Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochem Biophys Res Commun ; 532(4): 535-540, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32896381

RESUMO

N-myristoylation is a ubiquitous protein lipidation in eukaryotes, but regulatory roles for myristoylation on proteins still remain to be explored. Here, we show that N-myristoylation of Caveolin-2 (Cav-2) controls insulin signaling. Alternative translation initiation (ATI)-yielded truncated form of non-N-myristoylable Cav-2ß and various conditional Cav-2 mutants were compared to full-length form of N-myristoylable Cav-2α. Insulin induced insulin receptor (IR) tyrosine kinase-catalyzed Tyr-19 phosphorylation of N-myristoylable M14A Cav-2 and triggered activation of IR signaling cascade. In contrast, insulin induced ubiquitination of non-N-myristoylable M1A and G2A Cav-2 to facilitate protein-tyrosine phosphatase 1B interaction with IR which desensitized IR signaling through internalization. Metabolic labeling and click chemistry showed palmitoylation of M14A but not M1A and G2A Cav-2. Insulin did not induce phosphorylation of M1A and G2A Cav-2 and Cav-2ß. Like Cav-2α, G2A Cav-2 and Cav-2ß formed large homo-oligomers localized in lipid rafts. These findings show Cav-2 N-myristoylation plays a crucial role to coordinate its phosphorylation, palmitoylation, and ubiquitination to control insulin signaling.


Assuntos
Caveolina 2/metabolismo , Insulina/fisiologia , Transdução de Sinais , Animais , Caveolina 2/química , Linhagem Celular , Humanos , Lipoilação , Microdomínios da Membrana/metabolismo , Ácido Mirístico/metabolismo , Fosforilação , Ratos , Receptor de Insulina/metabolismo , Tirosina/metabolismo , Ubiquitinação
2.
Bioelectrochemistry ; 133: 107451, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32109845

RESUMO

Caveolae consist in lipid raft domains composed of caveolin proteins, cholesterol, glycosphingolipids, and GPI-anchored proteins. Caveolin proteins present three different types, caveolin 1 (CAV-1), caveolin 2 (CAV-2) and caveolin 3 (CAV-3), with a very similar structure and amino acid composition. The native caveolin proteins oxidation mechanism was investigated for the first time, at a glassy carbon electrode, using cyclic, square wave and differential pulse voltammetry. The three native caveolin proteins oxidation mechanism presented only one tyrosine and tryptophan amino acid residues oxidation peak. Denatured caveolin proteins presented also the tyrosine, tryptophan and cysteine amino acid residues oxidation peaks. The reverse cholesterol transport is related to caveolae and caveolin proteins, and CAV-1 is directly connected to cholesterol transport. The influence of cholesterol on the three caveolin proteins electrochemical behaviour was evaluated. In the absence and in the presence of cholesterol, significant differences in the CAV-1 oxidation peak current were observed.


Assuntos
Caveolina 1/metabolismo , Caveolina 2/metabolismo , Caveolina 3/metabolismo , Colesterol/metabolismo , Cavéolas/metabolismo , Caveolina 1/química , Caveolina 2/química , Caveolina 3/química , Técnicas Eletroquímicas , Humanos , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
J Virol ; 91(20)2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28747506

RESUMO

Autophagy plays important roles in maintaining cellular homeostasis. It uses double- or multiple-membrane vesicles termed autophagosomes to remove protein aggregates and damaged organelles from the cytoplasm for recycling. Hepatitis C virus (HCV) has been shown to induce autophagy to enhance its own replication. Here we describe a procedure that combines membrane flotation and affinity chromatography for the purification of autophagosomes from cells that harbor an HCV subgenomic RNA replicon. The purified autophagosomes had double- or multiple-membrane structures with a diameter ranging from 200 nm to 600 nm. The analysis of proteins associated with HCV-induced autophagosomes by proteomics led to the identification of HCV nonstructural proteins as well as proteins involved in membrane trafficking. Notably, caveolin-1, caveolin-2, and annexin A2, which are proteins associated with lipid rafts, were also identified. The association of lipid rafts with HCV-induced autophagosomes was confirmed by Western blotting, immunofluorescence microscopy, and immunoelectron microscopy. Their association with autophagosomes was also confirmed in HCV-infected cells. The association of lipid rafts with autophagosomes was specific to HCV, as it was not detected in autophagosomes induced by nutrient starvation. Further analysis indicated that the autophagosomes purified from HCV replicon cells could mediate HCV RNA replication in a lipid raft-dependent manner, as the depletion of cholesterol, a major component of lipid rafts, from autophagosomes abolished HCV RNA replication. Our studies thus demonstrated that HCV could specifically induce the association of lipid rafts with autophagosomes for its RNA replication.IMPORTANCE HCV can cause severe liver diseases, including cirrhosis and hepatocellular carcinoma, and is one of the most important human pathogens. Infection with HCV can lead to the reorganization of membrane structures in its host cells, including the induction of autophagosomes. In this study, we developed a procedure to purify HCV-induced autophagosomes and demonstrated that HCV could induce the localization of lipid rafts to autophagosomes to mediate its RNA replication. This finding provided important information for further understanding the life cycle of HCV and its interaction with the host cells.


Assuntos
Autofagossomos/fisiologia , Hepacivirus/fisiologia , Microdomínios da Membrana/fisiologia , Replicação Viral , Anexina A2/química , Anexina A2/isolamento & purificação , Autofagossomos/química , Autofagossomos/virologia , Autofagia , Western Blotting , Caveolina 1/química , Caveolina 1/isolamento & purificação , Caveolina 2/química , Caveolina 2/isolamento & purificação , Linhagem Celular , Colesterol/análise , Cromatografia de Afinidade , Interações Hospedeiro-Patógeno , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/virologia , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Proteômica , RNA Viral/fisiologia , Replicon , Proteínas não Estruturais Virais/metabolismo
4.
Biochim Biophys Acta ; 1853(5): 1022-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25667086

RESUMO

Here, we demonstrate that insulin receptor (IR) tyrosine kinase catalyzes Tyr-19 and Tyr-27 phosphorylation of caveolin-2 (cav-2), leading to stimulation of signaling proteins downstream of IR, and that the catalysis is dependent on fatty acylation status of cav-2, promoting its interaction with IR. Cav-2 is myristoylated at Gly-2 and palmitoylated at Cys-109, Cys-122, and Cys-145. The fatty acylation deficient mutants are unable to localize in the plasma membrane and not phosphorylated by IR tyrosine kinase. IR interacts with the C-terminal domain of cav-2 containing the cysteines for palmitoylation. IR mutants, Y999F and K1057A, but not W1220S, fail interaction with cav-2. Insulin receptor substrate-1 (IRS-1) is recruited to interact with the IR-catalyzed phospho-tyrosine cav-2, which facilitates IRS-1 association with and activation by IR to initiate IRS-1-mediated downstream signaling. Cav-2 fatty acylation and tyrosine phosphorylation are necessary for the IRS-1-dependent PI3K-Akt and ERK activations responsible for glucose uptake and cell survival and proliferation. In conclusion, fatty acylated cav-2 is a new substrate of IR tyrosine kinase, and the fatty acylation and phosphorylation of cav-2 present novel mechanisms by which insulin signaling is activated.


Assuntos
Caveolina 2/metabolismo , Ácidos Graxos/metabolismo , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Acilação/efeitos dos fármacos , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Biocatálise/efeitos dos fármacos , Caveolina 2/química , Linhagem Celular , Cisteína/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Insulina/farmacologia , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lipoilação/efeitos dos fármacos , Camundongos , Mitógenos/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Ratos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
5.
Nat Commun ; 4: 2540, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24096474

RESUMO

Ca(2+) influx via voltage-dependent CaV1/CaV2 channels couples electrical signals to biological responses in excitable cells. CaV1/CaV2 channel blockers have broad biotechnological and therapeutic applications. Here we report a general method for developing novel genetically encoded calcium channel blockers inspired by Rem, a small G-protein that constitutively inhibits CaV1/CaV2 channels. We show that diverse cytosolic proteins (CaVß, 14-3-3, calmodulin and CaMKII) that bind pore-forming α1-subunits can be converted into calcium channel blockers with tunable selectivity, kinetics and potency, simply by anchoring them to the plasma membrane. We term this method 'channel inactivation induced by membrane-tethering of an associated protein' (ChIMP). ChIMP is potentially extendable to small-molecule drug discovery, as engineering FK506-binding protein into intracellular sites within CaV1.2-α1C permits heterodimerization-initiated channel inhibition with rapamycin. The results reveal a universal method for developing novel calcium channel blockers that may be extended to develop probes for a broad cohort of unrelated ion channels.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Caveolina 1/antagonistas & inibidores , Caveolina 2/antagonistas & inibidores , Proteínas de Ligação a Tacrolimo/genética , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Potenciais de Ação , Animais , Bloqueadores dos Canais de Cálcio/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Caveolina 1/química , Caveolina 1/metabolismo , Caveolina 2/química , Caveolina 2/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Descoberta de Drogas , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/metabolismo , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Camundongos , Mimetismo Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células PC12 , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Sirolimo/farmacologia , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
6.
FEBS Lett ; 586(19): 3317-23, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22819829

RESUMO

Here we show that tyrosine phosphorylation of caveolin-2 (Cav-2) negatively regulates the anti-proliferative function of transforming growth factor beta (TGF-beta) in endothelial cells. In contrast to wild-type-Cav-2, retroviral re-expression of Y19/27F-Cav-2 in Cav-2 knockout endothelial cells did not affect anti-proliferative effect of TGF-beta compared to empty vector. Conversely, although less effective than wild-type, re-expression of S23/36A-Cav-2 reduced the effect of TGF-beta compared to empty vector. This differential effect of tyrosine and serine phosphorylation mutants of Cav-2 correlated with TGF-beta-induced Smad3 phosphorylation and transcriptional activation of plasminogen activator inhibitor-1. Thus tyrosine-phosphorylated Cav-2 counteracts anti-proliferative effect of TGF-beta in endothelial cells.


Assuntos
Caveolina 2/química , Caveolina 2/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Substituição de Aminoácidos , Animais , Caveolina 2/antagonistas & inibidores , Caveolina 2/genética , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Técnicas de Inativação de Genes , Humanos , Camundongos , Mutagênese Sítio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Serpina E2/genética , Proteína Smad3/metabolismo , Ativação Transcricional/efeitos dos fármacos , Tirosina/química
7.
J Cell Mol Med ; 15(4): 888-908, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20455999

RESUMO

Herein, we report that insulin-activated extracellular signal-regulated kinase (ERK) is translocated to the nuclear envelope by caveolin-2 (cav-2) and associates with lamin A/C in the inner nuclear membrane in response to insulin. We identified that the Ser¹54 -Val¹55 -Ser¹56 domain on the C-terminal of cav-2 is essential for insulin-induced phosphorylation and nuclear targeting of ERK and cav-2. In human embryonic kidney 293T cells, ERK was not activated and translocated to the nucleus by insulin in comparison to insulin-like growth factor-1 (IGF-1). However, insulin-stimulated activation of ERK was induced by exogenous addition of cav-2. The activated ERK associated and translocated with the cav-2 to the nucleus. In turn, cav-2 promoted phospho-ERK interaction with lamin A/C in the inner nuclear membrane. In contrast, ERK, but not cav-2, was phosphorylated and translocated to the nucleus by IGF-1. The nuclear targeted phospho-ERK failed to localize in the nuclear envelope in response to IGF-1. Together, our data demonstrate that translocation of phospho-ERK to the nuclear envelope is mediated by Ser¹54 -Val¹55 -Ser¹56 domain of cav-2 and this event is an insulin-specific action.


Assuntos
Caveolina 2/química , Caveolina 2/metabolismo , Núcleo Celular/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Insulina/farmacologia , Sinais Direcionadores de Proteínas , Animais , Células COS , Núcleo Celular/efeitos dos fármacos , Chlorocebus aethiops , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Fator de Crescimento Insulin-Like I/farmacologia , Laminas/metabolismo , Proteínas Mutantes/metabolismo , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Ratos , Receptor de Insulina/metabolismo , Deleção de Sequência , Relação Estrutura-Atividade
8.
Eur Biophys J ; 39(2): 307-25, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19847421

RESUMO

Caveolins (cav1-3) are essential membrane proteins found in caveolae. The caveolin scaffolding domain of cav-1 includes a short sequence containing a CRAC motif (V94TKYWFYR101) at its C-terminal end. To investigate the role of this motif in the caveolin-membrane interaction at the atomic level, we performed a detailed structural and dynamics characterization of a cav-1(V94-L102) nonapeptide encompassing this motif and including the first residue of cav-1 hydrophobic domain (L102), in dodecylmaltoside (DM) or dodecylphosphocholine (DPC) micelles, as membrane mimics. Cav-1(V94-L102) partitioned better in DPC and in DM/anionic lipid micelles than in DM micelles, as shown by fluorescence titration and CD. NMR data revealed that this peptide folded as an amphipathic helix located in the polar head group region of DPC micelles. The two tyrosine side-chains, flanked by arginine and lysine residues, are situated on one face of this helix, whereas the phenylalanine and tryptophan side-chains are located on the opposite face. Fluorescence studies showed significant Trp subnanosecond rotations, the presence of several rotamers, and a heterogeneous location within the water/micelle interface. NMR studies of the shorter cav-1(V94-R101) peptide and of the homologous sequence of cav-2(I79SKYVMYKF87) allowed the description of the effect of L102 and of the amino acid variations occurring in cav-2 on the structure and localization in DPC micelles. Based on the topological model of caveolins, our results suggest that the cav-1 and cav-2 nonapeptides studied form interfacial alpha-helix membrane anchors in which the K/RhhhYK/Rh motif, also found in cav-3, may play a significant role.


Assuntos
Caveolina 1/química , Caveolina 1/genética , Caveolina 2/química , Caveolina 2/genética , Membranas Artificiais , Sequência de Aminoácidos , Dicroísmo Circular , Detergentes/química , Fluorescência , Glucosídeos/química , Interações Hidrofóbicas e Hidrofílicas , Micelas , Modelos Moleculares , Distribuição Normal , Ressonância Magnética Nuclear Biomolecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Estrutura Secundária de Proteína , Rotação , Água/química
9.
Biochemistry ; 47(1): 101-11, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18081315

RESUMO

In the present study, using a combination of reconstituted systems and endothelial cells endogenously expressing caveolins, we show that phosphorylation of caveolin-2 at serines 23 and 36 can be differentially regulated by caveolin-1 mediated subcellular targeting to lipid raft/caveolae and in endothelial cells synchronized in mitosis. Detergent insolubility and sucrose flotation gradient experiments revealed that serine 23 phosphorylation of caveolin-2 preferably occurs in detergent-resistant membranes (DRMs), while serine 36 phosphorylation takes place in non-DRMs. Furthermore, immunofluorescence microscopy studies determined that in the presence of caveolin-1, serine 23-phosphorylated caveolin-2 mostly localizes to plasma membrane, while serine 36-phosphorylated caveolin-2 primarily resides in intracellular compartments. To directly address the role of caveolin-1 in regulating phosphorylation of endogenous caveolin-2, we have used the siRNA approach. The specific knockdown of caveolin-1 in endothelial cells decreases caveolin-2 phosphorylation at serine 23 but not at serine 36. Thus, upregulation of serine 23 phosphorylation of caveolin-2 depends on caveolin-1-driven targeting to plasma membrane lipid rafts and caveolae. Interestingly, although serine 36 phosphorylation does not seem to be regulated in endothelial cells by caveolin-1, it can be selectively upregulated in endothelial cells synchronized in mitosis. The latter data suggests a possible involvement of serine 36-phosphorylated caveolin-2 in modulating mitosis.


Assuntos
Cavéolas/metabolismo , Caveolina 2/metabolismo , Células Endoteliais/metabolismo , Microdomínios da Membrana/metabolismo , Serina/metabolismo , Caveolina 1/química , Caveolina 1/genética , Caveolina 1/metabolismo , Caveolina 2/química , Caveolina 2/genética , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Detergentes/química , Dimerização , Células Endoteliais/citologia , Citometria de Fluxo , Humanos , Microscopia de Fluorescência , Mitose/fisiologia , Fosforilação , Transporte Proteico , RNA Interferente Pequeno/genética , Serina/genética
10.
Genome Inform ; 15(2): 21-30, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15706488

RESUMO

Multiple sequence alignments are a powerful tool for identifying the regions of DNA which have been constrained in evolutionary divergence, presumably due to their functional role. However, such constraints rarely manifest themselves as perfect conservation of a site clearly standing out in its broader environment, as they reflect the species-specific differences in proteins, as well as the ability of some proteins to interact with multiple variants of their binding sequence. In this paper we explore the use of alignment column uncertainty as an aid in locating differential phylogenetic footprints, which refer to the sites in DNA where groups of related species exhibit sequence conservation, but where the pattern may vary between the groups. We use efficient, linear-time algorithms to locate such sites. We have performed a study of the mammalian CAV2-CAV1 gene region using our software, and we conclude with several observations concerning the differential conservation and the use of computational methods for its detection. The software developed for this project is available, free of charge, by contacting the author.


Assuntos
Biologia Computacional , Alinhamento de Sequência/estatística & dados numéricos , Software , Animais , Caveolina 1/química , Caveolina 2/química , Sequência Conservada , Evolução Molecular , Humanos , Alinhamento de Sequência/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA