Macrófagos/patologia , Masculino , Camundongos Knockout , Microglia/patologia , Neurônios/patologia , Permeabilidade , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Ativador de Plasminogênio Tecidual , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Clin Invest ; 129(8): 3058-3071, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112135

RESUMO

Lactation induces bone loss to provide sufficient calcium in the milk, a process that involves osteoclastic bone resorption but also osteocytes and perilacunar resorption. The exact mechanisms by which osteocytes contribute to bone loss remain elusive. Osteocytes express genes required in osteoclasts for bone resorption, including cathepsin K (Ctsk), and lactation elevates their expression. We show that Ctsk deletion in osteocytes prevented the increase in osteocyte lacunar area seen during lactation, as well as the effects of lactation to increase osteoclast numbers and decrease trabecular bone volume, cortical thickness and mechanical properties. In addition, Ctsk deletion in osteocytes increased bone Parathyroid Hormone related Peptide (PTHrP), prevented the decrease in serum Parathyroid Hormone (PTH) induced by lactation, but amplified the increase in serum 1,25(OH)2D. The net result of these changes is to maintain serum and milk calcium levels in the normal range, ensuring normal offspring skeletal development. Our studies confirm the fundamental role of osteocytic perilacunar remodeling in physiological states of lactation and provides genetic evidence that osteocyte-derived Ctsk contributes not only to osteocyte perilacunar remodeling, but also to the regulation of PTH, PTHrP, 1,25-Dyhydroxyvitamin D (1,25(OH)2D), osteoclastogenesis and bone loss in response to the high calcium demand associated with lactation.


Assuntos
Catepsina K/fisiologia , Lactação/fisiologia , Osteócitos/fisiologia , Osteoporose/etiologia , Hormônio Paratireóideo/sangue , Animais , Remodelação Óssea/fisiologia , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Cálcio/análise , Catepsina K/deficiência , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Osteoporose/prevenção & controle
7.
J Mol Cell Cardiol ; 127: 44-56, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30465799

RESUMO

BACKGROUND: Extracellular matrix metabolism and cardiac cell death participate centrally in myocardial infarction (MI). This study tested the roles of collagenolytic cathepsin K (CatK) in post-MI left ventricular remodeling. METHODS AND RESULTS: Patients with acute MI had higher plasma CatK levels (20.49 ±â€¯7.07 pmol/L, n = 26) than those in subjects with stable angina pectoris (8.34 ±â€¯1.66 pmol/L, n = 28, P = .01) or those without coronary heart disease (6.63 ±â€¯0.84 pmol/L, n = 93, P = .01). CatK protein expression increases in mouse hearts at 7 and 28 days post-MI. Immunofluorescent staining localized CatK expression in cardiomyocytes, endothelial cells, fibroblasts, macrophages, and CD4+ T cells in infarcted mouse hearts at 7 days post-MI. To probe the direct participation of CatK in MI, we produced experimental MI in CatK-deficient mice (Ctsk-/-) and their wild-type (Ctsk+/+) littermates. CatK-deficiency yielded worsened cardiac function at 7 and 28 days post-MI, compared to Ctsk+/+ littermates (fractional shortening percentage: 5.01 ±â€¯0.68 vs. 8.62 ±â€¯1.04, P < .01, 7 days post-MI; 4.32 ±â€¯0.52 vs. 7.60 ±â€¯0.82, P < .01, 28 days post-MI). At 7 days post-MI, hearts from Ctsk-/- mice contained less CatK-specific type-I collagen fragments (10.37 ±â€¯1.91 vs. 4.60 ±â€¯0.49 ng/mg tissue extract, P = .003) and more fibrosis (1.67 ±â€¯0.93 vs. 0.69 ±â€¯0.20 type-III collagen positive area percentage, P = .01; 14.25 ±â€¯4.12 vs. 6.59 ±â€¯0.79 α-smooth muscle actin-positive area percentage, P = .016; and 0.82 ±â€¯0.06 vs. 0.31 ±â€¯0.08 CD90-positive area percentage, P = .008) than those of Ctsk+/+ mice. Immunostaining demonstrated that CatK-deficiency yielded elevated cardiac cell death but reduced cardiac cell proliferation. In vitro studies supported a role of CatK in cardiomyocyte survival. CONCLUSION: Plasma CatK levels are increased in MI patients. Heart CatK expression is also elevated post-MI, but CatK-deficiency impairs post-MI cardiac function in mice by increasing myocardial fibrosis and cardiomyocyte death.


Assuntos
Catepsina K/deficiência , Testes de Função Cardíaca , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/fisiopatologia , Síndrome Coronariana Aguda/sangue , Síndrome Coronariana Aguda/enzimologia , Síndrome Coronariana Aguda/fisiopatologia , Idoso , Animais , Apoptose , Catepsina K/sangue , Proliferação de Células , Colágeno/metabolismo , Feminino , Fibrose , Ventrículos do Coração/metabolismo , Humanos , Inflamação/patologia , Masculino , Camundongos , Pessoa de Meia-Idade
8.
Bone ; 114: 1-13, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29800693

RESUMO

Survival of chronic diseases in childhood is often achieved utilizing glucocorticoids, but comes with significant side effects, including glucocorticoid-induced osteoporosis (GIO). Knowledge of the mechanism of GIO is limited to the adult skeleton. We explored the effect of genetic loss and inhibition of cathepsin K (Ctsk) as a potential treatment target in a young GIO mouse model as genetic loss of cathepsin K results in a mild form of osteopetrosis secondary to impaired osteoclast bone resorption with maintenance of bone formation. We first characterized the temporal osteoclast and osteoblast progenitor populations in Ctsk-/- and wild type (WT) mice in the primary and secondary spongiosa, as sites representative of trabecular bone modeling and remodeling, respectively. In the primary spongiosa, Ctsk-/- mice had decreased numbers of osteoclasts at young ages (2 and 4 weeks) and increased osteoblast lineage cells at later age (8 weeks) relative to WT littermates. In the secondary spongiosa, Ctsk-/- mice had greater numbers of osteoclasts and osteoblast lineage cells relative to WT littermates. We next developed a young GIO mouse model with prednisolone 10 mg/m2/day injected intraperitoneally daily from 2 through 6 weeks of age. Overall, WT-prednisolone mice had lower bone volume per tissue volume, whereas Ctsk-/--prednisolone mice maintained a similar bone volume relative to Ctsk-/--vehicle controls. WT-prednisolone mice exhibited a decreased number of osteoclasts, tartrate-resistant acid phosphatase and platelet-derived growth factor type BB (PDGF-BB) co-positive cells, type H endothelial cells, and osteoblasts relative to WT-vehicle mice in both the primary and secondary spongiosa. Interestingly, Ctsk-/--prednisolone mice demonstrated a paradoxical response with increased numbers of all parameters in primary spongiosa and no change in secondary spongiosa. Finally, treatment with a cathepsin K inhibitor prevented WT-prednisolone decline in osteoclasts, osteoblasts, type H vessels, and bone volume. These data demonstrate that cells in the primary and secondary spongiosa respond differently to glucocorticoids and genetic manipulation. Inhibition of osteoclast resorption that preserves osteoclast coupling factors, such as through inhibition of cathepsin K, may be a potential preventive treatment strategy against GIO in the growing skeleton.


Assuntos
Becaplermina/metabolismo , Vasos Sanguíneos/metabolismo , Glucocorticoides/toxicidade , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporose/metabolismo , Fatores Etários , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/fisiologia , Catepsina K/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteoporose/induzido quimicamente , Osteoporose/prevenção & controle , Distribuição Aleatória
9.
Ann N Y Acad Sci ; 1415(1): 57-68, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29479711

RESUMO

Osteoporosis management is currently centered around bisphosphonates, which inhibit osteoclast (OC) bone resorption but do not affect bone formation. This reduces fracture risk, but fails to restore healthy bone remodeling. Studies in animal models showed that cathepsin K (CatK) inhibition by genetic deletion or chemical inhibitors maintained bone formation while abrogating resorption during bone remodeling and stimulated periosteal bone modeling. Recently, periosteal mononuclear tartrate-resistant acid phosphatase-positive (TRAP+ ) osteoclast precursors (OCPs) were shown to augment angiogenesis-coupled osteogenesis. CatK gene deletion increased osteoblast differentiation via enhanced OCP and OC secretion of platelet-derived growth factor (PDGF)-BB and sphingosine 1 phosphate. The effects of periosteum-derived OCPs on bone remodeling are unknown, particularly with regard to fracture repair. We hypothesized that periosteal OCPs derived from CatK-null (Ctsk-/- ) mice may enhance periosteal bone formation during fracture repair. We found fewer periosteal OCPs in Ctsk-/- mice under homeostatic conditions; however, after fracture, this population increased in number relative to that seen in wild-type (WT) mice. Enhanced TRAP staining and greater expression of PDGF-BB were observed in fractured Ctsk-/- femurs relative to WT femurs. This early pattern of augmented PDGF-BB expression in Ctsk-/- mice may contribute to improved fracture healing by enhancing callus mineralization in Ctsk-/- mice.


Assuntos
Catepsina K/metabolismo , Consolidação da Fratura/fisiologia , Osteoclastos/metabolismo , Animais , Becaplermina/metabolismo , Remodelação Óssea/fisiologia , Calo Ósseo/metabolismo , Calo Ósseo/patologia , Catepsina K/deficiência , Catepsina K/genética , Linhagem da Célula , Fraturas Ósseas/metabolismo , Fraturas Ósseas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoclastos/patologia , Periósteo/metabolismo , Periósteo/patologia , Células-Tronco/metabolismo , Células-Tronco/patologia , Fosfatase Ácida Resistente a Tartarato/metabolismo
10.
J Immunol ; 198(5): 1846-1854, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28093526

RESUMO

Cysteinyl cathepsin K (CatK) is expressed in osteoclasts to mediate bone resorption, but is also inducible under inflammatory conditions. Faslpr mice on a C57BL/6 background develop spontaneous systemic lupus erythematosus-like manifestations. Although normal mouse kidneys expressed negligible CatK, those from Faslpr mice showed elevated CatK expression in the glomeruli and tubulointerstitial space. Faslpr mice also showed elevated serum CatK levels. CatK deficiency in Faslpr mice reduced all tested kidney pathologies, including glomerulus and tubulointerstitial scores, glomerulus complement C3 and IgG deposition, chemokine expression and macrophage infiltration, and serum autoantibodies. CatK contributed to Faslpr mouse autoimmunity and pathology in part by its activity in TLR-7 proteolytic processing and consequent regulatory T (Treg) cell biology. Elevated TLR7 expression and proteolytic processing in Faslpr mouse kidneys and Tregs showed significantly reduced levels in CatK-deficient mice, leading to increased spleen and kidney Treg content. Purified CD4+CD25highFoxp3+ Tregs from CatK-deficient mice doubled their immunosuppressive activity against T effector cells, compared with those from CatK-sufficient mice. In Faslpr mice, repopulation of purified Tregs from CatK-sufficient mice reduced spleen sizes, autoantibody titers, and glomerulus C3 and IgG deposition, and increased splenic and kidney Treg contents. Tregs from CatK-deficient mice had significantly more potency than CatK-sufficient Tregs in reducing spleen sizes, serum autoantibody titers, and glomerulus C3 deposition, and in increasing splenic and kidney Treg content. This study established a possible role of CatK in TLR7 proteolytic activation, Treg immunosuppressive activity, and lupus autoimmunity and pathology.


Assuntos
Catepsina K/deficiência , Catepsina K/fisiologia , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/fisiopatologia , Animais , Autoimunidade , Catepsina K/sangue , Catepsina K/genética , Complemento C3/imunologia , Glomerulonefrite/imunologia , Imunoglobulina G/imunologia , Rim/imunologia , Rim/fisiopatologia , Nefrite Lúpica/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Baço/imunologia , Baço/fisiopatologia , Linfócitos T Reguladores/imunologia , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor fas/genética , Receptor fas/imunologia
11.
Expert Opin Drug Discov ; 11(5): 457-72, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27001692

RESUMO

INTRODUCTION: The osteoporosis market reached a value of more than $11 billion in 2015. Current treatments remain mostly antiresorptive and comprise of bisphosphonates, the anti-RANKL antibody, denusomab, and selective estrogen receptor modulators (SERMs). The most promising novel antiresorptives are cathepsin K inhibitors, which selectively target the bone matrix, degrading protease without interfering with osteoclast viability or formation as all other antiresorptives do. AREAS COVERED: This review analyses the current status of cathepsin K inhibitor development, its side effects, and compares the phenotypes of mouse and human cathepsin K deficiencies with drug treatment outcomes. EXPERT OPINION: Several selective cathepsin K inhibitors have been developed and evaluated in preclinical and clinical studies. Although all compounds were effective in reducing bone resorption markers, the development of some compounds was terminated either due to side effects or market competition. The most advanced compound is odanacatib, which significantly reduced bone fracture rates in a 5-year trial but still exhibits safety concerns. The analysis of mouse and human catK deficiencies sheds some light on the consequences of a cathepsin K inhibitor treatment. How predictive the knockout phenotypes are regarding long-term cathepsin K treatment remains unclear. Clearly, more studies are needed to understand the mechanism of the observed side effects and novel approaches are needed to make CatK inhibitors either osteoclast-specific or selective for the inhibition of the collagen matrix without affecting the other activities of the protease.


Assuntos
Catepsina K/antagonistas & inibidores , Osteoporose/tratamento farmacológico , Picnodisostose/tratamento farmacológico , Animais , Reabsorção Óssea/tratamento farmacológico , Catepsina K/deficiência , Modelos Animais de Doenças , Humanos , Camundongos
12.
J Cell Physiol ; 231(5): 1163-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26460818

RESUMO

Unloading induces bone loss and causes disuse osteoporosis. However, the mechanism underlying disuse osteoporosis is still incompletely understood. Here, we examined the effects of cathepsin K (CatK) deficiency on disuse osteoporosis induced by using sciatic neurectomy (Nx) model. After 4 weeks of surgery, CatK KO and WT mice were sacrificed and subjected to analyses. For cancellous bone rich region, Nx reduced the bone mineral density (BMD) compared to the BMD in the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in cancellous bone. Nx also reduced BMD in the mid shaft cortical bone compared to the BMD in the corresponding region on the sham operated side in wild type mice. In contrast, CatK deficiency suppressed such Nx-induced reduction of BMD in the mid shaft cortical bone. Bone volume (BV/TV) was reduced by Nx in WT mice. In contrast, Cat-K deficiency suppressed such reduction in bone volume. Interestingly, CatK deficiency suppressed osteoclast number and osteoclast surface in the Nx side compared to sham side. When bone marrow cells obtained from Nx side femur of CatK-KO mice were cultured, the levels of the calcified area in culture were increased. Further examination of gene expression indicated that Nx suppressed the expression of genes encoding osteoblast-phenotype-related molecules such as Runx2 and alkaline phosphatase in WT mice. In contrast, CatK deficiency suppressed such reduction. These data indicate that CatK is involved in the disuse-induced bone mass reduction.


Assuntos
Reabsorção Óssea/enzimologia , Reabsorção Óssea/etiologia , Catepsina K/deficiência , Transtornos Musculares Atróficos/complicações , Transtornos Musculares Atróficos/enzimologia , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Densidade Óssea , Células da Medula Óssea/metabolismo , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/fisiopatologia , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/enzimologia , Osso e Ossos/patologia , Calcificação Fisiológica/genética , Catepsina K/metabolismo , Células Cultivadas , Imageamento Tridimensional , Camundongos Endogâmicos C57BL , Transtornos Musculares Atróficos/diagnóstico por imagem , Transtornos Musculares Atróficos/patologia , Tamanho do Órgão , Osteoclastos/patologia , Osteogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Microtomografia por Raio-X
13.
Biochem Biophys Res Commun ; 462(2): 159-64, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25951977

RESUMO

In an attempt to identify secretory products of osteoclasts that mediate the coupling of bone formation to resorption, we found that along with osteoclast differentiation, PDGF-A gene expression increase occurred first, by 12 h after stimulation of bone marrow macrophages with M-CSF and RANKL, and peaked at 36 h. This was next followed by a progressive increase in PDGF-B gene expression until a peak at 60 h, when mature osteoclasts formed. Isoform-specific ELISA of the conditioned medium collected every 24 h revealed that all three of the isoforms of PDGF-AA, AB and BB were secreted, in this temporal order as differentiation proceeded. Their secretion was enhanced when osteoclasts were activated by placing them on dentin slices. The secretion of all three isoforms was decreased in cathepsin K-deficient osteoclasts compared with wild-type osteoclasts. Pharmacological inhibition of cathepsin K with odanacatib also inhibited the secretion of all three isoforms, as was also the case with alendronate treatment. The secretion of sphingosine-1-phosphate, which increased during osteoclastogenesis, was reduced from cathepsin K-deficient osteoclasts, and was inhibited by treatment with odanacatib more profoundly than with alendronate. Thus, all three isoforms of PDGF, which are secreted at distinct differentiation stages of osteoclasts, appear to have distinct roles in the cell-cell communication that takes place in the microenvironment of bone remodeling, especially from the osteoclast lineage to mesenchymal cells and vascular cells, thereby stimulating osteogenesis and angiogenesis.


Assuntos
Remodelação Óssea/fisiologia , Osteoclastos/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Alendronato/farmacologia , Animais , Becaplermina , Compostos de Bifenilo/farmacologia , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/genética , Catepsina K/antagonistas & inibidores , Catepsina K/deficiência , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Inibidores de Cisteína Proteinase/farmacologia , Expressão Gênica/efeitos dos fármacos , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-sis/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Esfingosina/análogos & derivados , Esfingosina/metabolismo
14.
Bone ; 66: 72-81, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24928497

RESUMO

Cathepsin K (CatK) is a cysteine protease, expressed predominantly in osteoclasts (OC) which degrades demineralized bone matrix. Novel selective inhibitors of CatK are currently being developed for the treatment of postmenopausal osteoporosis. Pharmacological inhibition of CatK reduces OC resorption activity while preserving bone formation in preclinical models. Disruption of the CatK gene in mice also results in high bone mass due to impaired bone resorption and elevated formation. Here, we assessed mid-shaft femoral fracture healing in 8-10week old CatK knock-out (KO) versus wild type (WT) mice. Fracture healing and callus formation were determined in vivo weekly via X-ray, and ex vivo at days 14, 18, 28 and 42 post-fracture by radiographic scoring, micro-computed tomography (µCT), histomorphometry and terminal mechanical four point bend strength testing. Radiological evaluation indicated accelerated bone healing and remodeling for CatK KO animals based on increased total radiographic scores that included callus opacity and bridging at days 28 and 42 post-fracture. Micro-CT based total callus volume was similar in CatK KO and WT mice at day 14. Callus size in CatK KO mice was 25% smaller than that in WT mice at day 18, statistically significant by day 28 and exhibited significantly higher mineralized tissue volume and volumetric BMD as compared to WT by day 18 onward. Osteoclast surface and osteoid surface trended higher in CatK KO calluses at all time-points and osteoblast number was also significantly increased at day 28. Increased CatK KO callus mineral density was reflected in significant increases in peak load and stiffness over WT at day 42 post-fracture. Regression analysis indicated a positive correlation (r=0.8671; p<0.001) between callus BMC and peak load indicating normal mineral properties in CatK KO calluses. Taken together, gene deletion of cathepsin K in mice accelerated callus size resolution, significantly increased callus mineralized mass, and improved mechanical strength as compared to wild type mice.


Assuntos
Calo Ósseo/patologia , Calo Ósseo/fisiopatologia , Calcificação Fisiológica , Catepsina K/deficiência , Fraturas do Fêmur/patologia , Fraturas do Fêmur/fisiopatologia , Animais , Fenômenos Biomecânicos , Remodelação Óssea , Catepsina K/metabolismo , Contagem de Células , Feminino , Fraturas do Fêmur/diagnóstico por imagem , Consolidação da Fratura , Deleção de Genes , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tamanho do Órgão , Osteoblastos/patologia , Osteoclastos/patologia , Radiografia
15.
Nature ; 499(7459): 491-5, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23863940

RESUMO

The tyrosine phosphatase SHP2, encoded by PTPN11, is required for the survival, proliferation and differentiation of various cell types. Germline activating mutations in PTPN11 cause Noonan syndrome, whereas somatic PTPN11 mutations cause childhood myeloproliferative disease and contribute to some solid tumours. Recently, heterozygous inactivating mutations in PTPN11 were found in metachondromatosis, a rare inherited disorder featuring multiple exostoses, enchondromas, joint destruction and bony deformities. The detailed pathogenesis of this disorder has remained unclear. Here we use a conditional knockout (floxed) Ptpn11 allele (Ptpn11(fl)) and Cre recombinase transgenic mice to delete Ptpn11 specifically in monocytes, macrophages and osteoclasts (lysozyme M-Cre; LysMCre) or in cathepsin K (Ctsk)-expressing cells, previously thought to be osteoclasts. LysMCre;Ptpn11(fl/fl) mice had mild osteopetrosis. Notably, however, CtskCre;Ptpn11(fl/fl) mice developed features very similar to metachondromatosis. Lineage tracing revealed a novel population of CtskCre-expressing cells in the perichondrial groove of Ranvier that display markers and functional properties consistent with mesenchymal progenitors. Chondroid neoplasms arise from these cells and show decreased extracellular signal-regulated kinase (ERK) pathway activation, increased Indian hedgehog (Ihh) and parathyroid hormone-related protein (Pthrp, also known as Pthlh) expression and excessive proliferation. Shp2-deficient chondroprogenitors had decreased fibroblast growth factor-evoked ERK activation and enhanced Ihh and Pthrp expression, whereas fibroblast growth factor receptor (FGFR) or mitogen-activated protein kinase kinase (MEK) inhibitor treatment of chondroid cells increased Ihh and Pthrp expression. Importantly, smoothened inhibitor treatment ameliorated metachondromatosis features in CtskCre;Ptpn11(fl/fl) mice. Thus, in contrast to its pro-oncogenic role in haematopoietic and epithelial cells, Ptpn11 is a tumour suppressor in cartilage, acting through a FGFR/MEK/ERK-dependent pathway in a novel progenitor cell population to prevent excessive Ihh production.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Condromatose/metabolismo , Condromatose/patologia , Exostose Múltipla Hereditária/metabolismo , Exostose Múltipla Hereditária/patologia , Proteínas Hedgehog/metabolismo , Células-Tronco Mesenquimais/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/deficiência , Transdução de Sinais , Animais , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/genética , Cartilagem/metabolismo , Cartilagem/patologia , Catepsina K/deficiência , Catepsina K/genética , Catepsina K/metabolismo , Divisão Celular , Linhagem da Célula , Condromatose/tratamento farmacológico , Condromatose/genética , Exostose Múltipla Hereditária/tratamento farmacológico , Exostose Múltipla Hereditária/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Proteínas Hedgehog/antagonistas & inibidores , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Monócitos/metabolismo , Osteoclastos/metabolismo , Osteopetrose/genética , Osteopetrose/metabolismo , Osteopetrose/patologia , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Transdução de Sinais/efeitos dos fármacos
16.
J Clin Invest ; 123(2): 666-81, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23321671

RESUMO

Cathepsin K (CTSK) is secreted by osteoclasts to degrade collagen and other matrix proteins during bone resorption. Global deletion of Ctsk in mice decreases bone resorption, leading to osteopetrosis, but also increases the bone formation rate (BFR). To understand how Ctsk deletion increases the BFR, we generated osteoclast- and osteoblast-targeted Ctsk knockout mice using floxed Ctsk alleles. Targeted ablation of Ctsk in hematopoietic cells, or specifically in osteoclasts and cells of the monocyte-osteoclast lineage, resulted in increased bone volume and BFR as well as osteoclast and osteoblast numbers. In contrast, targeted deletion of Ctsk in osteoblasts had no effect on bone resorption or BFR, demonstrating that the increased BFR is osteoclast dependent. Deletion of Ctsk in osteoclasts increased their sphingosine kinase 1 (Sphk1) expression. Conditioned media from Ctsk-deficient osteoclasts, which contained elevated levels of sphingosine-1-phosphate (S1P), increased alkaline phosphatase and mineralized nodules in osteoblast cultures. An S1P1,3 receptor antagonist inhibited these responses. Osteoblasts derived from mice with Ctsk-deficient osteoclasts had an increased RANKL/OPG ratio, providing a positive feedback loop that increased the number of osteoclasts. Our data provide genetic evidence that deletion of CTSK in osteoclasts enhances bone formation in vivo by increasing the generation of osteoclast-derived S1P.


Assuntos
Catepsina K/deficiência , Lisofosfolipídeos/metabolismo , Osteoclastos/enzimologia , Osteogênese/fisiologia , Esfingosina/análogos & derivados , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Reabsorção Óssea/enzimologia , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Catepsina K/antagonistas & inibidores , Catepsina K/genética , Diferenciação Celular , Retroalimentação Fisiológica , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Osteoblastos/citologia , Osteoblastos/enzimologia , Osteoclastos/citologia , Osteogênese/genética , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Esfingosina/metabolismo
17.
Biol Chem ; 393(9): 959-70, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22944695

RESUMO

Cathepsin K is important for the brain, because its deficiency in mice is associated with a marked decrease in differentiated astrocytes and changes in neuronal patterning in the hippocampus as well as with learning and memory deficits. As cathepsin K activity is most prominent in hippocampal regions of wild type animals, we hypothesised alterations in astrocyte-mediated support of neurons as a potential mechanism underlying the impaired brain functions in cathepsin K-deficient mice. To address this hypothesis, we have generated and characterised astroglia-rich primary cell cultures from cathepsin K-deficient and wild type mice and compared these cultures for possible changes in metabolic support functions and cell composition. Interestingly, cells expressing the oligodendrocytic markers myelin-associated glycoprotein and myelin basic protein were more frequent in astroglia-rich cultures from cathepsin K-deficient mice. However, cell cultures from both genotypes were morphologically comparable and similar with respect to glucose metabolism. In addition, specific glutathione content, glutathione export and γ-glutamyl-transpeptidase activity remained unchanged, whereas the specific activities of glutathione reductase and glutathione-S-transferase were increased by around 50% in cathepsin K-deficient cultures. Thus, lack of cathepsin K in astroglia-rich cultures appears not to affect metabolic supply functions of astrocytes but to facilitate the maturation of oligodendrocytes.


Assuntos
Astrócitos/citologia , Astrócitos/enzimologia , Catepsina K/deficiência , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Encéfalo/citologia , Encéfalo/enzimologia , Encéfalo/metabolismo , Catepsina K/metabolismo , Técnicas de Cultura de Células , Feminino , Glucose/metabolismo , Glutationa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/enzimologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/enzimologia , Oligodendroglia/metabolismo
18.
Bone ; 50(6): 1250-9, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22484689

RESUMO

OBJECTIVE: To investigate the disease modifying effects of cathepsin K (CatK) inhibitor L-006235 compared to alendronate (ALN) in two preclinical models of osteoarthritis (OA). METHODS: Skeletally mature rabbits underwent sham or anterior cruciate ligament transection (ACLT)-surgery and were treated with L-006235 (L-235, 10 mg/kg or 50 mg/kg, p.o., daily) or ALN (0.6 mg/kg, s.c., weekly) for 8-weeks. ACLT joint instability was also induced in CatK(-/-) versus wild type (wt) mice and treated for 16-weeks. Changes in cartilage degeneration, subchondral bone volume and osteophyte area were determined by histology and µ-CT. Collagen type I helical peptide (HP-I), a bone resorption marker and collagen type II C-telopeptide (CTX-II), a cartilage degradation marker were measured. RESULTS: L-235 (50 mg/kg) and ALN treatment resulted in significant chondroprotective effects, reducing CTX-II by 60% and the histological Mankin score for cartilage damage by 46% in the ACLT-rabbits. Both doses of L-235 were more potent than ALN in protecting against focal subchondral bone loss, and reducing HP-I by 70% compared to vehicle. L-235 (50 mg/kg) and ALN significantly reduced osteophyte formation in histomorphometric analysis by 55%. The Mankin score in ACLT-CatK(-/-) mice was ~2.5-fold lower than the ACLT-wt mice and was not different from sham-CatK(-/-). Osteophyte development was not different among the groups. CONCLUSION: Inhibition of CatK provides significant benefits in ACLT-model of OA, including: 1) protection of subchondral bone integrity, 2) protection against cartilage degradation and 3) reduced osteophytosis. Preclinical evidence supports the role of CatK as a potential therapeutic target for the treatment of OA.


Assuntos
Catepsina K/antagonistas & inibidores , Osteoartrite/prevenção & controle , Alendronato/farmacologia , Animais , Lesões do Ligamento Cruzado Anterior , Benzamidas/farmacologia , Biomarcadores/metabolismo , Conservadores da Densidade Óssea/farmacologia , Cartilagem Articular/patologia , Catepsina K/deficiência , Catepsina K/genética , Colágeno Tipo I/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Progressão da Doença , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoartrite/enzimologia , Osteoartrite/etiologia , Osteoartrite/patologia , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Coelhos , Tiazóis/farmacologia
19.
Arterioscler Thromb Vasc Biol ; 32(1): 15-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21817099

RESUMO

OBJECTIVE: Cathepsin K (CatK) is one of the most potent mammalian elastases. We have previously shown increased expression of CatK in human abdominal aortic aneurysm (AAA) lesions. Whether this protease participates directly in AAA formation, however, remains unknown. METHODS AND RESULTS: Mouse experimental AAA was induced with aortic perfusion of a porcine pancreatic elastase. Using this experimental model, we demonstrated that absence of CatK prevented AAA formation in mice 14 days postperfusion. CatK deficiency significantly reduced lesion CD4(+) T-cell content, total lesion and medial cell proliferation and apoptosis, medial smooth muscle cell (SMC) loss, elastinolytic CatL and CatS expression, and elastin fragmentation, but it did not affect AAA lesion Mac-3(+) macrophage accumulation or CD31(+) microvessel numbers. In vitro studies revealed that CatK contributed importantly to CD4(+) T-cell proliferation, SMC apoptosis, and other cysteinyl cathepsin and matrix metalloproteinase expression and activities in SMCs and endothelial cells but played negligible roles in microvessel growth and monocyte migration. AAA lesions from CatK-deficient mice showed reduced elastinolytic cathepsin activities compared with those from wild-type control mice. CONCLUSIONS: This study demonstrates that CatK plays an essential role in AAA formation by promoting T-cell proliferation, vascular SMC apoptosis, and elastin degradation and by affecting vascular cell protease expression and activities.


Assuntos
Aneurisma da Aorta Abdominal/enzimologia , Aneurisma da Aorta Abdominal/etiologia , Catepsina K/deficiência , Animais , Aneurisma da Aorta Abdominal/patologia , Apoptose , Linfócitos T CD4-Positivos/patologia , Catepsina K/genética , Proliferação de Células , Modelos Animais de Doenças , Elastina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/patologia , Neovascularização Fisiológica , Elastase Pancreática/administração & dosagem
20.
Exp Lung Res ; 37(7): 408-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21721952

RESUMO

Cathepsin K (CatK) is a potent collagenase and elastase and may be involved in the development of neonatal bronchopulmonary dysplasia. The authors evaluated the effects of CatK deletion on neonatal lung development and response to prolonged hyperoxic challenge. CatK deficiency resulted in thinner alveolar walls than wild-type littermates on postnatal day (PN) 7. However, no morphological difference could be detected between CatK-deficient and control groups on PN 14. Exposure to 90% oxygen for 7 days after birth caused intensive CatK expression in the bronchial epithelium and alveolar macrophages of wild-type mice. Hyperoxia caused fatal respiratory distress in both groups of mice. However, whereas ∼20% of wild-type mice survived for 2 weeks in hyperoxia, all CatK-deficient mice died within the first 9 postnatal days. Hyperoxia-exposed lungs of CatK-deficient mice contained high number of macrophages and multinucleated giant cells and had increased content of reduced glutathione, indicating intensified pulmonary oxidative stress. These results suggest that CatK is involved in pulmonary development and it may be an important host-defence protease in the oxygen-stressed newborn lung.


Assuntos
Catepsina K/deficiência , Catepsina K/fisiologia , Hiperóxia/complicações , Lesão Pulmonar/etiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Catepsina K/imunologia , Pulmão/crescimento & desenvolvimento , Pulmão/patologia , Macrófagos Alveolares , Camundongos , Estresse Oxidativo , Alvéolos Pulmonares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA