Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 202
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 477, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352555

RESUMO

Herbivorax saccincola A7 is an anaerobic alkali-thermophilic lignocellulolytic bacterium that possesses a cellulosome and high xylan degradation ability. To understand the expression profile of extracellular enzymes by carbon sources, quantitative real-time PCR was performed on all cellulosomal and non-cellulosomal enzyme genes of H. saccincola A7 using cellulose and xylan as carbon sources. The results confirmed that the scaffolding proteins of H. saccincola A7 were expressed. In general, the cellulosomal genes belonging to the glycoside hydrolase families 9, 10, 11, and 48 were repressed when xylan was the sole carbon source, but these genes were significantly induced in the presence of cellulose. These results indicate that cellulose, not xylan, is a key inducer of cellulosomal genes in H. saccincola A7. The RsgI-like proteins, which regulate a carbohydrate-sensing mechanism in Clostridium thermocellum, were also found to be encoded in the H. saccincola A7 genome. To confirm the regulation by RsgI-like proteins, the relative expression of σI1-σI4 factors was analyzed on both carbon sources. The expression of alternative σI1 and σI2 factors was enhanced by the presence of cellulose. By contrast, the expression of σI3 and σI4 factors was activated by both cellulose and xylan. Taken together, the results reveal that the cellulosomal and non-cellulosomal genes of H. saccincola A7 are regulated through a carbohydrate-sensing mechanism involving anti-σ regulator RsgI-like proteins. KEY POINTS: • qRT-PCR performed on cellulosomal and non-cellulosomal genes of H. saccincola A7 • Cellulose is a key inducer of the cellulosome of H. saccincola A7 • H. saccincola A7 possesses a similar system of anti-σ regulator RsgI-like proteins.


Assuntos
Celulose , Celulossomas , Regulação Bacteriana da Expressão Gênica , Xilanos , Celulossomas/metabolismo , Celulossomas/genética , Celulose/metabolismo , Xilanos/metabolismo , Polissacarídeos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
2.
Protein Sci ; 33(11): e5193, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39470320

RESUMO

Lignocellulolytic clostridia employ multiple pairs of alternative σ/anti-σ (SigI/RsgI) factors to regulate cellulosomal components for substrate-specific degradation of cellulosic biomass. The current model has proposed that RsgIs use a sensor domain to bind specific extracellular lignocellulosic components and activate cognate SigIs to initiate expression of corresponding cellulosomal enzyme genes, while expression of scaffoldins can be initiated by several different SigIs. Pseudobacteroides cellulosolvens contains the most complex known cellulosome system and the highest number of SigI-RsgI regulons yet discovered. However, the function of many RsgI sensor domains and their relationship with the various enzyme types are not fully understood. Here, we report that RsgI4 from P. cellulosolvens employs a C-terminal module that bears distant similarity to the fibronectin type III (Fn3) domain and serves as the sensor domain. Substrate-binding analysis revealed that the Fn3-like domain of RsgI4 represents a novel carbohydrate-binding module (CBM) that binds to a wide range of polysaccharide types. Structure determination further revealed that the Fn3-like domain belongs to the type B group of CBMs with a predicted concave face for substrate binding. Promoter sequence analysis of cellulosomal genes revealed that SigI4 is responsible for cellulosomal regulation of major scaffoldins rather than enzymes, consistent with the broad substrate specificity of the RsgI4 sensor domain. Notably, scaffoldins are invariably required as cellulosome components regardless of the substrate type. These findings suggest that the intricate cellulosome system of P. cellulosolvens comprises a more elaborate regulation mechanism than other bacteria and thus expands the paradigm of cellulosome regulation.


Assuntos
Proteínas de Bactérias , Celulossomas , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Celulossomas/metabolismo , Celulossomas/genética , Celulossomas/química , Regulação Bacteriana da Expressão Gênica , Clostridiales/genética , Clostridiales/metabolismo , Clostridiales/enzimologia , Domínios Proteicos
3.
Sci Rep ; 14(1): 22429, 2024 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-39342015

RESUMO

Cellulase selectively recognizes cellulose surfaces and cleaves their ß-1,4-glycosidic bonds. Combining hydrolysis using cellulase and fermentation can produce alternative fuels and chemical products. However, anaerobic bacteria produce only low levels of highly active cellulase complexes so-called cellulosomes. Therefore, we designed hybrid cellulase complexes from 49 biotinylated catalytic domain (CD) and 30 biotinylated cellulose-binding domain (CBD) libraries on streptavidin-conjugated nanoparticles to enhance cellulose hydrolysis by mimicking the cellulosome structure. The hybrid cellulase complex, incorporating both native CD and CBD, significantly improved reducing sugar production from cellulose compared to free native modular enzymes. The optimal CBD for each hybrid cellulase complex differed from that of the native enzyme. The most effective hybrid cellulase complex was observed with the combination of CD6-4 from Thermobifida fusca YX and CBD46 from the Bacillus halodurans C-125. The hybrid cellulase complex/CD6-4-CBD46 and -CD6-4-CBD2-5 combinations showed increased reducing sugar production. Similar results were also observed in microcrystalline cellulose degradation. Furthermore, clustering on nanoparticles enhanced enzyme thermostability. Our results demonstrate that hybrid cellulase complex structures improve enzyme function through synergistic effects and extend the lifespan of the enzyme.


Assuntos
Celulase , Celulose , Celulase/química , Celulase/metabolismo , Celulose/metabolismo , Hidrólise , Domínio Catalítico , Celulossomas/metabolismo , Nanopartículas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética
4.
Biotechnol Lett ; 46(4): 531-543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38607604

RESUMO

Biofuel production from lignocellulose feedstocks is sustainable and environmentally friendly. However, the lignocellulosic pretreatment could produce fermentation inhibitors causing multiple stresses and low yield. Therefore, the engineering construction of highly resistant microorganisms is greatly significant. In this study, a composite functional chimeric cellulosome equipped with laccase, versatile peroxidase, and lytic polysaccharide monooxygenase was riveted on the surface of Saccharomyces cerevisiae to construct a novel yeast strain YI/LVP for synergistic lignin degradation and cellulosic ethanol production. The assembly of cellulosome was assayed by immunofluorescence microscopy and flow cytometry. During the whole process of fermentation, the maximum ethanol concentration and cellulose conversion of engineering strain YI/LVP reached 8.68 g/L and 83.41%, respectively. The results proved the availability of artificial chimeric cellulosome containing lignin-degradation enzymes for cellulosic ethanol production. The purpose of the study was to improve the inhibitor tolerance and fermentation performance of S. cerevisiae through the construction and optimization of a synergistic lignin-degrading enzyme system based on cellulosome.


Assuntos
Celulossomas , Etanol , Fermentação , Lignina , Saccharomyces cerevisiae , Etanol/metabolismo , Lignina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Celulossomas/metabolismo , Celulossomas/genética , Celulose/metabolismo , Lacase/metabolismo , Lacase/genética
5.
Proteins ; 92(8): 946-958, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38597224

RESUMO

Clostridium thermocellum is a potential microbial platform to convert abundant plant biomass to biofuels and other renewable chemicals. It efficiently degrades lignocellulosic biomass using a surface displayed cellulosome, a megadalton sized multienzyme containing complex. The enzymatic composition and architecture of the cellulosome is controlled by several transmembrane biomass-sensing RsgI-type anti-σ factors. Recent studies suggest that these factors transduce signals from the cell surface via a conserved RsgI extracellular (CRE) domain (also called a periplasmic domain) that undergoes autoproteolysis through an incompletely understood mechanism. Here we report the structure of the autoproteolyzed CRE domain from the C. thermocellum RsgI9 anti-σ factor, revealing that the cleaved fragments forming this domain associate to form a stable α/ß/α sandwich fold. Based on AlphaFold2 modeling, molecular dynamics simulations, and tandem mass spectrometry, we propose that a conserved Asn-Pro bond in RsgI9 autoproteolyzes via a succinimide intermediate whose formation is promoted by a conserved hydrogen bond network holding the scissile peptide bond in a strained conformation. As other RsgI anti-σ factors share sequence homology to RsgI9, they likely autoproteolyze through a similar mechanism.


Assuntos
Proteínas de Bactérias , Clostridium thermocellum , Simulação de Dinâmica Molecular , Proteólise , Clostridium thermocellum/metabolismo , Clostridium thermocellum/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Fator sigma/química , Fator sigma/metabolismo , Fator sigma/genética , Sequência de Aminoácidos , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Celulossomas/metabolismo , Celulossomas/química , Cristalografia por Raios X , Espectrometria de Massas em Tandem , Ligação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
6.
Protein Expr Purif ; 210: 106323, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37331410

RESUMO

Anaerobic fungi (Neocallimastigomycetes) found in the guts of herbivores are biomass deconstruction specialists with a remarkable ability to extract sugars from recalcitrant plant material. Anaerobic fungi, as well as many species of anaerobic bacteria, deploy multi-enzyme complexes called cellulosomes, which modularly tether together hydrolytic enzymes, to accelerate biomass hydrolysis. While the majority of genomically encoded cellulosomal genes in Neocallimastigomycetes are biomass degrading enzymes, the second largest family of cellulosomal genes encode spore coat CotH domains, whose contribution to fungal cellulosome and/or cellular function is unknown. Structural bioinformatics of CotH proteins from the anaerobic fungus Piromyces finnis shows anaerobic fungal CotH domains conserve key ATP and Mg2+ binding motifs from bacterial Bacillus CotH proteins known to act as protein kinases. Experimental characterization further demonstrates ATP hydrolysis activity in the presence and absence of substrate from two cellulosomal P. finnis CotH proteins when recombinantly produced in E. coli. These results present foundational evidence for CotH activity in anaerobic fungi and provide a path towards elucidating the functional contribution of this protein family to fungal cellulosome assembly and activity.


Assuntos
Celulossomas , Celulossomas/genética , Celulossomas/química , Celulossomas/metabolismo , Escherichia coli/metabolismo , Anaerobiose , Proteínas de Bactérias/química , Esporos/metabolismo , Trifosfato de Adenosina/metabolismo , Fungos
7.
Methods Mol Biol ; 2657: 53-77, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37149522

RESUMO

Cellulosomes are multi-enzymatic nanomachines that have been fine-tuned through evolution to efficiently deconstruct plant biomass. Integration of cellulosomal components occurs via highly ordered protein-protein interactions between the various enzyme-borne dockerin modules and the multiple copies of the cohesin modules located on the scaffoldin subunit. Recently, designer cellulosome technology was established to provide insights into the architectural role of catalytic (enzymatic) and structural (scaffoldin) cellulosomal constituents for the efficient degradation of plant cell wall polysaccharides. Owing to advances in genomics and proteomics, highly structured cellulosome complexes have recently been unraveled, and the information gained has inspired the development of designer-cellulosome technology to new levels of complex organization. These higher-order designer cellulosomes have in turn fostered our capacity to enhance the catalytic potential of artificial cellulolytic complexes. In this chapter, methods to produce and employ such intricate cellulosomal complexes are reported.


Assuntos
Celulose , Celulossomas , Celulose/metabolismo , Parede Celular/metabolismo , Membrana Celular/metabolismo , Genômica , Celulossomas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo
8.
Appl Microbiol Biotechnol ; 107(9): 2755-2770, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941434

RESUMO

Designer cellulosomes (DCs) are engineered multi-enzyme complexes, comprising carbohydrate-active enzymes attached to a common backbone, the scaffoldin, via high-affinity cohesin-dockerin interactions. The use of DCs in the degradation of renewable biomass polymers is a promising approach for biorefineries. Indeed, DCs have shown significant hydrolytic activities due to the enhanced enzyme-substrate proximity and inter-enzyme synergies, but technical hurdles in DC engineering have hindered further progress towards industrial application. The challenge in DC engineering lies in the large diversity of possible building blocks and architectures, resulting in a multivariate and immense design space. Simultaneously, the precise DC composition affects many relevant parameters such as activity, stability, and manufacturability. Since protein engineers face a lack of high-throughput approaches to explore this vast design space, DC engineering may result in an unsatisfying outcome. This review provides a roadmap to guide researchers through the process of DC engineering. Each step, starting from concept to evaluation, is described and provided with its challenges, along with possible solutions, both for DCs that are assembled in vitro or are displayed on the yeast cell surface. KEY POINTS: • Construction of designer cellulosomes is a multi-step process. • Designer cellulosome research deals with multivariate construction challenges. • Boosting designer cellulosome efficiency requires exploring a vast design space.


Assuntos
Celulossomas , Celulossomas/metabolismo , Celulose/metabolismo , Membrana Celular/metabolismo , Proteínas de Ciclo Celular/metabolismo , Complexos Multienzimáticos/metabolismo , Proteínas de Bactérias/metabolismo
9.
Curr Opin Biotechnol ; 78: 102840, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36356377

RESUMO

The primary obstacle impeding the more widespread use of biomass for energy and chemical production is the absence of a low-cost technology for overcoming their recalcitrant nature. It has been shown that the overall cost can be reduced by using a 'consolidated' bioprocessing (CBP) approach, in which enzyme production, biomass hydrolysis, and sugar fermentation can be combined. Cellulosomes are enzyme complexes found in many anaerobic microorganisms that are highly efficient for biomass depolymerization. While initial efforts to display synthetic cellulosomes have been successful, the overall conversion is still low for practical use. This limitation has been partially alleviated by displaying more complex cellulsome structures either via adaptive assembly or by using synthetic consortia. Since synthetic cellulosome nanostructures have also been created using either protein nanoparticles or DNA as a scaffold, there is the potential to tether these nanostructures onto living cells in order to further enhance the overall efficiency.


Assuntos
Celulose , Celulossomas , Celulose/metabolismo , Celulossomas/genética , Celulossomas/metabolismo , Hidrólise , Biomassa , Fermentação
10.
Elife ; 112022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638899

RESUMO

The lives of microbes unfold at the micron scale, and their molecular machineries operate at the nanoscale. Their study at these resolutions is key toward achieving a better understanding of their ecology. We focus on cellulose degradation of the canonical Clostridium thermocellum system to comprehend how microbes build and use their cellulosomal machinery at these nanometer scales. Degradation of cellulose, the most abundant organic polymer on Earth, is instrumental to the global carbon cycle. We reveal that bacterial cells form 'cellulosome capsules' driven by catalytic product-dependent dynamics, which can increase the rate of hydrolysis. Biosynthesis of this energetically costly machinery and cell growth are decoupled at the single-cell level, hinting at a division-of-labor strategy through phenotypic heterogeneity. This novel observation highlights intrapopulation interactions as key to understanding rates of fiber degradation.


Assuntos
Celulossomas , Clostridium thermocellum , Proteínas de Bactérias/metabolismo , Metabolismo dos Carboidratos , Celulose/metabolismo , Celulossomas/metabolismo , Fibras na Dieta/metabolismo , Hidrólise
11.
Biotechnol Prog ; 37(5): e3190, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34173352

RESUMO

The wide variety of enzymatic pathways that can benefit from enzyme scaffolding is astronomical. While enzyme co-localization based on protein, DNA, and RNA scaffolds has been reported, we still lack scaffolds that offer well-defined and uniform three-dimensional structures for enzyme organization. Here we reported a new approach for protein co-localization using naturally occurring protein nanocages as a scaffold. Two different nanocages, the 25 nm E2 and the 34 nm heptatitis B virus, were used to demonstrate the successfully co-localization of the endoglucanase CelA and cellulose binding domain using the robust SpyTag/SpyCatcher bioconjugation chemistry. Because of the simplicity of the assembly, this strategy is useful not only for in vivo enzyme cascading but also the potential for in vivo applications as well.


Assuntos
Biotecnologia/métodos , Enzimas , Nanoestruturas/química , Proteínas , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Celulossomas/química , Celulossomas/metabolismo , Enzimas/química , Enzimas/metabolismo , Nanotecnologia , Proteínas/química , Proteínas/metabolismo
12.
mBio ; 12(3): e0083221, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34061594

RESUMO

Anaerobic fungi (Neocallimastigomycota) isolated from the guts of herbivores are powerful biomass-degrading organisms that enhance their degradative ability through the formation of cellulosomes, multienzyme complexes that synergistically colocalize enzymes to extract sugars from recalcitrant plant matter. However, a functional understanding of how fungal cellulosomes are deployed in vivo to orchestrate plant matter degradation is lacking, as is knowledge of how cellulosome production and function vary throughout the morphologically diverse life cycle of anaerobic fungi. In this work, we generated antibodies against three major fungal cellulosome protein domains, a dockerin, scaffoldin, and glycoside hydrolase (GH) 48 protein, and used them in conjunction with helium ion and immunofluorescence microscopy to characterize cellulosome localization patterns throughout the life cycle of Piromyces finnis when grown on simple sugars and complex cellulosic carbon sources. Our analyses reveal that fungal cellulosomes are cell-localized entities specifically targeted to the rhizoids of mature fungal cells and bodies of zoospores. Examination of cellulosome localization patterns across life stages also revealed that cellulosome production is independent of growth substrate in zoospores but repressed by simple sugars in mature cells. This suggests that further exploration of gene regulation patterns in zoospores is needed and can inform potential strategies for derepressing cellulosome expression and boosting hydrolytic enzyme yields from fungal cultures. Collectively, these findings underscore how life cycle-dependent cell morphology and regulation of cellulosome production impact biomass degradation by anaerobic fungi, insights that will benefit ongoing efforts to develop these organisms and their cellulosomes into platforms for converting waste biomass into valuable bioproducts. IMPORTANCE Anaerobic fungi (Neocallimastigomycota) isolated from the guts of herbivores excel at degrading ingested plant matter, making them attractive potential platform organisms for converting waste biomass into valuable products, such as chemicals and fuels. Major contributors to their biomass-hydrolyzing power are the multienzyme cellulosome complexes that anaerobic fungi produce, but knowledge gaps in how cellulosome production is controlled by the cellular life cycle and how cells spatially deploy cellulosomes complicate the use of anaerobic fungi and their cellulosomes in industrial bioprocesses. We developed and used imaging tools to observe cellulosome spatial localization patterns across life stages of the anaerobic fungus Piromyces finnis under different environmental conditions. The resulting spatial details of how anaerobic fungi orchestrate biomass degradation and uncovered relationships between life cycle progression and regulation of cellulosome production will benefit ongoing efforts to develop anaerobic fungi and their cellulosomes into useful biomass-upgrading platforms.


Assuntos
Anaerobiose/fisiologia , Biomassa , Celulossomas/metabolismo , Piromyces/fisiologia , Anaerobiose/genética , Hidrólise , Piromyces/enzimologia
13.
Bioresour Technol ; 333: 125148, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33878497

RESUMO

Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.


Assuntos
Celulossomas , Anaerobiose , Biomassa , Celulossomas/metabolismo , Genômica , Hidrólise
14.
J Biol Chem ; 296: 100552, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33744293

RESUMO

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin-dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin-dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteroides/metabolismo , Proteínas de Ciclo Celular/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Clostridiales/metabolismo , Proteínas de Bactérias/genética , Bacteroides/genética , Bacteroides/crescimento & desenvolvimento , Proteínas de Ciclo Celular/genética , Celobiose/metabolismo , Celulose/metabolismo , Proteínas Cromossômicas não Histona/genética , Clostridiales/genética , Clostridiales/crescimento & desenvolvimento , Coesinas
15.
Structure ; 29(6): 587-597.e8, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33561387

RESUMO

Cellulose is the most abundant organic molecule on Earth and represents a renewable and practically everlasting feedstock for the production of biofuels and chemicals. Self-assembled owing to the high-affinity cohesin-dockerin interaction, cellulosomes are huge multi-enzyme complexes with unmatched efficiency in the degradation of recalcitrant lignocellulosic substrates. The recruitment of diverse dockerin-borne enzymes into a multicohesin protein scaffold dictates the three-dimensional layout of the complex, and interestingly two alternative binding modes have been proposed. Using single-molecule fluorescence resonance energy transfer and molecular simulations on a range of cohesin-dockerin pairs, we directly detect varying distributions between these binding modes that follow a built-in cohesin-dockerin code. Surprisingly, we uncover a prolyl isomerase-modulated allosteric control mechanism, mediated by the isomerization state of a single proline residue, which regulates the distribution and kinetics of binding modes. Overall, our data provide a novel mechanistic understanding of the structural plasticity and dynamics of cellulosomes.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Celulossomas/química , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/metabolismo , Peptidilprolil Isomerase/metabolismo , Prolina/química , Regulação Alostérica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Celulossomas/metabolismo , Isomerismo , Modelos Moleculares , Complexos Multienzimáticos/química , Ligação Proteica , Conformação Proteica , Imagem Individual de Molécula , Coesinas
16.
Subcell Biochem ; 96: 323-354, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252735

RESUMO

Cellulosomes are elaborate multienzyme complexes capable of efficiently deconstructing lignocellulosic substrates, produced by cellulolytic anaerobic microorganisms, colonizing a large variety of ecological niches. These macromolecular structures have a modular architecture and are composed of two main elements: the cohesin-bearing scaffoldins, which are non-catalytic structural proteins, and the various dockerin-bearing enzymes that tenaciously bind to the scaffoldins. Cellulosome assembly is mediated by strong and highly specific interactions between the cohesin modules, present in the scaffoldins, and the dockerin modules, present in the catalytic units. Cellulosomal architecture and composition varies between species and can even change within the same organism. These differences seem to be largely influenced by external factors, including the nature of the available carbon-source. Even though cellulosome producing organisms are relatively few, the development of new genomic and proteomic technologies has allowed the identification of cellulosomal components in many archea, bacteria and even some primitive eukaryotes. This reflects the importance of this cellulolytic strategy and suggests that cohesin-dockerin interactions could be involved in other non-cellulolytic processes. Due to their building-block nature and highly cellulolytic capabilities, cellulosomes hold many potential biotechnological applications, such as the conversion of lignocellulosic biomass in the production of biofuels or the development of affinity based technologies.


Assuntos
Celulose/metabolismo , Celulossomas/enzimologia , Celulossomas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteômica , Coesinas
17.
Sci Adv ; 6(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097546

RESUMO

Many important proteins undergo pH-dependent conformational changes resulting in "on-off" switches for protein function, which are essential for regulation of life processes and have wide application potential. Here, we report a pair of cellulosomal assembly modules, comprising a cohesin and a dockerin from Clostridium acetobutylicum, which interact together following a unique pH-dependent switch between two functional sites rather than on-off states. The two cohesin-binding sites on the dockerin are switched from one to the other at pH 4.8 and 7.5 with a 180° rotation of the bound dockerin. Combined analysis by nuclear magnetic resonance spectroscopy, crystal structure determination, mutagenesis, and isothermal titration calorimetry elucidates the chemical and structural mechanism of the pH-dependent switching of the binding sites. The pH-dependent dual-binding-site switch not only represents an elegant example of biological regulation but also provides a new approach for developing pH-dependent protein devices and biomaterials beyond an on-off switch for biotechnological applications.


Assuntos
Celulossomas , Clostridium acetobutylicum , Proteínas de Bactérias/química , Sítios de Ligação , Celulossomas/química , Celulossomas/metabolismo , Clostridium acetobutylicum/metabolismo , Concentração de Íons de Hidrogênio , Ligação Proteica
18.
ACS Synth Biol ; 9(10): 2749-2764, 2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-32877604

RESUMO

The bacterium Pseudomonas putida KT2440 is gaining considerable interest as a microbial platform for biotechnological valorization of polymeric organic materials, such as lignocellulosic residues or plastics. However, P. putida on its own cannot make much use of such complex substrates, mainly because it lacks an efficient extracellular depolymerizing apparatus. We seek to address this limitation by adopting a recombinant cellulosome strategy for this host. In this work, we report an essential step in this endeavor-a display of designer enzyme-anchoring protein "scaffoldins", encompassing cohesin binding domains from divergent cellulolytic bacterial species on the P. putida surface. Two P. putida chassis strains, EM42 and EM371, with streamlined genomes and differences in the composition of the outer membrane were employed in this study. Scaffoldin variants were optimally delivered to their surface with one of four tested autotransporter systems (Ag43 from Escherichia coli), and the efficient display was confirmed by extracellular attachment of chimeric ß-glucosidase and fluorescent proteins. Our results not only highlight the value of cell surface engineering for presentation of recombinant proteins on the envelope of Gram-negative bacteria but also pave the way toward designer cellulosome strategies tailored for P. putida.


Assuntos
Membrana Externa Bacteriana/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Genoma Bacteriano , Proteínas de Membrana/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Proteínas de Ciclo Celular/química , Celulose/metabolismo , Celulossomas/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas de Fluorescência Verde/metabolismo , Engenharia Metabólica/métodos , Domínios Proteicos , Proteínas Recombinantes/metabolismo , beta-Glucosidase/metabolismo , Coesinas
19.
Chem Commun (Camb) ; 56(77): 11426-11428, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-32840530

RESUMO

We report a new modular strategy to assemble dCas9-guided enzyme cascades by employing orthogonal post-translation chemistry. Two orthogonal SpyCatcher and SnoopCatcher pairs were used for the one-pot enzyme bioconjugation onto two different dCas9 proteins to enable their guided assembly onto a DNA scaffold. The resulting two-component cellulosomes exhibited 2.8-fold higher reducing sugar production over unassembled enzymes. This platform retains the high binding affinity afforded by dCas9 proteins for easy control over enzyme assembly while offering the flexibility for both in vivo and in vitro assembly of a wide array of enzyme cascades with minimal optimization.


Assuntos
Proteína 9 Associada à CRISPR/metabolismo , Proteína 9 Associada à CRISPR/química , Celulossomas/química , Celulossomas/metabolismo , DNA/química , DNA/metabolismo
20.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32680862

RESUMO

Lignocellulose is one of the most abundant renewable carbon sources, representing an alternative to petroleum for the production of fuel and chemicals. Nonetheless, the lignocellulose saccharification process, to release sugars for downstream applications, is one of the most crucial factors economically challenging to its use. The synergism required among the various carbohydrate-active enzymes (CAZymes) for efficient lignocellulose breakdown is often not satisfactorily achieved with an enzyme mixture from a single strain. To overcome this challenge, enrichment strategies can be applied to develop microbial communities with an efficient CAZyme arsenal, incorporating complementary and synergistic properties, to improve lignocellulose deconstruction. We report a comprehensive and deep analysis of an enriched rumen anaerobic consortium (ERAC) established on sugarcane bagasse (SB). The lignocellulolytic abilities of the ERAC were confirmed by analyzing the depolymerization of bagasse by scanning electron microscopy, enzymatic assays, and mass spectrometry. Taxonomic analysis based on 16S rRNA sequencing elucidated the community enrichment process, which was marked by a higher abundance of Firmicutes and Synergistetes species. Shotgun metagenomic sequencing of the ERAC disclosed 41 metagenome-assembled genomes (MAGs) harboring cellulosomes and polysaccharide utilization loci (PULs), along with a high diversity of CAZymes. The amino acid sequences of the majority of the predicted CAZymes (60% of the total) shared less than 90% identity with the sequences found in public databases. Additionally, a clostridial MAG identified in this study produced proteins during consortium development with scaffoldin domains and CAZymes appended to dockerin modules, thus representing a novel cellulosome-producing microorganism.IMPORTANCE The lignocellulolytic ERAC displays a unique set of plant polysaccharide-degrading enzymes (with multimodular characteristics), cellulosomal complexes, and PULs. The MAGs described here represent an expansion of the genetic content of rumen bacterial genomes dedicated to plant polysaccharide degradation, therefore providing a valuable resource for the development of biocatalytic toolbox strategies to be applied to lignocellulose-based biorefineries.


Assuntos
Bactérias Anaeróbias/metabolismo , Proteínas de Bactérias/metabolismo , Celulossomas/metabolismo , Microbioma Gastrointestinal , Lignina/metabolismo , Consórcios Microbianos , Polissacarídeos/metabolismo , Animais , Bactérias Anaeróbias/enzimologia , Celulases/metabolismo , Celulose , Rúmen/microbiologia , Saccharum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA