Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Int Immunopharmacol ; 88: 106847, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32771943

RESUMO

Aseptic loosening induced by osteolysis is recognized as a late complication of joint replacement. Osteoclasts stimulated by Titanium (Ti) nanoparticles play a critical role in periprosthetic osteolysis. Emerging evidence indicates that melatonin, a hormone primarily synthesized by the pineal gland, has been shown an inhibitory effect on osteoclast formation. However, it is unclear whether melatonin could suppress Ti-particle-induced osteoclastogenesis and what the underlying mechanisms were involved in. Herein, we aimed to investigate the effect of melatonin on osteoclast differentiation and osteolysis stimulated by Ti particles. Our results showed that the in vitro osteoclastogenesis of mouse bone marrow monocytes (BMMs) stimulated by Ti particles was suppressed by melatonin treatments in a dose-dependent manner. Further experiments revealed that melatonin up-regulated the expression of the nuclear factor erythroid 2-related factor 2 (Nrf2) and catalase (CAT) at both the mRNA and protein levels. The role of the Nrf2/CAT signaling pathway was confirmed by the fact that silencing the expression of NRF2 by small interfering RNA (siRNA) counteracted the anti-osteolysis effects of melatonin. Furthermore, in vivo intraperitoneal injection of melatonin successfully attenuated periprosthetic osteolysis induced by Ti particles in a murine calvarial model. Our findings demonstrate that melatonin is a promising therapeutic agent for treating periprosthetic osteolysis by inhibiting the Ti-particle-stimulated osteoclastogenesis via activation of the Nrf2/Catalase signaling pathway.


Assuntos
Catalase/metabolismo , Inflamação/tratamento farmacológico , Melatonina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Osteólise/tratamento farmacológico , Actinas/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Catalase/genética , Catepsina K/efeitos dos fármacos , Catepsina K/genética , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Inflamação/induzido quimicamente , Inflamação/metabolismo , Masculino , Melatonina/uso terapêutico , Camundongos Endogâmicos C57BL , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Fator 2 Relacionado a NF-E2/genética , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/induzido quimicamente , Receptores de Superfície Celular/efeitos dos fármacos , Receptores de Superfície Celular/genética , Transdução de Sinais/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/metabolismo , Crânio/patologia , Fosfatase Ácida Resistente a Tartarato/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/genética , Titânio/efeitos adversos
2.
PLoS One ; 14(1): e0211227, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30682119

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a neglected infection affecting millions of people in tropical regions. There are several chemotherapeutic agents for the treatment of this disease, but most of them are highly toxic and generate resistance. Currently, the development of allosteric inhibitors constitutes a promising research field, since it can improve the accessibility to more selective and less toxic medicines. To date, the allosteric drugs prediction is a state-of-the-art topic in rational structure-based computational design. In this work, a simulation strategy was developed for computational discovery of allosteric inhibitors, and it was applied to cruzain, a promising target and the major cysteine protease of T. cruzi. Molecular dynamics simulations, binding free energy calculations and network-based modelling of residue interactions were combined to characterize and compare molecular distinctive features of the apo form and the cruzain-allosteric inhibitor complexes. By using geometry-based criteria on trajectory snapshots, we predicted two main allosteric sites suitable for drug targeting. The results suggest dissimilar mechanisms exerted by the same allosteric site when binding different potential allosteric inhibitors. Finally, we identified the residues involved in suboptimal paths linking the identified site and the orthosteric site. The present study constitutes the first approximation to the design of cruzain allosteric inhibitors and may serve for future pharmacological intervention. Here, no major effects on active site structure were observed due to compound binding (modification of distance and angles between catalytic residues), which indicates that allosteric regulation in cruzain might be mediated via alterations of its dynamical properties similarly to allosteric inhibition of human cathepsin K (HCatK). The current findings are particularly relevant for the design of allosteric modulators of papain-like cysteine proteases.


Assuntos
Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/química , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/metabolismo , Regulação Alostérica/efeitos dos fármacos , Domínio Catalítico/efeitos dos fármacos , Catepsina K/química , Catepsina K/efeitos dos fármacos , Desenho Assistido por Computador , Inibidores de Cisteína Proteinase/farmacologia , Humanos , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Relação Estrutura-Atividade , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos
3.
Med Sci Monit ; 24: 2569-2577, 2018 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-29698379

RESUMO

BACKGROUND Neogambogic acid (NGA) is used in traditional Chinese medicine. The aim of this study was to investigate the effects of NGA on gene signaling pathways involved in osteoclastogenesis in mouse bone marrow-derived monocyte/macrophages (BMMs) and on bone resorption in vitro. MATERIAL AND METHODS Primary mouse BMMs were cultured with increasing concentrations of NGA. Real-time polymerase chain reaction was used to study the expression of mRNAs corresponding to gene products specific to receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation, including tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTR), cathepsin K (CTSK), and nuclear factor of activated T cells c1 (NFATc1). A cell counting kit-8 assay was used to evaluate cell proliferation. Western blotting and confocal immunofluorescence microscopy were used to investigate the signaling pathways. A bone resorption model was used to quantify bone resorption. RESULTS An NGA dose of ≤0.4 µg/ml had no significant effect on the proliferation of mouse BMMs in vitro (P>0.05); concentrations of between 0.1-0.4 µg/ml significantly inhibited RANKL-induced osteoclastogenesis (P<0.01) in a dose-dependent manner. Compared with the control group, NGA significantly reduced RANKL-induced bone resorption in vitro (P <0.01), and downregulated the expression of osteoclast-related mRNAs of TRAP, CTR, CTSK, and NFATc1. NGA suppressed the activation of JNK but not the p38 signaling pathway and significantly reduced NF-κB p65 phosphorylation and the nuclear transport of NF-κB molecules, which inhibited NFATc1 expression. CONCLUSIONS NGA suppressed RANKL-induced osteoclastogenesis by inhibiting the JNK and NF-κB pathways in mouse BMMs in vitro and reduced osteoclastic bone resorption.


Assuntos
Macrófagos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Xantenos/farmacologia , Animais , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Catepsina K/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Ligante RANK/farmacologia , Receptores da Calcitonina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Xantenos/metabolismo
4.
Osteoarthritis Cartilage ; 25(12): 2119-2126, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28882751

RESUMO

OBJECTIVES: Develop a species-specific ELISA for a neo-epitope generated by cathepsin K cleavage of equine type II collagen to: (1) measure cartilage type II collagen degradation by cathepsin K in vitro, (2) identify cytokines that upregulate cathepsin K expression and (3) compare cathepsin K with matrix metalloproteinase (MMP) collagenase activity in stimulated cartilage explants and freshly isolated normal and osteoarthritic (OA) articular cartilages. DESIGN: A new ELISA (C2K77) was developed and tested by measuring the activity of exogenous cathepsin K on equine articular cartilage explants. The ELISA was then employed to measure endogenous cathepsin K activity in cultured cartilage explants with or without stimulation by interleukin-1 beta (IL-1ß), tumour necrosis-alpha (TNF-α), oncostatin M (OSM) and lipopolysaccharide (LPS). Cathepsin K activity in cartilage explants (control and osteoarthritic-OA) and freshly harvested cartilage (control and OA) was compared to that of MMPs employing C2K77 and C1,2C immunoassays. RESULTS: The addition of Cathepsin K to normal cartilage caused a significant increase (P < 0.01) in the C2K77 epitope release. Whereas the content of C1,2C, that reflects MMP collagenase activity, was increased in media by the addition to cartilage explants of TNF-α and OSM (P < 0.0001) or IL-1ß and OSM (P = 0.002), no change was observed in C2K77 which also unchanged in OA cartilages compared to normal. CONCLUSIONS: The ELISA C2K77 measured the activity of cathepsin K in equine cartilage which was unchanged in OA cartilage. Cytokines that upregulate MMP collagenase activity had no effect on endogenous cathepsin K activity, suggesting a different activation mechanism that requires further study.


Assuntos
Cartilagem Articular/metabolismo , Catepsina K/metabolismo , Colágeno Tipo II/metabolismo , Articulação Metacarpofalângica/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Estudos de Casos e Controles , Catepsina K/efeitos dos fármacos , Colágeno Tipo II/efeitos dos fármacos , Citocinas/farmacologia , Ensaio de Imunoadsorção Enzimática , Cavalos , Técnicas In Vitro , Interleucina-1beta/farmacologia , Lipopolissacarídeos/farmacologia , Articulação Metacarpofalângica/efeitos dos fármacos , Articulação Metacarpofalângica/patologia , Oncostatina M/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
5.
J Dent ; 58: 19-27, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28064012

RESUMO

OBJECTIVES: Demineralized dentin collagen release C-terminal cross-linked telopeptide (ICTP) and C-terminal peptide (CTX) during degradation. The present study evaluated the effects of dentin pre-treatment with K21, a quaternary ammonium silane (QAS), on matrix metalloproteinase (MMP) and cathepsin K-mediated collagen degradation. METHODS: Dentin beams were demineralized with 10% H3PO4 for 24h. After baseline dry mass measurements, the beams were divided into 5 groups (N=10) according to protease inhibitors. The beams were pre-treated for 2min with 2% chlorhexidine (CHX), 2%, 5% or 10% QAS; no pre-treatment was performed for the control group. The beams were subsequently incubated in calcium- and zinc-containing medium for 3, 7 or 14days, after which changes in dry mass were measured and incubation media were examined for ICTP and CTX release. The MMP-2 and cathepsin K activities in QAS-treated dentin powder were also quantified using ELISA. RESULTS: The two factors (disinfectants and time) had a significant effect on dry mass loss, ICTP and CTX release (p<0.001). The percentage of dry mass loss increased with time and was significantly lower in all experimental groups when compared to the control at 14days (p<0.001). Conversely, the rate of ICTP and CTX release was significantly lower in the experimental groups, compared to the uninhibited control at 7 and 14days (p<0.001). Dentinal MMP-2 and cathepsin K activities were significantly reduced after demineralized dentin was pre-treated with QAS. CONCLUSION: The experimental QAS is a good inhibitor of MMP and cathepsin K activities in demineralized dentin. CLINICAL SIGNIFICANCE: The newly developed antibacterial quaternary ammonium silane increases the resistance of dentin collagen to degradation by inhibiting endogenous matrix metalloproteinases and cysteine cathepsins. The quaternary ammonium silane cavity disinfectant is promising for use as a protease inhibitor to improve durability of resin-dentin bonds.


Assuntos
Catepsina K/efeitos dos fármacos , Dentina/efeitos dos fármacos , Metaloproteinases da Matriz/efeitos dos fármacos , Compostos de Amônio Quaternário/farmacologia , Silanos/farmacologia , Adolescente , Cálcio/análise , Clorexidina/farmacologia , Colágeno Tipo I/metabolismo , Dentina/química , Hong Kong , Humanos , Hidrólise/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Dente Serotino , Peptídeos/metabolismo , Ácidos Fosfóricos/efeitos adversos , Compostos de Amônio Quaternário/administração & dosagem , Silanos/administração & dosagem , Desmineralização do Dente/metabolismo , Adulto Jovem , Zinco/análise
6.
Int J Oral Sci ; 7(4): 242-9, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26674426

RESUMO

Osteoclasts are bone-specific multinucleated cells generated by the differentiation of monocyte/macrophage lineage precursors. Regulation of osteoclast differentiation is considered an effective therapeutic approach to the treatment of bone-lytic diseases. Periodontitis is an inflammatory disease characterized by extensive bone resorption. In this study, we investigated the effects of sodium fluoride (NaF) on osteoclastogenesis induced by Porphyromonas gingivalis, an important colonizer of the oral cavity that has been implicated in periodontitis. NaF strongly inhibited the P. gingivalis-induced alveolar bone loss. That effect was accompanied by decreased levels of cathepsin K, interleukin (IL)-1ß, matrix metalloproteinase 9 (MMP9), and tartrate-resistant acid phosphatase, which were up-regulated during P. gingivalis-induced osteoclastogenesis. Consistent with the in vivo anti-osteoclastogenic effect, NaF inhibited osteoclast formation caused by the differentiation factor RANKL (receptor activator of nuclear factor κB ligand) and macrophage colony-stimulating factor (M-CSF). The RANKL-stimulated induction of the transcription factor nuclear factor of activated T cells (NFAT) c1 was also abrogated by NaF. Taken together, our data demonstrate that NaF inhibits RANKL-induced osteoclastogenesis by reducing the induction of NFATc1, ultimately leading to the suppressed expression of cathepsin K and MMP9. The in vivo effect of NaF on the inhibition of P. gingivalis-induced osteoclastogenesis strengthens the potential usefulness of NaF for treating periodontal diseases.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Conservadores da Densidade Óssea/uso terapêutico , Osteoclastos/efeitos dos fármacos , Porphyromonas gingivalis/efeitos dos fármacos , Fluoreto de Sódio/uso terapêutico , Fosfatase Ácida/efeitos dos fármacos , Perda do Osso Alveolar/microbiologia , Animais , Antibacterianos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Infecções por Bacteroidaceae/microbiologia , Infecções por Bacteroidaceae/prevenção & controle , Catepsina K/efeitos dos fármacos , Interleucina-1beta/efeitos dos fármacos , Interleucina-6/análise , Interleucina-8/efeitos dos fármacos , Isoenzimas/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/efeitos dos fármacos , Masculino , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Periodontite/microbiologia , Periodontite/prevenção & controle , Ligante RANK/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fosfatase Ácida Resistente a Tartarato , Fatores de Transcrição/efeitos dos fármacos , Microtomografia por Raio-X/métodos
7.
Womens Health (Lond) ; 11(6): 805-14, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26344800

RESUMO

Odanacatib represents a novel treatment option in the approach of postmenopausal women. Postmenopausal women with osteoporosis experience a disturbance in bone remodeling wherein bone resorption exceeds bone formation. Cathepsin K is a lysosomal cysteine protease found primarily in osteoclasts that plays a major role in the breakdown of bone via its collagenase properties. Targeting a new area of pathophysiology, odanacatib inhibits cathepsin K to reduce bone resorption while preserving bone formation. Phase II and III trials have shown efficacy in increasing bone mineral density in the target treatment group. Overall, safety studies have found odanacatib to be well-tolerated and comparable to placebo; however, some imbalances in adverse events have been observed in the Phase III trials. Current and future studies will analyze the long-term ability of odanacatib in preventing bone fracture.


Assuntos
Compostos de Bifenilo/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osteoporose Pós-Menopausa/tratamento farmacológico , Compostos de Bifenilo/efeitos adversos , Conservadores da Densidade Óssea/efeitos adversos , Remodelação Óssea , Catepsina K/efeitos dos fármacos , Feminino , Humanos , Pessoa de Meia-Idade
8.
J Cell Sci ; 128(4): 683-94, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25609708

RESUMO

The process of osteoclastic bone resorption is complex and regulated at multiple levels. The role of osteoclast (OCL) fusion and motility in bone resorption are unclear, with the movement of OCL on bone largely unexplored. RANKL (also known as TNFSF11) is a potent stimulator of murine osteoclastogenesis, and activin A (ActA) enhances that stimulation in whole bone marrow. ActA treatment does not induce osteoclastogenesis in stroma-free murine bone marrow macrophage cultures (BMM), but rather inhibits RANKL-induced osteoclastogenesis. We hypothesized that ActA and RANKL differentially regulate osteoclastogenesis by modulating OCL precursors and mature OCL migration. Time-lapse video microscopy measured ActA and RANKL effects on BMM and OCL motility and function. ActA completely inhibited RANKL-stimulated OCL motility, differentiation and bone resorption, through a mechanism mediated by ActA-dependent changes in SMAD2, AKT1 and inhibitor of nuclear factor κB (IκB) signaling. The potent and dominant inhibitory effect of ActA was associated with decreased OCL lifespan because ActA significantly increased activated caspase-3 in mature OCL and OCL precursors. Collectively, these data demonstrate a dual action for ActA on murine OCLs.


Assuntos
Ativinas/farmacologia , Reabsorção Óssea/metabolismo , Fator Estimulador de Colônias de Macrófagos/genética , Osteoclastos/citologia , Ligante RANK/genética , Ativinas/genética , Animais , Células da Medula Óssea/metabolismo , Caspase 3/metabolismo , Catepsina K/efeitos dos fármacos , Catepsina K/metabolismo , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quinase I-kappa B/metabolismo , Macrófagos/metabolismo , Camundongos , Osteoclastos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Proteína Smad2/metabolismo
9.
J Periodontal Res ; 50(4): 500-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25223277

RESUMO

BACKGROUND AND OBJECTIVE: Endoplasmic reticulum (ER) stress is the cell response that activates the unfolded protein response (UPR) pathway in a variety of conditions, such as inflammation and bone metabolism. The UPR may be associated with the pathogenesis of periodontal disease because the disease is inflammatory in nature, and alveolar bone resorption is a characteristic feature of the disease. However, the relationship between ER stress and alveolar bone resorption observed in periodontal disease remains elusive. MATERIAL AND METHODS: C57BL/6 mice were orally administered Porphyromonas gingivalis, a representative periodontopathic bacterium, in the presence or absence of a chemical chaperone, 4-phenylbutyrate (4-PBA). The gene expression of UPR-related molecules and cytokines in gingival tissues were analyzed using real-time polymerase chain reaction, and alveolar bone resorption and osteoclast numbers were evaluated histologically. The in vitro effect of 4-PBA on the differentiation of mouse bone marrow cells induced by receptor activator of nuclear factor-κB ligand in the presence of macrophage colony-stimulating factor was analyzed. RESULTS: The gene expression levels of UPR-related molecules and proinflammatory cytokines and alveolar bone resorption were significantly increased in P. gingivalis-administered mice. UPR-related gene expression and alveolar bone resorption were significantly suppressed by the administration of 4-PBA. However, no effect of 4-PBA was observed for proinflammatory cytokine expression in gingival tissues. Osteoclastic differentiation of bone marrow cells was also suppressed by 4-PBA with a concomitant reduction in the gene expression of cathepsin K and tartrate-resistant alkaline phosphatase genes. CONCLUSION: ER stress induced by oral administration of P. gingivalis is involved in alveolar bone resorption independent of inflammatory cytokines in mice.


Assuntos
Perda do Osso Alveolar/microbiologia , Estresse do Retículo Endoplasmático/fisiologia , Periodontite/microbiologia , Perda do Osso Alveolar/patologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Catepsina K/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Modelos Animais de Doenças , Gengiva/química , Gengiva/efeitos dos fármacos , Mediadores da Inflamação/análise , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos , Chaperonas Moleculares/farmacologia , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Fenilbutiratos/farmacologia , Porphyromonas gingivalis/fisiologia , Ligante RANK/farmacologia , Fosfatase Ácida Resistente a Tartarato/efeitos dos fármacos , Resposta a Proteínas não Dobradas/fisiologia
10.
J Dent Res ; 94(4): 594-601, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25535203

RESUMO

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is likely to be caused by continuous imperfection of bone healing after surgical treatments in patients with long-term administration of nitrogen-containing bisphosphonates (NBPs). NBPs inhibit osteoclastic bone resorption by impairing the mevalonic acid sterol pathway in osteoclasts. Thus, we hypothesized that exogenous mevalonic acid metabolites restore the inhibitory effects of NBPs on osteoclastogenesis and bone remodeling. To clarify the effects of mevalonic acid metabolites, especially geranylgeranyl pyrophosphate (GGPP) and geranylgeranyl transferase substrate geranylgeranyl acid (GGOH), we examined the effects of zoledronic acid with or without GGOH or GGPP on osteoclast differentiation, multinucleation, and bone mineral deposition in tooth-extracted sockets. Zoledronic acid decreased the number of tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells derived from mouse osteoclast precursors treated with receptor activator of nuclear factor-κB ligand and macrophage colony-stimulating factor. Zoledronic acid simultaneously suppressed not only the expressions of osteoclastic differentiation-related molecules such as TRAP, cathepsin K, calcitonin receptor, and vacuolar H-ATPase but also those of multinucleation-related molecules such as dendrocyte-expressed 7 transmembrane proteins and osteoclast stimulatory transmembrane protein. Treatment with GGOH or GGPP, but not farnesyl acid, restored the zoledronic acid-inhibited number of TRAP-positive multinuclear cells together with the expressions of these molecules. Although intraperitoneal administration of zoledronic acid and lipopolysaccharide into mice appeared to induce BRONJ-like lesions with empty bone lacunae and decreased mineral deposition in tooth-extracted socket, both GGOH and GGPP partially restored the inhibitory effects on zoledronic acid-related mineral deposition. These results suggest the potential of mevalonic acid metabolites as therapeutic agents for BRONJ.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Difosfonatos/farmacologia , Imidazóis/farmacologia , Ácido Mevalônico/farmacologia , Osteoclastos/efeitos dos fármacos , Fosfatase Ácida/análise , Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Animais , Osteonecrose da Arcada Osseodentária Associada a Difosfonatos/etiologia , Remodelação Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Catepsina K/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Diterpenos/farmacologia , Farneseno Álcool/farmacologia , Isoenzimas/análise , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , Maxila/efeitos dos fármacos , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Fosfatos de Poli-Isoprenil/farmacologia , Receptores da Calcitonina/efeitos dos fármacos , Salmonella , Fosfatase Ácida Resistente a Tartarato , Alvéolo Dental/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/efeitos dos fármacos , Ácido Zoledrônico
11.
J Periodontol ; 86(3): 465-72, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25299387

RESUMO

BACKGROUND: F-spondin, known to be a secreted neuronal glycoprotein, is highly expressed on the tooth root surface. The authors previously reported that F-spondin is one of the specific markers of cementoblasts in periodontal tissue. In chronic periodontitis, significant cemental resorption rarely occurs on the root side, although alveolar bone resorption by osteoclasts is one of the major pathologic changes. Thus, it was hypothesized that secretory F-spondin from cementoblasts might be involved in differentiation of clastic cells on the root surface. The authors studied effects of secretory F-spondin from F-spondin-expressing cells and its pathway on receptor activator of nuclear factor-κB ligand (RANKL)-mediated differentiation of clastic cells. METHODS: Osteoclast precursors were used in this study. With a chamber assay, the authors examined effects of secretory molecules from F-spondin-expressing cells of transgenic mice on RANKL-induced clastic cell differentiation. RESULTS: Secretory molecules from F-spondin-overexpressing cells significantly inhibited the RANKL-mediated tartrate-resistant acid phosphatase (TRAP)-positive cells from primary progenitor cells with the chamber system. F-spondin suppressed RANKL-mediated nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1); TRAP; cathepsin K; and dendritic cell-specific transmembrane protein (DC-STAMP) expression in the cells. The suppressive effect of F-spondin on RANKL-induced differentiation of clastic cells was partially blocked by knockdown of low-density lipoprotein receptor-related protein 8 (LRP8). CONCLUSIONS: These findings indicate that secretory factors from F-spondin-expressing cells, including F-spondin, downregulate differentiation of clastic precursors. Moreover, F-spondin inhibits RANKL-mediated differentiation of clastic cells partially via LRP8. It is suggested that secretory F-spondin may act protectively from cemental resorption partially via LRP8 in periodontal tissue.


Assuntos
Proteínas da Matriz Extracelular/farmacologia , Proteínas Relacionadas a Receptor de LDL/farmacologia , Proteínas do Tecido Nervoso/farmacologia , Osteoclastos/efeitos dos fármacos , Fosfatase Ácida/efeitos dos fármacos , Animais , Catepsina K/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Técnicas de Silenciamento de Genes , Isoenzimas/efeitos dos fármacos , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas de Membrana/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores de Transcrição NFATC/efeitos dos fármacos , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/genética , Ligante RANK/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato
12.
J Dent Res ; 93(7): 657-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24799421

RESUMO

BET proteins are a group of epigenetic regulators controlling transcription through reading acetylated histone tails and recruiting transcription complexes. They are considered as potential therapeutic targets in many distinct diseases. A novel synthetic bromodomain and extraterminal domain (BET) inhibitor, JQ1, was proved to suppress oncogene transcription and inflammatory responses. The present study was aimed to investigate the effects of JQ1 on inflammatory response and bone destruction in experimental periodontitis. We found that JQ1 significantly suppressed lipopolysaccharide (LPS)-stimulated inflammatory cytokine transcription, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α), as well as receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast markers, such as c-Fos, nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1 (NFATc1), tartrate-resistant acid phosphatase (TRAP) and cathepsin K in vitro. JQ1 also inhibited toll-like receptors 2/4 (TLR2/4) expression and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation and nuclear translocation. Chromatin immunoprecipitation and quantitative polymerase chain reaction (ChIP-qPCR) revealed that JQ1 neutralized BRD4 enrichment at several gene promoter regions, including NF-κB, TNF-α, c-Fos, and NFATc1. In a murine periodontitis model, systemic administration of JQ1 significantly inhibited inflammatory cytokine expression in diseased gingival tissues. Alveolar bone loss was alleviated in JQ1-treated mice because of reduced osteoclasts in periodontal tissues. These unprecedented results suggest the BET inhibitor JQ1 as a prospective new approach for treating periodontitis.


Assuntos
Perda do Osso Alveolar/prevenção & controle , Proteínas Nucleares/uso terapêutico , Periodontite/prevenção & controle , Fatores de Transcrição/uso terapêutico , Fosfatase Ácida/efeitos dos fármacos , Animais , Catepsina K/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular , Interleucina-1beta/efeitos dos fármacos , Isoenzimas/efeitos dos fármacos , Lipopolissacarídeos/efeitos adversos , Camundongos , NF-kappa B/efeitos dos fármacos , Fatores de Transcrição NFATC/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-ets/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Ligante RANK/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato , Receptor 2 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Fator de Transcrição AP-1/efeitos dos fármacos , Fator de Necrose Tumoral alfa/efeitos dos fármacos
13.
Cancer Treat Rev ; 40(6): 730-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767837

RESUMO

Prostate cancer is one of the most common malignancies affecting men worldwide, with bone being the most common site of metastasis in patients that progress beyond organ confinement. Bone metastases are virtually incurable and result in significant disease morbidity and mortality. Bone provides a unique microenvironment whose local interactions with tumor cells offer novel targets for therapeutic interventions. Several attractive molecules or pathways have been identified as new potential therapeutic targets for bone metastases caused by metastatic castration-resistant prostate cancer. In this review, we present the recent advances in molecular targeted therapies for prostate cancer bone metastasis focusing on therapies that target the bone cells and the bone microenvironment. The therapies covered in this review include agents that inhibit bone resorption, agents that stimulate bone formation, and agents that target the bone matrix. Suggestions to devise more effective molecular targeted therapies are proposed. Hopefully, with better understanding of the biology of the disease and the development of more robust targeted therapies, the survival and quality of life of the affected individuals could be significantly improved.


Assuntos
Antineoplásicos/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Reabsorção Óssea/prevenção & controle , Difosfonatos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias da Próstata/patologia , Ligante RANK/efeitos dos fármacos , Animais , Reabsorção Óssea/tratamento farmacológico , Catepsina K/efeitos dos fármacos , Catepsina K/metabolismo , Modelos Animais de Doenças , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Osteogênese/efeitos dos fármacos , Ligante RANK/metabolismo , Radioisótopos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Inibidores Teciduais de Metaloproteinases/efeitos dos fármacos , Inibidores Teciduais de Metaloproteinases/metabolismo , Fator de Crescimento Transformador beta/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
14.
J Periodontol ; 85(1): 24-33, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23688101

RESUMO

BACKGROUND: Patients with osteoporosis who receive tooth extractions are typically on either oral bisphosphonate or parathyroid hormone (PTH) therapy. Currently, the consequence of these therapies on hard- and soft-tissue healing in the oral cavity is not clearly defined. The aim of this study is to determine the differences in the therapeutic effect on tooth-extraction wound healing between bisphosphonate and PTH therapies. METHODS: Maxillary second molars were extracted in Sprague Dawley rats (n = 30), and either bisphosphonate (zoledronate [Zol]), PTH, or saline (vehicle control [VC]) was administered for 10 days (n = 10 per group). Hard-tissue healing was evaluated by microcomputed tomography and histomorphometric analyses. Collagen, blood vessels, inflammatory cell infiltration, and cathepsin K expression were assessed in soft tissue using immunohistochemistry, quantitative polymerase chain reaction, and immunoblotting. RESULTS: Both therapies significantly increased bone fill and suppressed vertical bone loss. However, considerably more devital bone was observed in the sockets of rats on Zol versus VC. Although Zol increased the numbers of blood vessels, the total blood vessel area in soft tissue was significantly smaller than in VC. PTH therapy increased osteoblastic bone formation and suppressed osteoclasts. PTH therapy promoted soft-tissue maturation by suppressing inflammation and stimulating collagen deposition. CONCLUSION: Zoledronate therapy deters whereas PTH therapy promotes hard- and soft-tissue healing in the oral cavity, and both therapies prevent vertical bone loss.


Assuntos
Conservadores da Densidade Óssea/uso terapêutico , Difosfonatos/uso terapêutico , Hormônio Paratireóideo/uso terapêutico , Extração Dentária , Alvéolo Dental/efeitos dos fármacos , Animais , Vasos Sanguíneos/efeitos dos fármacos , Western Blotting , Cálcio/sangue , Catepsina K/efeitos dos fármacos , Colágeno/efeitos dos fármacos , Imidazóis/uso terapêutico , Imuno-Histoquímica , Maxila/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Reação em Cadeia da Polimerase , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Alvéolo Dental/patologia , Cicatrização/efeitos dos fármacos , Microtomografia por Raio-X/métodos , Ácido Zoledrônico
15.
BMC Musculoskelet Disord ; 14: 344, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24321244

RESUMO

BACKGROUND: Selective and reversible inhibitors of human Cathepsin K (CatK), including odanacatib (ODN), have been developed as potential therapeutics for the treatment of osteoporosis. Inhibitors of human CatK show significantly less potency for the rodent enzymes compared with that for the human or rabbit enzymes; thus the Schenk model in growing rabbit was developed as a screening assay for the in vivo activity of CatK inhibitors in blocking bone resorption. METHODS: In this study, the efficacy of the selective inhibitors L-833905, L-006235, L-873724, and L-1037536 (ODN) of human CatK in the rapidly growing rabbit 'Schenk' model (age seven weeks) was compared to vehicle, using the bisphosphonate, alendronate (ALN), as a positive control, to assess inhibition of bone resorption. An enzyme inhibition assay (EIA) and an in vitro bone resorption assay using rabbit osteoclasts on bovine cortical bone slices were performed to evaluate the potency of these CatK inhibitors. Bone mineral density of the distal femur (DFBMD) was measured after ten days of treatment using ex vivo DXA densitometry. RESULTS: Results of the EIA using rabbit CatK and the rabbit bone resorption assay showed that three of the four compounds (L-006235, L-873724, and ODN) had similar potencies in the reduction of collagen degradation. L-833905 appeared to be a weaker inhibitor of CatK. Taking into account the respective in vitro potencies and pharmacokinetic profiles via oral administration, the efficacy of these four CatK inhibitors was demonstrated in a dose-related manner in the growing rabbit. Significant increases in DFBMD in animals dosed with the CatK inhibitors compared to vehicle were seen. CONCLUSIONS: Efficacy of the CatK inhibitors in the Schenk rabbit correlated well with that in the in vitro rabbit bone resorption assay and in the ovariectomized rabbit model as previously published. Hence, these studies validated the rabbit Schenk assay as a rapid and reliable in vivo model for prioritizing human CatK inhibitors as potential therapeutic agents.


Assuntos
Conservadores da Densidade Óssea/farmacologia , Densidade Óssea/efeitos dos fármacos , Catepsina K/efeitos dos fármacos , Animais , Benzamidas/farmacologia , Compostos de Bifenilo/farmacologia , Feminino , Fêmur/efeitos dos fármacos , Humanos , Modelos Animais , Nitrilas/farmacologia , Piperazinas/farmacologia , Coelhos , Distribuição Aleatória , Tiazóis/farmacologia
16.
J Endod ; 39(12): 1557-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24238446

RESUMO

INTRODUCTION: This study investigated whether calcium silicate cement extract exerted antiosteoclastogenic actions in murine RAW 264.7 macrophages cultured with receptor activator for nuclear factor kappaB (RANKL). METHODS: The RAW 264.7 macrophage cell was treated with RANKL to osteoclastogenesis. Then, cell viability, cell death, and cathepsin K expression were examined. RESULTS: The silicon (Si)-inhibited RANKL-induced formation of osteoclasts during the osteoclast differentiation process. It was also found that ≥4 mmol/L Si reduced RANKL-enhanced tartrate-resistant acid phosphatase (TRAP) activity in a dose-dependent manner. Furthermore, Si diminished the expression and secretion of cathepsin K elevated by RANKL and was concurrent with the inhibition of TRAF6 induction and nuclear factor kappaB activation. CONCLUSIONS: The current report shows that silicate abrogated RANKL-induced osteoclastogenesis by retarding osteoclast differentiation. The Si can modulate every cell through dose-dependent in vitro RANKL-mediated osteoclastogenesis, such as the proliferation and fusion of preosteoclasts, and the function of osteoclasts. Therefore, silicate-based materials may be a potential therapeutic agent targeting osteoclast differentiation in bone defects.


Assuntos
Compostos de Cálcio/farmacologia , Macrófagos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Ligante RANK/antagonistas & inibidores , Cimento de Silicato/farmacologia , Silicatos/farmacologia , Fosfatase Ácida/efeitos dos fármacos , Compostos de Alumínio/administração & dosagem , Compostos de Alumínio/farmacologia , Animais , Compostos de Cálcio/administração & dosagem , Catepsina K/efeitos dos fármacos , Técnicas de Cultura de Células , Morte Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Isoenzimas/efeitos dos fármacos , Teste de Materiais , Camundongos , NF-kappa B/antagonistas & inibidores , Óxidos/administração & dosagem , Óxidos/farmacologia , Cimento de Silicato/administração & dosagem , Silicatos/administração & dosagem , Silício/administração & dosagem , Silício/farmacologia , Espectrofotometria Atômica/métodos , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Fosfatase Ácida Resistente a Tartarato
17.
Clin Interv Aging ; 7: 235-47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22866001

RESUMO

Cathepsin K is a key enzyme involved in the degradation of organic bone matrix by osteoclasts. Inhibition of bone resorption observed in human and animal models deficient for cathepsin K has identified this enzyme as a suitable target for intervention by small molecules with the potential to be used as therapeutic agents in the treatment of osteoporosis. Odanacatib (ODN) is a nonbasic selective cathepsin K inhibitor with good pharmacokinetic parameters such as minimal in vitro metabolism, long half-life, and oral bioavailability. In preclinical studies, ovariectomized monkeys and rabbits treated with ODN showed substantial inhibition of bone resorption markers along with increases in bone mineral density (BMD). Significant differences were observed in the effects of ODN treatment compared with those of other antiresorptive agents such as bisphosphonates and denosumab. ODN displayed compartment-specific effects on trabecular versus cortical bone formation, with treatment resulting in marked increases in periosteal bone formation and cortical thickness in ovariectomized monkeys whereas trabecular bone formation was reduced. Furthermore, osteoclasts remained viable. Phase I and II studies conducted in postmenopausal women showed ODN to be safe and well tolerated. After 5 years, women who received ODN 50 mg weekly continuously from year 1 (n = 13), showed BMD increases from baseline of 11.9% at the lumbar spine, 9.8% at the femoral neck, 10.9% at the hip trochanter, and 8.5% at the total hip. Additionally, these subjects maintained a low level of the urine bone resorption marker N-terminal telopeptide/creatinine (-67.4% from baseline) through 5 years of treatment, while levels of serum bone-specific alkaline phosphatase remained only slightly reduced relative to baseline (-15.3%). In women who were switched from ODN to placebo after 2 years, bone turnover markers were transiently increased and BMD gains reversed after 12 months off medication. Adverse experiences in the ODN-treated group were not significantly different from the placebo group. In conclusion, available data suggests that cathepsin K inhibition could be a promising intervention with which to treat osteoporosis. Ongoing studies are expected to provide information on the long-term efficacy in fracture reduction and safety of prolonged treatment with ODN.


Assuntos
Compostos de Bifenilo/uso terapêutico , Conservadores da Densidade Óssea/uso terapêutico , Catepsina K/antagonistas & inibidores , Osteoporose Pós-Menopausa/tratamento farmacológico , Animais , Compostos de Bifenilo/administração & dosagem , Compostos de Bifenilo/farmacologia , Conservadores da Densidade Óssea/administração & dosagem , Conservadores da Densidade Óssea/farmacologia , Remodelação Óssea/efeitos dos fármacos , Catepsina K/efeitos dos fármacos , Catepsina K/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Macaca mulatta , Coelhos
18.
Clin Oral Investig ; 15(6): 941-52, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20697756

RESUMO

Parathyroid hormone (PTH) is widely accepted as an anabolic agent when administered intermittently. Here, we explored the influence of intermittent PTH(1-34) on the expression of local factors by human periodontal ligament (PDL) cells that modify osteoclast biology. This approach aimed at a further elucidation of the role of the hormone and of PDL cells in the regulation of periodontal tissue homeostasis and of repair processes. In a co-culture model of mature PDL cells and RAW 264.7 cells, intermittent PTH(1-34) induced an increased gene expression for tartrate-resistant acid phosphatase (+84%), cathepsin K (+56%), and vitronectin-receptor (+56%); and an enhanced resorptive activity of differentiated osteoclasts (+154%). These findings were correlated with a reduction of the osteoprotegerin (OPG)/receptor activator of nuclear factor kappaB ligand (RANKL) ratio in the presence of PTH(1-34; -44%). Similar results were obtained when RAW cells were cultured with the conditioned medium of PTH(1-34)-stimulated PDL cells. In contrast, when less mature PDL cells were co-cultured with RAW cells, PTH(1-34) induced an inhibition of osteoclastic differentiation (TRAP, -35%; cathepsin K, -28%; vitronectin-receptor, -35%), a reduction of the resorbed substrate area (-77%) and an increase of the OPG/RANKL ratio (+11%). The conditioned medium of PTH(1-34)-pretreated less mature PDL cells led to a down-regulation of the number and activity of multinucleated cells. These data indicate that intermittent PTH(1-34) modifies the expression of membrane-bound and secreted factors by PDL cells which then in turn alter osteoclast biology. The PDL cell response to PTH(1-34) is specific in terms of cell maturation and the mechanism involved.


Assuntos
Osteoclastos/efeitos dos fármacos , Osteoprotegerina/efeitos dos fármacos , Hormônio Paratireóideo/farmacologia , Ligamento Periodontal/efeitos dos fármacos , Ligante RANK/efeitos dos fármacos , Fosfatase Ácida/efeitos dos fármacos , Adolescente , Reabsorção Óssea/fisiopatologia , Catepsina K/efeitos dos fármacos , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Células Cultivadas , Criança , Técnicas de Cocultura , Meios de Cultivo Condicionados , Regulação para Baixo , Homeostase/efeitos dos fármacos , Humanos , Integrina alfaVbeta3/efeitos dos fármacos , Isoenzimas/efeitos dos fármacos , Osteoclastos/fisiologia , Ligamento Periodontal/citologia , Regeneração/efeitos dos fármacos , Fosfatase Ácida Resistente a Tartarato
19.
J Dent Res ; 90(4): 489-94, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21118795

RESUMO

Fluorosed enamel can be porous, mottled, discolored, hypomineralized, and protein-rich if the enamel matrix is not completely removed. Proteolytic processing by matrix metalloproteinase-20 (MMP20) and kallikrein-4 (KLK4) is critical for enamel formation, and homozygous mutation of either protease results in hypomineralized, protein-rich enamel. Herein, we demonstrate that the lysosomal proteinase cathepsin K is expressed in the enamel organ in a developmentally defined manner that suggests a role for cathepsin K in degrading re-absorbed enamel matrix proteins. We therefore asked if fluoride directly inhibits the activity of MMP20, KLK4, dipeptidyl peptidase I (DPPI) (an in vitro activator of KLK4), or cathepsin K. Enzyme kinetics were studied with quenched fluorescent peptides with purified enzyme in the presence of 0-10 mM NaF, and data were fit to Michaelis-Menten curves. Increasing concentrations of known inhibitors showed decreases in enzyme activity. However, concentrations of up to 10 mM NaF had no effect on KLK4, MMP20, DPPI, or cathepsin K activity. Our results show that fluoride does not directly inhibit enamel proteolytic activity.


Assuntos
Proteínas do Esmalte Dentário/efeitos dos fármacos , Esmalte Dentário/enzimologia , Fluoretos/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Ameloblastos/efeitos dos fármacos , Amelogênese/efeitos dos fármacos , Amelogênese/fisiologia , Animais , Catepsina C/análise , Catepsina C/efeitos dos fármacos , Catepsina K/antagonistas & inibidores , Catepsina K/efeitos dos fármacos , Inibidores de Cisteína Proteinase/farmacologia , Dipeptídeos/administração & dosagem , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Órgão do Esmalte/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Calicreínas/antagonistas & inibidores , Calicreínas/efeitos dos fármacos , Leucina/análogos & derivados , Leucina/farmacologia , Metaloproteinase 20 da Matriz/efeitos dos fármacos , Inibidores de Metaloproteinases de Matriz , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/farmacologia , Inibidores de Serina Proteinase/administração & dosagem , Inibidores de Serina Proteinase/farmacologia , Sulfonas/administração & dosagem , Sulfonas/farmacologia , Suínos , Fatores de Tempo
20.
Cancer Treat Rev ; 36 Suppl 3: S6-S10, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21129612

RESUMO

Bone metastases have a major impact on morbidity and on mortality in cancer patients. Despite its clinical relevance, metastasis remains the most poorly elucidated aspect of carcinogenesis. The biological mechanisms leading to bone metastasis establishment have been referred as "vicious circle," a complex network between cancer cells and the bone microenvironment. This review is aimed to underline the new molecular targets in bone metastases management other than bisphosphonates. Different pathways or molecules such as RANK/RANKL/OPG, cathepsin K, endothelin-1, Wnt/DKK1, Src have recently emerged as potential targets and nowadays preclinical and clinical trials are underway. The results from those in the advanced clinical phases are encouraging and underlined the need to design large randomised clinical trials to validate these results in the next future. Targeting the bone by preventing skeletal related events (SREs) and bone metastases has major clinical impact in improving survival in bone metastatic patients and in preventing disease relapse in adjuvant setting.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Animais , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados , Neoplasias Ósseas/metabolismo , Catepsina K/efeitos dos fármacos , Catepsina K/metabolismo , Denosumab , Endotelinas/efeitos dos fármacos , Endotelinas/metabolismo , Humanos , Proteínas Proto-Oncogênicas pp60(c-src)/efeitos dos fármacos , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Ligante RANK/efeitos dos fármacos , Ligante RANK/metabolismo , Ligante RANK/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA