Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Recurso na Internet em Português | LIS - Localizador de Informação em Saúde, LIS-bvsms, LIS-SMS-SP | ID: lis-49745

RESUMO

O site atua como uma plataforma central para conectar cidadãos, profissionais de saúde, pesquisadores e gestores públicos, facilitando o acesso a informações e serviços essenciais para a saúde no Brasil. informações atualizadas sobre políticas, programas e ações de saúde pública, além de dados epidemiológicos e estatísticas de saúde. Campanhas de conscientização sobre prevenção de doenças, saúde da mulher, saúde infantil, saúde do idoso, entre outras áreas. Legislação e Regulamentação: Publicar e atualizar normas, portarias, resoluções e diretrizes relacionadas ao sistema de saúde e à prática médica no Brasil, etc


Assuntos
Infecções por Bunyaviridae/prevenção & controle , Orthobunyavirus , Insetos/virologia , Ceratopogonidae/virologia
2.
Parasit Vectors ; 17(1): 354, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169433

RESUMO

BACKGROUND: Culicoides biting midges exhibit a global spatial distribution and are the main vectors of several viruses of veterinary importance, including bluetongue (BT) and African horse sickness (AHS). Many environmental and anthropological factors contribute to their ability to live in a variety of habitats, which have the potential to change over the years as the climate changes. Therefore, as new habitats emerge, the risk for new introductions of these diseases of interest to occur increases. The aim of this study was to model distributions for two primary vectors for BT and AHS (Culicoides imicola and Culicoides bolitinos) using random forest (RF) machine learning and explore the relative importance of environmental and anthropological factors in a region of South Africa with frequent AHS and BT outbreaks. METHODS: Culicoides capture data were collected between 1996 and 2022 across 171 different capture locations in the Western Cape. Predictor variables included climate-related variables (temperature, precipitation, humidity), environment-related variables (normalised difference vegetation index-NDVI, soil moisture) and farm-related variables (livestock densities). Random forest (RF) models were developed to explore the spatial distributions of C. imicola, C. bolitinos and a merged species map, where both competent vectors were combined. The maps were then compared to interpolation maps using the same capture data as well as historical locations of BT and AHS outbreaks. RESULTS: Overall, the RF models performed well with 75.02%, 61.6% and 74.01% variance explained for C. imicola, C. bolitinos and merged species models respectively. Cattle density was the most important predictor for C. imicola and water vapour pressure the most important for C. bolitinos. Compared to interpolation maps, the RF models had higher predictive power throughout most of the year when species were modelled individually; however, when merged, the interpolation maps performed better in all seasons except winter. Finally, midge densities did not show any conclusive correlation with BT or AHS outbreaks. CONCLUSION: This study yielded novel insight into the spatial abundance and drivers of abundance of competent vectors of BT and AHS. It also provided valuable data to inform mathematical models exploring disease outbreaks so that Culicoides-transmitted diseases in South Africa can be further analysed.


Assuntos
Doença Equina Africana , Bluetongue , Ceratopogonidae , Insetos Vetores , Aprendizado de Máquina , Animais , Ceratopogonidae/virologia , África do Sul/epidemiologia , Bluetongue/transmissão , Bluetongue/epidemiologia , Doença Equina Africana/epidemiologia , Doença Equina Africana/transmissão , Doença Equina Africana/virologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Surtos de Doenças , Ecossistema , Clima , Bovinos , Vírus Bluetongue , Cavalos , Algoritmo Florestas Aleatórias
3.
Parasit Vectors ; 17(1): 338, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135087

RESUMO

BACKGROUND: Culicoides midges have been well-studied in Spain, particularly over the last 20 years, mainly because of their role as vectors of arboviral diseases that affect livestock. Most studies on Culicoides are conducted using suction light traps in farmed environments, but studies employing alternative trapping techniques or focusing on natural habitats are scarce. METHODS: In the present study, we analyze Culicoides captured in 2023 at 476 sites in western Andalusia (southern Spain) using carbon dioxide-baited Biogents (BG)-sentinel traps across different ecosystems. RESULTS: We collected 3,084 Culicoides midges (3060 females and 24 males) belonging to 23 species, including the new species Culicoides grandifovea sp. nov. and the first record of Culicoides pseudolangeroni for Europe. Both species were described with morphological and molecular methods and detailed data on spatial distribution was also recorded. The new species showed close phylogenetic relations with sequences from an unidentified Culicoides from Morocco (92.6% similarity) and with Culicoides kurensis. Culicoides imicola was the most abundant species (17.4%), followed by Culicoides grandifovea sp. nov. (14.6%) and Culicoides kurensis (11.9%). Interestingly, Culicoides montanus was the only species of the obsoletus and pulicaris species complexes captured, representing the first record of this species in southern Spain. A total of 53 valid Culicoides species have been reported in the area, with 48 already reported in literature records and 5 more added in the present study. Information on the flight period for the most common Culicoides species is also provided. CONCLUSIONS: To the best of our knowledge, our study represents the most comprehensive effort ever done on nonfarmland habitats using carbon-dioxide baited suction traps for collecting Culicoides. Our data suggests that using carbon dioxide traps offers a completely different perspective on Culicoides communities compared with routinely used light traps, including the discovery of previously unrecorded species.


Assuntos
Ceratopogonidae , Filogenia , Ceratopogonidae/classificação , Ceratopogonidae/genética , Animais , Espanha , Feminino , Masculino , Insetos Vetores/classificação , Ecossistema , Distribuição Animal
4.
Methods Mol Biol ; 2838: 77-89, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126624

RESUMO

Epizootic hemorrhagic disease virus (EHDV), like other orbiviruses, infects and replicates in mammalian and insect vector cells. Within its ruminant hosts EHDV, like bluetongue virus (BTV), it has mainly been associated with infection of endothelial cells of capillaries as well as leukocyte subsets. Furthermore, EHDV infects and replicates within its biological vector, Culicoides biting midges and Culicoides-derived cells. A wide range of common laboratory cell lines such as BHK, BSR, and Vero cells are susceptible to infection with certain EHDV strains. Cell culture supernatants of infected cells are commonly used for both in vivo and in vitro infection studies. For specific virological or immunological studies, using highly purified virus particles, however, might be beneficial or even required. Here we describe a purification method for EHDV particles, which had been originally developed for certain strains of BTV.


Assuntos
Vírus da Doença Hemorrágica Epizoótica , Vírion , Animais , Vírus da Doença Hemorrágica Epizoótica/isolamento & purificação , Linhagem Celular , Vírion/isolamento & purificação , Chlorocebus aethiops , Células Vero , Orbivirus/isolamento & purificação , Ceratopogonidae/virologia , Insetos/virologia , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária , Cricetinae
5.
Methods Mol Biol ; 2838: 221-237, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39126636

RESUMO

Epizootic hemorrhagic disease virus (EHDV) is transmitted by Culicoides biting midges. Studies aiming to predict the likely spread of EHDV require an understanding of the viral infection and replication kinetics within these insects, including the proportion of the insect population that are able to support virus transmission. Here, we describe methods for the infection of Culicoides with EHDV in the laboratory via oral infection using an artificial membrane system or a cotton pledget and intrathoracic (IT) inoculation. Each method can be used to explore determinants of vector competence of Culicoides species and populations for EHDV.


Assuntos
Ceratopogonidae , Vírus da Doença Hemorrágica Epizoótica , Insetos Vetores , Infecções por Reoviridae , Animais , Ceratopogonidae/virologia , Vírus da Doença Hemorrágica Epizoótica/fisiologia , Insetos Vetores/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/virologia , Infecções por Reoviridae/veterinária
6.
PLoS Negl Trop Dis ; 18(7): e0012290, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39024365

RESUMO

Equids may be infected by zoonotic Leishmania spp., including Leishmania infantum, in regions where canine leishmaniasis (CanL) is endemic, and Leishmania martiniquensis, which has been reported in horses from Central Europe. This study was designed to evaluate the occurrence of both Leishmania spp. among equids living in CanL endemic areas of Italy, as well as to identify dipteran vectors from the same habitats. From March to October 2023, blood, serum and tissue samples from skin lesions were collected from equids (n = 98; n = 56 donkeys and n = 42 horses) living in Italy, as well as sand flies and biting midges. Blood samples (n = 98) and skin lesions (n = 56) were tested for Leishmania spp. by conventional and real time PCRs and sera were tested by immunofluorescence antibody tests (IFAT) for both L. infantum and L. martiniquensis. Insects were morphologically identified, and female specimens (n = 268 sand flies, n = 7 biting midges) analyzed for Leishmania DNA, as well as engorged sand flies (n = 16) for blood-meal detection. Two animals with skin lesions (i.e., one donkey and one horse) scored positive for Leishmania spp. DNA, and 19 animals (i.e., 19.4%; n = 13 donkeys and n = 6 horses) were seropositive for L. infantum, with five of them also for L. martiniquensis. Most seropositive animals had no dermatological lesions (i.e., 68.4%) while both animals molecularly positive for Leishmania spp. scored seronegative. Of the 356 sand flies collected, 12 females (i.e., n = 8 Sergentomyia minuta; n = 3 Phlebotomus perniciosus, n = 1 Phlebotomus perfiliewi) were positive for Leishmania spp. DNA, and one out of seven biting midges collected was DNA-positive for L. infantum. Moreover, engorged sand flies scored positive for human and equine DNA. Data suggest that equids living in CanL endemic areas are exposed to Leishmania spp., but their role in the circulation of the parasite needs further investigations.


Assuntos
Doenças do Cão , Equidae , Insetos Vetores , Leishmania , Leishmaniose , Animais , Cães , Cavalos/parasitologia , Equidae/parasitologia , Leishmania/isolamento & purificação , Leishmania/genética , Leishmania/classificação , Doenças do Cão/parasitologia , Doenças do Cão/epidemiologia , Doenças do Cão/transmissão , Leishmaniose/veterinária , Leishmaniose/epidemiologia , Leishmaniose/parasitologia , Leishmaniose/transmissão , Feminino , Insetos Vetores/parasitologia , Itália/epidemiologia , Masculino , Psychodidae/parasitologia , Doenças dos Cavalos/parasitologia , Doenças dos Cavalos/epidemiologia , Leishmania infantum/isolamento & purificação , Leishmania infantum/genética , Ceratopogonidae/parasitologia , Doenças Endêmicas/veterinária
7.
Viruses ; 16(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066322

RESUMO

Biting midges (Culicoides) are vectors of many pathogens of medical and veterinary importance, but their viromes are poorly characterized compared to certain other hematophagous arthropods, e.g., mosquitoes and ticks. The goal of this study was to use metagenomics to identify viruses in Culicoides from Mexico. A total of 457 adult midges were collected in Chihuahua, northern Mexico, in 2020 and 2021, and all were identified as female Culicoides reevesi. The midges were sorted into five pools and homogenized. An aliquot of each homogenate was subjected to polyethylene glycol precipitation to enrich for virions, then total RNA was extracted and analyzed by unbiased high-throughput sequencing. We identified six novel viruses that are characteristic of viruses from five families (Nodaviridae, Partitiviridae, Solemoviridae, Tombusviridae, and Totiviridae) and one novel virus that is too divergent from all classified viruses to be assigned to an established family. The newly discovered viruses are phylogenetically distinct from their closest known relatives, and their minimal infection rates in female C. reevesi range from 0.22 to 1.09. No previously known viruses were detected, presumably because viral metagenomics had never before been used to study Culicoides from the Western Hemisphere. To conclude, we discovered multiple novel viruses in C. reevesi from Mexico, expanding our knowledge of arthropod viral diversity and evolution.


Assuntos
Ceratopogonidae , Filogenia , Animais , Ceratopogonidae/virologia , México , Feminino , Metagenômica , Viroma , Sequenciamento de Nucleotídeos em Larga Escala , Insetos Vetores/virologia , Genoma Viral
8.
Prev Vet Med ; 230: 106290, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079192

RESUMO

Bluetongue disease is an infectious disease transmitted by Culicoides as vectors, mainly infecting ruminants. Because ruminants play an important role in animal husbandry in China, the outbreak of bluetongue disease can cause serious economic losses. Maxent model was applied to predict the distribution of bluetongue in China based on the data derived from domestic and foreign academic literature databases including CNKI, Wanfang Database, PubMed, Web of Science and Google Scholar. The results showed that annual mean temperature (BIO1), precipitation in driest month (BIO14), sheep density (SD) and altitude (Elev) were the relevant variables of bioclimatic suitable zones for bluetongue disease. Precipitation in wettest month (BIO13), BIO1, BIO14, Elev were the main variables affecting the habitat of the bluetongue vector Culicoides. The most suitable climate for bluetongue infection occurs in southern China, central China and parts of Xinjiang. The suitable living areas of Culicoides are mainly located in southern, central and eastern China, and the overlap of the two suitable areas is high. The study suggested that southern, central, and eastern China are high-risk areas for bluetongue due to the significant overlap of suitable habitats for both the disease and its vector. Implementing effective surveillance and targeted control strategies in these regions is crucial for mitigating the impact of bluetongue disease.


Assuntos
Bluetongue , Ceratopogonidae , Bluetongue/transmissão , Bluetongue/epidemiologia , Animais , China/epidemiologia , Ceratopogonidae/virologia , Ovinos , Insetos Vetores/virologia , Vírus Bluetongue/fisiologia , Clima
9.
Front Immunol ; 15: 1414891, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39076967

RESUMO

Background: Insect bite hypersensitivity (IBH) is the most frequent skin allergy of horses and is highly debilitating, especially in the chronic phase. IBH is caused by IgE-mediated hypersensitivity reactions to culicoides midge bites and an imbalanced immune response that reduces the welfare of affected horses. Objective: In the present study, we investigated the pathological mechanisms of IBH, aiming to understand the immune cell modulation in acute allergic skin lesions of IBH horses with the goal of finding possible biomarkers for a diagnostic approach to monitor treatment success. Methods: By qPCR, we quantified the gene expression of cytokines, chemokines, and immune receptors in skin punch biopsies of IBH with different severity levels and healthy horses simultaneously in tandem with the analysis of immune cell counts in the blood. Results: Our data show an increase in blood eosinophils, monocytes, and basophils with a concomitant, significant increase in associated cytokine, chemokine, and immune cell receptor mRNA expression levels in the lesional skin of IBH horses. Moreover, IL-5Ra, CCR5, IFN-γ, and IL-31Ra were strongly associated with IBH severity, while IL-31 and IL-33 were rather associated with a milder form of IBH. In addition, our data show a strong correlation of basophil cell count in blood with IL-31Ra, IL-5, IL-5Ra, IFN-γ, HRH2, HRH4, CCR3, CCR5, IL-12b, IL-10, IL-1ß, and CCL26 mRNA expression in skin punch biopsies of IBH horses. Conclusion: In summary, several cytokines and chemokines have been found to be associated with disease severity, hence contributing to IBH pathology. These molecules can be used as potential biomarkers to monitor the onset and progression of the disease or even to evaluate and monitor the efficacy of new therapeutic treatments for IBH skin allergy. To our knowledge, this is the first study that investigated immune cells together with a large set of genes related to their biological function, including correlation to disease severity, in a large cohort of healthy and IBH horses.


Assuntos
Quimiocinas , Citocinas , Doenças dos Cavalos , Mordeduras e Picadas de Insetos , Pele , Animais , Cavalos , Mordeduras e Picadas de Insetos/imunologia , Mordeduras e Picadas de Insetos/veterinária , Pele/imunologia , Pele/patologia , Doenças dos Cavalos/imunologia , Quimiocinas/genética , Hipersensibilidade/imunologia , Hipersensibilidade/veterinária , Índice de Gravidade de Doença , Ceratopogonidae/imunologia , Masculino , Feminino , Biomarcadores
10.
Trop Biomed ; 41(1): 125-133, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852142

RESUMO

Culicoides oxystoma Kieffer is a vector of viruses, filarial nematodes and protozoa of the genus Leishmania transmitted to humans and other animals. Understanding genetic diversity, genetic structure and genetic relationships among geographically widespread populations will provide important information related to disease epidemiology. In this study, genetic diversity, genetic structure and genetic relationships between Thai C. oxystoma and those reported from other countries were inferred based on mitochondrial cytochrome oxidase I (COI) and nuclear internal transcribed spacer 1 (ITS-1) sequences. A high level of genetic diversity was found in C. oxystoma from Thailand. The maximum K2P intraspecific genetic divergence for COI gene and ITS-1 sequences were 4.29% and 6.55%, respectively. Despite high genetic diversity, no significant genetic differentiation was found within the 13 Thai populations. This could be a result of unspecialized habitat requirement of the larval habitat, abundance and continuous distribution of host blood sources, potential for long distance movement with host via trading. Mitochondrial genealogy analysis of the global population of C. oxystoma revealed three (A, B and C) genetically divergent lineages. Specimens from Thailand were included in the main lineage (A) with those from all other countries except those from Senegal that formed lineage B and those of Lineage C that was exclusively found in Bangladesh. The nuclear (ITS-1) genetic markers genealogy indicated that Thai C. oxystoma belong to the same genet.


Assuntos
Ceratopogonidae , Complexo IV da Cadeia de Transporte de Elétrons , Variação Genética , Animais , Ceratopogonidae/genética , Ceratopogonidae/classificação , Tailândia , Complexo IV da Cadeia de Transporte de Elétrons/genética , Filogenia , Genética Populacional , DNA Espaçador Ribossômico/genética , Insetos Vetores/genética , Insetos Vetores/classificação , Análise de Sequência de DNA
11.
J Gen Virol ; 105(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38921821

RESUMO

Schmallenberg virus (SBV) belongs to the Simbu serogroup within the family Peribunyaviridae, genus Orthobunyavirus and is transmitted by Culicoides biting midges. Infection of naïve ruminants in a critical phase of gestation may lead to severe congenital malformations. Sequence analysis from viremic animals revealed a very high genome stability. In contrast, sequence variations are frequently described for SBV from malformed fetuses. In addition to S segment mutations, especially within the M segment encoding the major immunogen Gc, point mutations or genomic deletions are also observed. Analysis of the SBV_D281/12 isolate from a malformed fetus revealed multiple point mutations in all three genome segments. It also has a large genomic deletion in the antigenic domain encoded by the M segment compared to the original SBV reference strain 'BH80/11' isolated from viremic blood in 2011. Interestingly, SBV_D281/12 showed a marked replication deficiency in vitro in Culicoides sonorensis cells (KC cells), but not in standard baby hamster kidney cells (BHK-21). We therefore generated a set of chimeric viruses of rSBV_D281/12 and wild-type rSBV_BH80/11 by reverse genetics, which were characterized in both KC and BHK-21 cells. It could be shown that the S segment of SBV_D281/12 is responsible for the replication deficit and that it acts independently from the large deletion within Gc. In addition, a single point mutation at position 111 (S to N) of the nucleoprotein was identified as the critical mutation. Our results suggest that virus variants found in malformed fetuses and carrying characteristic genomic mutations may have a clear 'loss of fitness' for their insect hosts in vitro. It can also be concluded that such mutations lead to virus variants that are no longer part of the natural transmission cycle between mammalian and insect hosts. Interestingly, analysis of a series of SBV sequences confirmed the S111N mutation exclusively in samples of malformed fetuses and not in blood from viremic animals. The characterization of these changes will allow the definition of protein functions that are critical for only one group of hosts.


Assuntos
Infecções por Bunyaviridae , Ceratopogonidae , Genoma Viral , Orthobunyavirus , Animais , Orthobunyavirus/genética , Orthobunyavirus/classificação , Orthobunyavirus/isolamento & purificação , Infecções por Bunyaviridae/virologia , Infecções por Bunyaviridae/veterinária , Ceratopogonidae/virologia , Cricetinae , Linhagem Celular , Replicação Viral , Mutação Puntual , Bovinos , Ovinos , Filogenia , RNA Viral/genética
14.
Viruses ; 16(5)2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793647

RESUMO

(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.


Assuntos
Animais Selvagens , Vírus Bluetongue , Ceratopogonidae , Cervos , Vírus da Doença Hemorrágica Epizoótica , Insetos Vetores , Infecções por Reoviridae , Animais , Ceratopogonidae/virologia , Ceratopogonidae/fisiologia , Vírus da Doença Hemorrágica Epizoótica/fisiologia , Cervos/virologia , Insetos Vetores/virologia , Insetos Vetores/fisiologia , Vírus Bluetongue/fisiologia , Animais Selvagens/virologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/veterinária , Infecções por Reoviridae/virologia , Ecossistema , Estações do Ano , Fazendas , Aves/virologia
15.
Parasit Vectors ; 17(1): 212, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730488

RESUMO

BACKGROUND: As a primary vector of bluetongue virus (BTV) in the US, seasonal abundance and diel flight activity of Culicoides sonorensis has been documented, but few studies have examined how time of host-seeking activity is impacted by environmental factors. This knowledge is essential for interpreting surveillance data and modeling pathogen transmission risk. METHODS: The diel host-seeking activity of C. sonorensis was studied on a California dairy over 3 years using a time-segregated trap baited with CO2. The relationship between environmental variables and diel host-seeking activity (start, peak, and duration of activity) of C. sonorensis was evaluated using multiple linear regression. Fisher's exact test and paired-sample z-test were used to evaluate the seasonal difference and parity difference on diel host-seeking activity. RESULTS: Host-seeking by C. sonorensis began and reached an activity peak before sunset at a higher frequency during colder months relative to warmer months. The time that host-seeking activity occurred was associated low and high daily temperature as well as wind speed at sunset. Colder temperatures and a greater diurnal temperature range were associated with an earlier peak in host-seeking. Higher wind speeds at sunset were associated with a delayed peak in host-seeking and a shortened duration of host-seeking. Parous midges reached peak host-seeking activity slightly later than nulliparous midges, possibly because of the need for oviposition by gravid females before returning to host-seeking. CONCLUSIONS: This study demonstrates that during colder months C. sonorensis initiates host-seeking and reaches peak host-seeking activity earlier relative to sunset, often even before sunset, compared to warmer months. Therefore, the commonly used UV light-baited traps are ineffective for midge surveillance before sunset. Based on this study, surveillance methods that do not rely on light trapping would provide a more accurate estimate of host-biting risk across seasons. The association of environmental factors to host-seeking shown in this study can be used to improve modeling or prediction of host-seeking activity. This study identified diurnal temperature range as associated with host-seeking activity, suggesting that Culicoides may respond to a rapidly decreasing temperature by shifting to an earlier host-seeking time, though this association needs further study.


Assuntos
Ceratopogonidae , Estações do Ano , Animais , Ceratopogonidae/fisiologia , Ceratopogonidae/virologia , California , Feminino , Temperatura , Indústria de Laticínios , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Comportamento de Busca por Hospedeiro , Bovinos , Meio Ambiente , Vírus Bluetongue/fisiologia , Bluetongue/transmissão
16.
Viruses ; 16(5)2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38793556

RESUMO

Yunnan province in China shares its borders with three neighboring countries: Myanmar, Vietnam, and Laos. The region is characterized by a diverse climate and is known to be a suitable habitat for various arthropods, including midges which are notorious for transmitting diseases which pose significant health burdens affecting both human and animal health. A total of 431,100 midges were collected from 15 different locations in the border region of Yunnan province from 2015 to 2020. These midges were divided into 37 groups according to the collection year and sampling site. These 37 groups of midges were then homogenized to extract nucleic acid. Metatranscriptomics were used to analyze their viromes. Based on the obtained cytochrome C oxidase I gene (COI) sequences, three genera were identified, including one species of Forcipomyia, one species of Dasyhelea, and twenty-five species of Culicoides. We identified a total of 3199 viruses in five orders and 12 families, including 1305 single-stranded positive-stranded RNA viruses (+ssRNA) in two orders and seven families, 175 single-stranded negative-stranded RNA viruses (-ssRNA) in two orders and one family, and 1719 double-stranded RNA viruses in five families. Six arboviruses of economic importance were identified, namely Banna virus (BAV), Japanese encephalitis virus (JEV), Akabane virus (AKV), Bluetongue virus (BTV), Tibetan circovirus (TIBOV), and Epizootic hemorrhagic disease virus (EHDV), all of which are capable, to varying extents, of causing disease in humans and/or animals. The survey sites in this study basically covered the current distribution area of midges in Yunnan province, which helps to predict the geographic expansion of midge species. The complexity and diversity of the viral spectrum carried by midges identified in the study calls for more in-depth research, which can be utilized to monitor arthropod vectors and to predict the emergence and spread of zoonoses and animal epidemics, which is of great significance for the control of vector-borne diseases.


Assuntos
Ceratopogonidae , Filogenia , Animais , China , Ceratopogonidae/virologia , Ceratopogonidae/genética , Vírus de RNA/genética , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Transcriptoma , Insetos Vetores/virologia , Viroma/genética , Humanos
17.
Vet Med Sci ; 10(3): e1462, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38659360

RESUMO

BACKGROUND: Culicoides is a genus of ubiquitous biting midges (Ceratopogonidae). Female midges have blood-sucking habit. They not only bite and harass humans and animals but also may be an important vector of disease transmission. Therefore, building an animal allergy model caused by Culicoides biting is very beneficial for studying its pathogenesis and exploring the therapeutic methods. MATERIAL AND METHOD: Kunming mice were used in this study to build the model and sensitised by two-step injection of midge extracts. Scratching behaviour and histological examination were used to check the immediate and delayed responses. Immunoglobulin E (IgE) and Immunoglobulin G (IgG) were detected using indirect enzyme-linked immunosorbent assay (ELISA) assay. Splenic cell proliferation and cytokine production were determined using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and ELISA assays. The response of cytokine gene expression to midge stimulation was analysed through quantitative real-time polymerase chain reaction (qPCR). RESULTS: Behavioural results revealed a significant increase in scratching frequency among the midge-sensitised animals (p < 0.05). Histological examination showed more inflammatory cytokine infiltration at the injection site of midge-sensitised mice comparing to the ones in the control group. The serum levels of IgE and IgG1 antibodies in the midge-sensitised group were significantly elevated (p < 0.05). After splenocytes were stimulated in vitro with midge extracts, the midge-sensitised group's splenocyte count significantly increased in comparison to the control group. The midge-sensitised group's qPCR data revealed a down-regulation of tumor necrosis factor alpha (TNF-α) expression and an increase in the expression of interleukin (IL)-4, IL-5, IL-10 and IL-13 but not in the control group (p < 0.05). CONCLUSIONS: In this study, an animal model of Culicoides-mouse sensitisation was successfully constructed using a two-step method. The mode of administration of the model was in good agreement with the natural immune pathway, and the immune response induced by the sensitisation of the model was similar to that produced by the bite of a midge.


Assuntos
Ceratopogonidae , Modelos Animais de Doenças , Hipersensibilidade , Animais , Ceratopogonidae/fisiologia , Camundongos , Feminino , Hipersensibilidade/veterinária , Hipersensibilidade/imunologia , Mordeduras e Picadas de Insetos/veterinária , Mordeduras e Picadas de Insetos/imunologia
18.
Insect Biochem Mol Biol ; 168: 104115, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570118

RESUMO

Biting midges, notably those within the Ceratopogonidae family, have long been recognized for their epidemiological significance, both as nuisances and vectors for disease transmission in vertebrates. Despite their impact, genomic insights into these insects, particularly beyond the Culicoides genus, remain limited. In this study, we assembled the Forcipomyia taiwana (Shiraki) genome, comprising 113 scaffolds covering 130.4 Mbps-with the longest scaffold reaching 7.6 Mbps and an N50 value of 2.6 Mbps-marking a pivotal advancement in understanding the genetic architecture of ceratopogonid biting midges. Phylogenomic analyses reveal a shared ancestry between F. taiwana and Culicoides sonorensis Wirth & Jones, dating back approximately 124 million years, and highlight a dynamic history of gene family expansions and contractions within the Ceratopogonidae family. Notably, a substantial expansion of the odorant receptor (OR) gene family was observed, which is crucial for the chemosensory capabilities that govern biting midges' interactions with their environment, including host seeking and oviposition behaviors. The distribution of OR genes across the F. taiwana genome displays notable clusters on scaffolds, indicating localized tandem gene duplication events. Additionally, several collinear regions were identified, hinting at segmental duplications, inversions, and translocations, contributing to the olfactory system's evolutionary complexity. Among the 156 ORs identified in F. taiwana, 134 are biting midge-specific ORs, distributed across three distinct clades, each exhibiting unique motif features that distinguish them from the others. Through weighted gene co-expression network analysis, we correlated distinct gene modules with sex and reproductive status, laying the groundwork for future investigations into the interplay between gene expression and adaptive behaviors in F. taiwana. In conclusion, our study not only highlights the unique olfactory repertoire of ceratopogonid biting midges but also sets the stage for future studies into the genetic underpinnings of their unique biological traits and ecological strategies.


Assuntos
Ceratopogonidae , Feminino , Animais , Ceratopogonidae/genética , Perfilação da Expressão Gênica
19.
Biomed Environ Sci ; 37(3): 266-277, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38582991

RESUMO

Objective: The purpose of this study was to investigate the bacterial communities of biting midges and ticks collected from three sites in the Poyang Lake area, namely, Qunlu Practice Base, Peach Blossom Garden, and Huangtong Animal Husbandry, and whether vectors carry any bacterial pathogens that may cause diseases to humans, to provide scientific basis for prospective pathogen discovery and disease prevention and control. Methods: Using a metataxonomics approach in concert with full-length 16S rRNA gene sequencing and operational phylogenetic unit (OPU) analysis, we characterized the species-level microbial community structure of two important vector species, biting midges and ticks, including 33 arthropod samples comprising 3,885 individuals, collected around Poyang Lake. Results: A total of 662 OPUs were classified in biting midges, including 195 known species and 373 potentially new species, and 618 OPUs were classified in ticks, including 217 known species and 326 potentially new species. Surprisingly, OPUs with potentially pathogenicity were detected in both arthropod vectors, with 66 known species of biting midges reported to carry potential pathogens, including Asaia lannensis and Rickettsia bellii, compared to 50 in ticks, such as Acinetobacter lwoffii and Staphylococcus sciuri. We found that Proteobacteria was the most dominant group in both midges and ticks. Furthermore, the outcomes demonstrated that the microbiota of midges and ticks tend to be governed by a few highly abundant bacteria. Pantoea sp7 was predominant in biting midges, while Coxiella sp1 was enriched in ticks. Meanwhile, Coxiella spp., which may be essential for the survival of Haemaphysalis longicornis Neumann, were detected in all tick samples. The identification of dominant species and pathogens of biting midges and ticks in this study serves to broaden our knowledge associated to microbes of arthropod vectors. Conclusion: Biting midges and ticks carry large numbers of known and potentially novel bacteria, and carry a wide range of potentially pathogenic bacteria, which may pose a risk of infection to humans and animals. The microbial communities of midges and ticks tend to be dominated by a few highly abundant bacteria.


Assuntos
Ceratopogonidae , Microbiota , Carrapatos , Animais , Humanos , Carrapatos/microbiologia , Ceratopogonidae/genética , Filogenia , RNA Ribossômico 16S/genética , Estudos Prospectivos , Coxiella/genética
20.
Microb Genom ; 10(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38630610

RESUMO

Erwinia (Enterobacterales: Erwiniaceae) are a group of cosmopolitan bacteria best known as the causative agents of various plant diseases. However, other species in this genus have been found to play important roles as insect endosymbionts supplementing the diet of their hosts. Here, I describe Candidatus Erwinia impunctatus (Erwimp) associated with the Highland midge Culicoides impunctatus (Diptera: Ceratopogonidae), an abundant biting pest in the Scottish Highlands. The genome of this new Erwinia species was assembled using hybrid long and short read techniques, and a comparative analysis was undertaken with other members of the genus to understand its potential ecological niche and impact. Genome composition analysis revealed that Erwimp is similar to other endophytic and ectophytic species in the genus and is unlikely to be restricted to its insect host. Evidence for an additional plant host includes the presence of a carotenoid synthesis operon implicated as a virulence factor in plant-associated members in the sister genus Pantoea. Unique features of Erwimp include several copies of intimin-like proteins which, along with signs of genome pseudogenization and a loss of certain metabolic pathways, suggests an element of host restriction seen elsewhere in the genus. Furthermore, a screening of individuals over two field seasons revealed the absence of the bacteria in Culicoides impunctatus during the second year indicating this microbe-insect interaction is likely to be transient. These data suggest that Culicoides impunctatus may have an important role to play beyond a biting nuisance, as an insect vector transmitting Erwimp alongside any conferred impacts to surrounding biota.


Assuntos
Ceratopogonidae , Erwinia , Humanos , Animais , Genômica , Insetos Vetores , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA