Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Microb Ecol ; 78(2): 534-538, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30535652

RESUMO

Unicellular free-living microbial eukaryotes of the order Arcellinida (Tubulinea; Amoebozoa) and Euglyphida (Cercozoa; SAR), commonly termed testate amoebae, colonise almost every freshwater ecosystem on Earth. Patterns in the distribution and productivity of these organisms are strongly linked to abiotic conditions-particularly moisture availability and temperature-however, the ecological impacts of changes in salinity remain poorly documented. Here, we examine how variable salt concentrations affect a natural community of Arcellinida and Euglyphida on a freshwater sub-Antarctic peatland. We principally report that deposition of wind-blown oceanic salt-spray aerosols onto the peatland surface corresponds to a strong reduction in biomass and to an alteration in the taxonomic composition of communities in favour of generalist taxa. Our results suggest novel applications of this response as a sensitive tool to monitor salinisation of coastal soils and to detect salinity changes within peatland palaeoclimate archives. Specifically, we suggest that these relationships could be used to reconstruct millennial scale variability in salt-spray deposition-a proxy for changes in wind-conditions-from sub-fossil communities of Arcellinida and Euglyphida preserved in exposed coastal peatlands.


Assuntos
Cercozoários/crescimento & desenvolvimento , Lobosea/crescimento & desenvolvimento , Regiões Antárticas , Biodiversidade , Cercozoários/metabolismo , Ecossistema , Lobosea/metabolismo , Salinidade , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo , Solo/química , Solo/parasitologia
3.
J Eukaryot Microbiol ; 65(5): 729-732, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29345018

RESUMO

Quadricilia rotundata is a heterotrophic flagellate with four flagella. However, because this species has no clear morphological characteristics or molecular data affiliating it with any known group, Q. rotundata has been treated as a protist incertae sedis, for a long time. Here, we established a clonal culture of Q. rotundata and sequenced its 18S rDNA sequence. Molecular phylogenetic analysis successfully placed Q. rotundata in an environmental clade within Cercozoa, which contributes to expand the morphological and species diversity within Cercozoa. We also discuss morphological evolution within Cercozoa based on this finding.


Assuntos
Cercozoários/classificação , Cercozoários/isolamento & purificação , Filogenia , Cercozoários/genética , Cercozoários/metabolismo , DNA de Protozoário/genética , DNA Ribossômico/genética , Processos Heterotróficos , RNA Ribossômico 18S/genética
4.
Protist ; 167(4): 303-318, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348459

RESUMO

The fine structure of shell formation was observed in P. chromatophora. Scales were formed one by one in silica deposition vesicles (SDVs) that were supported by an array of microtubules, which are probably involved in determining the shape and size of scales. The timing of silicic acid transport into an SDV was shown to be at an early stage of scale production because silicon was detected within SDVs containing immature scales. During the shell construction process, vesicles containing two types of dense materials were observed. One type of vesicle contains lower-density material and is located at the front edge of the branched, thick pseudopodium, extending from the maternal shell to the newly formed shell. The other type of vesicle, which contains higher-density material, was also observed in the thick pseudopodium. It appears that microtubules are involved in the shell construction process.


Assuntos
Parede Celular/metabolismo , Cercozoários/ultraestrutura , Cercozoários/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Microscopia de Vídeo , Imagem com Lapso de Tempo
5.
BMC Plant Biol ; 15: 276, 2015 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-26556725

RESUMO

BACKGROUND: Division of double-membraned plastids (primary plastids) is performed by constriction of a ring-like division complex consisting of multiple plastid division proteins. Consistent with the endosymbiotic origin of primary plastids, some of the plastid division proteins are descended from cyanobacterial cell division machinery, and the others are of host origin. In several algal lineages, complex plastids, the "secondary plastids", have been acquired by the endosymbiotic uptake of primary plastid-bearing algae, and are surrounded by three or four membranes. Although homologous genes for primary plastid division proteins have been found in genome sequences of secondary plastid-bearing organisms, little is known about the function of these proteins or the mechanism of secondary plastid division. RESULTS: To gain insight into the mechanism of secondary plastid division, we characterized two plastid division proteins, FtsZD-1 and FtsZD-2, in chlorarachniophyte algae. FtsZ homologs were encoded by the nuclear genomes and carried an N-terminal plastid targeting signal. Immunoelectron microscopy revealed that both FtsZD-1 and FtsZD-2 formed a ring-like structure at the midpoint of bilobate plastids with a projecting pyrenoid in Bigelowiella natans. The ring was always associated with a shallow plate-like invagination of the two innermost plastid membranes. Furthermore, gene expression analysis confirmed that transcripts of ftsZD genes were periodically increased soon after cell division during the B. natans cell cycle, which is not consistent with the timing of plastid division. CONCLUSIONS: Our findings suggest that chlorarachniophyte FtsZD proteins are involved in partial constriction of the inner pair of plastid membranes, but not in the whole process of plastid division. It is uncertain how the outer pair of plastid membranes is constricted, and as-yet-unknown mechanism is required for the secondary plastid division in chlorarachniophytes.


Assuntos
Cercozoários/genética , Proteínas de Cloroplastos/genética , Expressão Gênica , Proteínas de Protozoários/genética , Cercozoários/citologia , Cercozoários/metabolismo , Proteínas de Cloroplastos/metabolismo , Plastídeos/metabolismo , Proteínas de Protozoários/metabolismo
6.
Environ Microbiol Rep ; 6(4): 325-30, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24992530

RESUMO

The trophic interactions between viruses, bacteria and protists play a crucial role in structuring microbial communities and regulating nutrient and organic matter flux. Here, we show that the impact on viral density by heterotrophic flagellates is related to their feeding behaviour (feeding on sedimented particles - Thaumatomonas coloniensis, filter feeding of suspended particles - Salpingoeca sp., and actively searching raptorial feeding - Goniomonas truncata). Phage MS2 was co-incubated with flagellates and the natural bacterial and viral community originating from the same groundwater habitats where the flagellates were isolated. Three complementary assays, i.e. flow cytometry, qPCR and plaque assay, were used for enumeration of total viruses, total MS2 phages, and free and infectious MS2, respectively, to provide insights into the grazing mechanisms of the flagellates on viruses. Phage MS2 was actively removed by the suspension feeders T. coloniensis and Salpingoeca sp. in contrast with the actively raptoriale grazer G. truncata. The decline of viral titre was demonstrated to be caused by ingestion rather than random absorption by both qPCR and locating protein fluorescently labelled MS2 inside the flagellates. Further, we indicate that phages can be used as a minor carbon source for flagellates. Collectively, these data demonstrate that eliminating viruses can be an important function of protists in microbial food webs, carbon cycling and potentially water quality control.


Assuntos
Cercozoários/metabolismo , Coanoflagelados/metabolismo , Criptófitas/metabolismo , Levivirus , Bactérias/crescimento & desenvolvimento , Carbono/metabolismo , Cercozoários/crescimento & desenvolvimento , Coanoflagelados/crescimento & desenvolvimento , Criptófitas/crescimento & desenvolvimento , Citometria de Fluxo , Reação em Cadeia da Polimerase em Tempo Real , Carga Viral , Ensaio de Placa Viral
7.
J Eukaryot Microbiol ; 61(4): 399-403, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628693

RESUMO

The study of diseased human cells and of cells isolated from the natural environment will likely be revolutionized by single cell genomics (SCG). Here, we used protein similarity networks to explore within- and between-cell DNA differences from SCG data derived from six individual rhizarian cells related to Paulinella ovalis and proteins from the complete genome of another rhizarian, Bigelowiella natans. We identified shared and distinct DNA components within our SCG data and between P. ovalis and B. natans. We show that network properties such as assortativity and degree effectively discriminate genome features between SCG assemblies and that SCG data follow the power law with a small number of protein families dominating networks.


Assuntos
Eucariotos/metabolismo , Cercozoários/genética , Cercozoários/metabolismo , Eucariotos/genética , Genoma/genética , Genômica
8.
J Eukaryot Microbiol ; 61(3): 317-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444111

RESUMO

Most euglyphids, a group of testate amoebae, have a shell that is constructed from numerous siliceous scales. The euglyphid Paulinella chromatophora has photosynthetic organelles (termed cyanelles or chromatophores), allowing it to be cultivated more easily than other euglyphids. Like other euglyphids, P. chromatophora has a siliceous shell made of brick-like scales. These scales are varied in size and shape. How a P. chromatophora cell makes this shell is still a mystery. We examined shell construction process in P. chromatophora in detail using time-lapse video microscopy. The new shell was constructed by a specialized pseudopodium that laid out each scale into correct position, one scale at a time. The present study inferred that the sequence of scale production and secretion was well controlled.


Assuntos
Parede Celular/metabolismo , Cercozoários/citologia , Cercozoários/fisiologia , Cercozoários/metabolismo , Microscopia Eletrônica de Varredura , Microscopia de Fluorescência , Microscopia de Vídeo , Imagem com Lapso de Tempo
9.
Genome Biol Evol ; 4(12): 1391-406, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23221610

RESUMO

Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid, nucleomorph, and PPC, we isolated plastid-nucleomorph complexes from the model chlorarachniophyte Bigelowiella natans and subjected them to high-pressure liquid chromatography-tandem mass spectrometry. Our proteomic analysis, the first of its kind for a nucleomorph-bearing alga, resulted in the identification of 324 proteins with 95% confidence. Approximately 50% of these proteins have predicted bipartite leader sequences at their amino termini. Nucleus-encoded proteins make up >90% of the proteins identified. With respect to biological function, plastid-localized light-harvesting proteins were well represented, as were proteins involved in chlorophyll biosynthesis. Phylogenetic analyses revealed that many, but by no means all, of the proteins identified in our proteomic screen are of apparent green algal ancestry, consistent with the inferred evolutionary origin of the plastid and nucleomorph in chlorarachniophytes.


Assuntos
Proteínas de Algas/metabolismo , Cercozoários/química , Proteoma/química , Proteínas de Algas/química , Núcleo Celular/metabolismo , Cercozoários/metabolismo , Clorofila/biossíntese , Cloroplastos/metabolismo , Fotossíntese , Filogenia , Sinais Direcionadores de Proteínas , Transporte Proteico , Proteoma/metabolismo , Proteômica
10.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-23201678

RESUMO

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Assuntos
Núcleo Celular/genética , Cercozoários/genética , Criptófitas/genética , Evolução Molecular , Genoma/genética , Mosaicismo , Simbiose/genética , Proteínas de Algas/genética , Proteínas de Algas/metabolismo , Processamento Alternativo/genética , Cercozoários/citologia , Cercozoários/metabolismo , Criptófitas/citologia , Criptófitas/metabolismo , Citosol/metabolismo , Duplicação Gênica/genética , Transferência Genética Horizontal/genética , Genes Essenciais/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genomas de Plastídeos/genética , Dados de Sequência Molecular , Filogenia , Transporte Proteico , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
11.
J Cell Sci ; 125(Pt 24): 6176-84, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23038770

RESUMO

In plants, many nucleus-encoded proteins are targeted to both mitochondria and plastids, and this process is generally mediated by ambiguous N-terminal targeting sequences that are recognized by receptors on both organelles. In many algae, however, plastids were acquired by secondarily engulfing green or red algae, which were retained within the endomembrane system. Protein targeting to these secondary plastids is more complex, and because they do not reside directly in the cytoplasm, dual targeting cannot function as it does in plant cells. Here we investigate dual targeting of aminoacyl-tRNA synthetases (aaRSs) in chlorarachniophytes, which are complex algae that possess secondary plastids and a relict nucleus derived from a green algal endosymbiont. Chlorarachniophytes have four genome-containing compartments, but almost all the aaRSs are nucleus-encoded and present in fewer than four copies (some as few as two), suggesting multiple targeting. We characterized the subcellular localization of two classes, HisRS (three copies) and GlyRS (two copies), using GFP fusion proteins. In both cases, one copy was dually targeted to mitochondria and plastids, but unlike plants this was mediated by translation initiation variants. We also found that the periplastidal compartment (the relict green algal cytoplasm) lacks both GlyRS and a cognate tRNA, suggesting that pre-charged host tRNAs are imported into this compartment. Leader analysis of other aaRSs suggests that alternative translation is a common strategy for dual targeting in these complex cells. Overall, dual targeting to mitochondria and plastids is a shared feature of plastid-bearing organisms, but the increased complexity of trafficking into secondary plastids requires a different strategy.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Cercozoários/enzimologia , Cercozoários/genética , Mitocôndrias/enzimologia , Mitocôndrias/genética , Plastídeos/enzimologia , Plastídeos/genética , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Aminoacil-tRNA Sintetases/genética , Cercozoários/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Plastídeos/metabolismo , Transporte Proteico
12.
Eukaryot Cell ; 11(3): 324-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22267775

RESUMO

Most plastid proteins are encoded by their nuclear genomes and need to be targeted across multiple envelope membranes. In vascular plants, the translocons at the outer and inner envelope membranes of chloroplasts (TOC and TIC, respectively) facilitate transport across the two plastid membranes. In contrast, several algal groups harbor more complex plastids, the so-called secondary plastids, which are surrounded by three or four membranes, but the plastid protein import machinery (in particular, how proteins cross the membrane corresponding to the secondary endosymbiont plasma membrane) remains unexplored in many of these algae. To reconstruct the putative protein import machinery of a secondary plastid, we used the chlorarachniophyte alga Bigelowiella natans, whose plastid is bounded by four membranes and still possesses a relict nucleus of a green algal endosymbiont (the nucleomorph) in the intermembrane space. We identified nine homologs of plant-like TOC/TIC components in the recently sequenced B. natans nuclear genome, adding to the two that remain in the nucleomorph genome (B. natans TOC75 [BnTOC75] and BnTIC20). All of these proteins were predicted to be localized to the plastid and might function in the inner two membranes. We also show that the homologs of a protein, Der1, that is known to mediate transport across the second membrane in the several lineages with secondary plastids of red algal origin is not associated with plastid protein targeting in B. natans. How plastid proteins cross this membrane remains a mystery, but it is clear that the protein transport machinery of chlorarachniophyte plastids differs from that of red algal secondary plastids.


Assuntos
Cercozoários/genética , Proteínas de Cloroplastos/genética , Genoma , Plastídeos/genética , Proteínas de Protozoários/genética , Sequência de Aminoácidos , Cercozoários/metabolismo , Proteínas de Cloroplastos/metabolismo , Mapeamento Cromossômico , Dados de Sequência Molecular , Filogenia , Plastídeos/metabolismo , Transporte Proteico , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
13.
PLoS One ; 7(12): e52340, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284996

RESUMO

Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI-GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part of the glycolytic pathway occurs inside mitochondria in these organisms, broadening our knowledge of the diversity of mitochondrial metabolism of protists.


Assuntos
Gliceraldeído-3-Fosfato Desidrogenases/metabolismo , Mitocôndrias/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Triose-Fosfato Isomerase/metabolismo , Blastocystis/metabolismo , Cercozoários/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Glicólise/genética , Glicólise/fisiologia , Paullinia/metabolismo , Proteínas Recombinantes de Fusão/genética , Triose-Fosfato Isomerase/genética
14.
Protist ; 163(1): 47-75, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21839678

RESUMO

Serial section reconstruction shows that kinetid ultrastructure in two genetically divergent Paracercomonas (P. virgaria, P. metabolica) is basically similar, differing somewhat from clade A cercomonads. Paracercomonas (Paracercomonadidae fam. n.) have a posterior root (dp1) attached to the posterior centriole, unlike Cercomonadidae (here revised to include only Eocercomonas, Cercomonas, Filomonas gen. n., and Neocercomonas), which belong in clade A (new suborder Cercomonadina) with Cavernomonas (Cavernomonadidae fam. n.). Whether dp1 is serially homologous to anterior root da is unclear. The common ancestor of Cercomonadida probably had five microtubular roots, two fibrillar microtubule-nucleating centres generating microtubular cones, and striated connectors between obtusely angled centrioles. Our new data leave the question of holophyly versus polyphyly of Cercomonadida unresolved, but clarify cercozoan root diversity and homologies. Ventral root vp1 is throughout Cercozoa; vp2 might be restricted to the new superclass Ventrifilosa plus Sarcomonadea. Though cercozoan microtubular arrangements differ substantially from others within the kingdom Chromista, the microtubular root numbering system used for other chromists and Plantae is applicable to them; in doing this we found that the single anterior root of excavates (probably ancestral to Chromista, Plantae and unikonts) and Euglenozoa corresponds with R3 (not R4 as previously thought) of corticate eukaryotes (Chromista plus Plantae).


Assuntos
Evolução Biológica , Padronização Corporal , Cercozoários/crescimento & desenvolvimento , Cercozoários/ultraestrutura , Citoesqueleto/metabolismo , Cercozoários/classificação , Cercozoários/metabolismo , Filogenia , Proteínas de Protozoários/metabolismo
15.
FEMS Microbiol Lett ; 316(1): 16-22, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21204921

RESUMO

Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary-metabolite-producing bacteria, and examine whether different bacterial secondary metabolites affect protozoa similarly. We investigated the growth of nine different soil protozoa on six different Pseudomonas strains, including the four secondary-metabolite-producing Pseudomonas fluorescens DR54 and CHA0, Pseudomonas chlororaphis MA342 and Pseudomonas sp. DSS73, as well as the two nonproducers P. fluorescens DSM50090(T) and P. chlororaphis ATCC43928. Secondary metabolite producers affected protozoan growth differently. In particular, bacteria with extracellular secondary metabolites seemed more inhibiting than bacteria with membrane-bound metabolites. Interestingly, protozoan response seemed to correlate with high-level protozoan taxonomy, and amoeboid taxa tolerated a broader range of Pseudomonas strains than did the non-amoeboid taxa. This stresses the importance of studying both protozoan and bacterial characteristics in order to understand bacterial defence mechanisms and potentially improve survival of bacteria introduced into the environment, for example for biocontrol purposes.


Assuntos
Amebozoários/crescimento & desenvolvimento , Cercozoários/crescimento & desenvolvimento , Chrysophyta/crescimento & desenvolvimento , Enterobacter aerogenes/metabolismo , Hartmannella/crescimento & desenvolvimento , Kinetoplastida/crescimento & desenvolvimento , Pseudomonas/metabolismo , Amebozoários/metabolismo , Cercozoários/metabolismo , Chrysophyta/metabolismo , Enterobacter aerogenes/crescimento & desenvolvimento , Hartmannella/metabolismo , Kinetoplastida/metabolismo , Pseudomonas/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA