Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46.327
Filtrar
1.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39147392

RESUMO

Hyperactivity in children with attention-deficit/hyperactivity disorder (ADHD) leads to restlessness and impulse-control impairments. Nevertheless, the relation between ADHD symptoms and brain regions interactions remains unclear. We focused on dynamic causal modeling to study the effective connectivity in a fully connected network comprised of four regions of the default mode network (DMN) (linked to response control behaviors) and four other regions with previously-reported structural alterations due to ADHD. Then, via the parametric empirical Bayes analysis, the most significant connections, with the highest correlation to the covariates ADHD/control, age, and sex were extracted. Our results demonstrated a positive correlation between ADHD and effective connectivity between the right cerebellum and three DMN nodes (intrinsically inhibitory connections). Therefore, an increase in the effective connectivity leads to more inhibition imposition from the right cerebellum to DMN that reduces this network activation. The lower DMN activity makes leaving the resting-state easier, which may be involved in the restlessness symptom. Furthermore, our results indicated a negative correlation between age and these connections. We showed that the difference between the average of effective connectivities of ADHD and control groups in the age-range of 7-11 years disappeared after 14 years-old. Therefore, aging tends to alleviate ADHD-specific symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Cerebelo , Rede de Modo Padrão , Hipocampo , Imageamento por Ressonância Magnética , Vias Neurais , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Masculino , Criança , Feminino , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Rede de Modo Padrão/diagnóstico por imagem , Rede de Modo Padrão/fisiopatologia , Hipocampo/diagnóstico por imagem , Hipocampo/fisiopatologia , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tálamo/fisiopatologia , Córtex Visual/diagnóstico por imagem , Córtex Visual/fisiopatologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Conectoma/métodos
3.
Wei Sheng Yan Jiu ; 53(4): 547-552, 2024 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-39155221

RESUMO

OBJECTIVE: Exploring the changes in cerebellar ferroptosis in hypertensive mice after lead exposure. METHODS: Twenty-five healthy C57 male mice were selected to construct a hypertensive model by intraperitoneal injection of angiotensin II(Ang II) at a concentration of 0.05 mg/kg for 7 consecutive days. After a systolic blood pressure of 140 mmHg, 20 hypertensive mice were randomly divided into a hypertensive control group and a hypertensive lead exposure group. Twenty C57 mice with normal blood pressure were randomly divided into a blood pressure normal control group and a blood pressure normal lead exposure group. The mice in the normal blood pressure control group and the hypertensive control group drank water freely. Mice in the lead exposure group with normal blood pressure and the lead exposure group with hypertension drank lead acetate water containing 250 mg/L. Ang II was injected intraperitoneally every two days in the hypertensive control group and hypertensive lead exposed group mice. Each group of mice was poisoned for 12 weeks. Using open field experiments and balance beam experiments to detect motor dysfunction in mice. Using a reagent kit to detect the levels of divalent iron(Fe~(2+)), malondialdehyde(MDA), and glutathione(GSH) in the cerebellum of different groups of mice. Western blot was used to determine the protein expression of member 11 of the solute carrier family 7(SLC7A11), glutathione peroxidase 4(GPX4), nuclear receptor coactivator 4(NCOA4), microtubule associated protein 1 light chain 3B(LC3B), and ferritin heavy chain 1(FTH1) in mouse cerebellar tissue. RESULTS: The result of the open field experiment showed that the activity distance(1013.04 cm) of mice in the hypertensive lead exposure group was significantly lower than that of the hypertensive control group(1351.18 cm) and the lead exposure group with normal blood pressure(1287.35 cm). And the lead exposure group with hypertension also extended the time through the balance beam, which was 29.40 seconds(P<0.05). In addition, the Fe~(2+)content in the cerebellum of mice in the hypertensive lead exposure group was 3.33 µmol/g prot, which was 1.54 times that of the hypertensive control group and 1.14 times that of the lead exposure group with normal blood pressure. The MDA content was 4.71 nmol/mg prot, higher than that of the hypertensive control group and the lead exposure group with normal blood pressure. The GSH content was 5.36 µmol/g prot, lower than that of the hypertensive control group and the lead exposure group with normal blood pressure(P<0.05). Western blot result showed that compared with the hypertensive control group and the lead exposure group with normal blood pressure, the protein expression of SLC7A11 and GPX4 in the hypertensive lead exposure group was significantly reduced(P<0.05). In addition, compared with the control group with normal blood pressure, the expression of NCOA4 and LC3B proteins in the cerebellum of mice in the hypertension control group and lead exposure group with normal blood pressure increased, while the expression of FTH1 protein decreased(P<0.05). The expression of NCOA4 and LC3B proteins in the hypertensive lead exposure group was higher than that in the hypertensive control group and the lead exposure group with normal blood pressure, while the expression of FTH1 protein decreased(P<0.05). CONCLUSION: Lead exposure can exacerbate iron death in the cerebellar tissue of hypertensive mice, and iron autophagy may be involved in its occurrence and development.


Assuntos
Angiotensina II , Cerebelo , Ferroptose , Hipertensão , Chumbo , Camundongos Endogâmicos C57BL , Animais , Ferroptose/efeitos dos fármacos , Camundongos , Masculino , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Chumbo/toxicidade , Cerebelo/metabolismo , Cerebelo/efeitos dos fármacos , Malondialdeído/metabolismo , Glutationa Peroxidase/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Ferro/metabolismo , Glutationa/metabolismo
4.
PLoS One ; 19(8): e0308635, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110748

RESUMO

To date, apart from moderate hypothermia, there are almost no adequate interventions available for neuroprotection in cases of brain damage due to cardiac arrest. Affected persons often have severe limitations in their quality of life. The aim of this study was to investigate protective properties of the active compound of dimethyl fumarate, monomethyl fumarate (MMF), on distinct regions of the central nervous system after ischemic events. Dimethyl fumarate is an already established drug in neurology with known anti-inflammatory and antioxidant properties. In this study, we chose organotypic slice cultures of rat cerebellum and hippocampus as an ex vivo model. To simulate cardiac arrest and return of spontaneous circulation we performed oxygen-glucose-deprivation (OGD) followed by treatments with different concentrations of MMF (1-30 µM in cerebellum and 5-30 µM in hippocampus). Immunofluorescence staining with propidium iodide (PI) and 4',6-diamidine-2-phenylindole (DAPI) was performed to analyze PI/DAPI ratio after imaging with a spinning disc confocal microscope. In the statistical analysis, the relative cell death of the different groups was compared. In both, the cerebellum and hippocampus, the MMF-treated group showed a significantly lower PI/DAPI ratio compared to the non-treated group after OGD. Thus, we showed for the first time that both cerebellar and hippocampal slice cultures treated with MMF after OGD are significantly less affected by cell death.


Assuntos
Cerebelo , Fumaratos , Glucose , Hipocampo , Fármacos Neuroprotetores , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Cerebelo/efeitos dos fármacos , Cerebelo/metabolismo , Cerebelo/patologia , Glucose/metabolismo , Ratos , Fármacos Neuroprotetores/farmacologia , Fumaratos/farmacologia , Técnicas de Cultura de Órgãos , Oxigênio/metabolismo , Ratos Wistar , Morte Celular/efeitos dos fármacos
5.
Sci Rep ; 14(1): 18226, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107382

RESUMO

Theory predicts that nonlinear summation of synaptic potentials within dendrites allows neurons to perform linearly non-separable computations (LNSCs). Using Boolean analysis approaches, we predicted that both supralinear and sublinear synaptic summation could allow single neurons to implement a type of LNSC, the feature binding problem (FBP), which does not require inhibition contrary to the exclusive-or function (XOR). Notably, sublinear dendritic operations enable LNSCs when scattered synaptic activation generates increased somatic spike output. However, experimental demonstrations of scatter-sensitive neuronal computations have not yet been described. Using glutamate uncaging onto cerebellar molecular layer interneurons, we show that scattered synaptic-like activation of dendrites evoked larger compound EPSPs than clustered synaptic activation, generating a higher output spiking probability. Moreover, we also demonstrate that single interneurons can indeed implement the FBP. Using a biophysical model to explore the conditions in which a neuron might be expected to implement the FBP, we establish that sublinear summation is necessary but not sufficient. Other parameters such as the relative sublinearity, the EPSP size, depolarization amplitude relative to action potential threshold, and voltage fluctuations all influence whether the FBP can be performed. Since sublinear synaptic summation is a property of passive dendrites, we expect that many different neuron types can implement LNSCs.


Assuntos
Dendritos , Interneurônios , Modelos Neurológicos , Dendritos/fisiologia , Animais , Interneurônios/fisiologia , Potenciais de Ação/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Sinapses/fisiologia , Cerebelo/fisiologia , Cerebelo/citologia , Neurônios/fisiologia , Camundongos
6.
Sci Rep ; 14(1): 18111, 2024 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103500

RESUMO

Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors, with childhood trauma recognized as a contributing factor to its pathophysiology. This study aimed to delineate brain functional aberrations in OCD patients and explore the association between these abnormalities and childhood trauma, to gain insights into the neural underpinnings of OCD. Forty-eight drug-naive OCD patients and forty-two healthy controls (HC) underwent resting-state functional magnetic resonance imaging and clinical assessments, including the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and Childhood Trauma Questionnaire-Short Form (CTQ-SF). Compared to HCs, OCD patients exhibited significantly decreased amplitude of low-frequency fluctuations (ALFF) in the right cerebellum, decreased regional homogeneity (ReHo) in the right cerebellum and right superior occipital lobes (FWE-corrected p < 0.05), which negatively correlated with Y-BOCS scores (p < 0.05). Furthermore, cerebellar ALFF negatively correlated with the CTQ emotional abuse subscale (r = - 0.514, p < 0.01). Mediation analysis revealed that cerebellar ALFF mediated the relationship between CTQ-emotional abuse and Y-BOCS (good model fit: R2 = 0.231, MSE = 14.311, F = 5.721, p < 0.01; direct effect, c' = 0.153, indirect effect, a*b = 0.191). Findings indicated abnormal spontaneous and regional cerebellar activity in OCD, suggesting childhood trauma impacts OCD symptoms through cerebellar neural remodeling, highlighting its importance for clinical treatment selection.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Transtorno Obsessivo-Compulsivo/fisiopatologia , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Masculino , Feminino , Adulto , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Mapeamento Encefálico , Adulto Jovem , Estudos de Casos e Controles
7.
Mol Autism ; 15(1): 34, 2024 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-39113134

RESUMO

Previous research on autism spectrum disorders (ASD) have showed important volumetric alterations in the cerebellum and brainstem. Most of these studies are however limited to case-control studies with small clinical samples and including mainly children or adolescents. Herein, we aimed to explore the association between the cumulative genetic load (polygenic risk score, PRS) for ASD and volumetric alterations in the cerebellum and brainstem, as well as global brain tissue volumes of the brain among adults at the population level. We utilized the latest genome-wide association study of ASD by the Psychiatric Genetics Consortium (18,381 cases, 27,969 controls) and constructed the ASD PRS in an independent cohort, the UK Biobank. Regression analyses controlled for multiple comparisons with the false-discovery rate (FDR) at 5% were performed to investigate the association between ASD PRS and forty-four brain magnetic resonance imaging (MRI) phenotypes among ~ 31,000 participants. Primary analyses included sixteen MRI phenotypes: total volumes of the brain, cerebrospinal fluid (CSF), grey matter (GM), white matter (WM), GM of whole cerebellum, brainstem, and ten regions of the cerebellum (I_IV, V, VI, VIIb, VIIIa, VIIIb, IX, X, CrusI and CrusII). Secondary analyses included twenty-eight MRI phenotypes: the sub-regional volumes of cerebellum including the GM of the vermis and both left and right lobules of each cerebellar region. ASD PRS were significantly associated with the volumes of seven brain areas, whereby higher PRS were associated to reduced volumes of the whole brain, WM, brainstem, and cerebellar regions I-IV, IX, and X, and an increased volume of the CSF. Three sub-regional volumes including the left cerebellar lobule I-IV, cerebellar vermes VIIIb, and X were significantly and negatively associated with ASD PRS. The study highlights a substantial connection between susceptibility to ASD, its underlying genetic etiology, and neuroanatomical alterations of the adult brain.


Assuntos
Tronco Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Herança Multifatorial , Fenótipo , Humanos , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Tronco Encefálico/diagnóstico por imagem , Tronco Encefálico/patologia , Masculino , Feminino , Adulto , Predisposição Genética para Doença , Tamanho do Órgão , Pessoa de Meia-Idade , Transtorno Autístico/genética , Transtorno Autístico/diagnóstico por imagem , Estudo de Associação Genômica Ampla , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Estudos de Casos e Controles
8.
Proc Natl Acad Sci U S A ; 121(34): e2411167121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39136991

RESUMO

Evidence accumulates that the cerebellum's role in the brain is not restricted to motor functions. Rather, cerebellar activity seems to be crucial for a variety of tasks that rely on precise event timing and prediction. Due to its complex structure and importance in communication, human speech requires a particularly precise and predictive coordination of neural processes to be successfully comprehended. Recent studies proposed that the cerebellum is indeed a major contributor to speech processing, but how this contribution is achieved mechanistically remains poorly understood. The current study aimed to reveal a mechanism underlying cortico-cerebellar coordination and demonstrate its speech-specificity. In a reanalysis of magnetoencephalography data, we found that activity in the cerebellum aligned to rhythmic sequences of noise-vocoded speech, irrespective of its intelligibility. We then tested whether these "entrained" responses persist, and how they interact with other brain regions, when a rhythmic stimulus stopped and temporal predictions had to be updated. We found that only intelligible speech produced sustained rhythmic responses in the cerebellum. During this "entrainment echo," but not during rhythmic speech itself, cerebellar activity was coupled with that in the left inferior frontal gyrus, and specifically at rates corresponding to the preceding stimulus rhythm. This finding represents evidence for specific cerebellum-driven temporal predictions in speech processing and their relay to cortical regions.


Assuntos
Cerebelo , Magnetoencefalografia , Humanos , Cerebelo/fisiologia , Masculino , Feminino , Adulto , Percepção da Fala/fisiologia , Adulto Jovem , Fala/fisiologia , Inteligibilidade da Fala/fisiologia
9.
J Cell Biol ; 223(11)2024 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-39115447

RESUMO

Nuclear migration is critical for the proper positioning of neurons in the developing brain. It is known that bidirectional microtubule motors are required for nuclear transport, yet the mechanism of the coordination of opposing motors is still under debate. Using mouse cerebellar granule cells, we demonstrate that Nesprin-2 serves as a nucleus-motor adaptor, coordinating the interplay of kinesin-1 and dynein. Nesprin-2 recruits dynein-dynactin-BicD2 independently of the nearby kinesin-binding LEWD motif. Both motor binding sites are required to rescue nuclear migration defects caused by the loss of function of Nesprin-2. In an intracellular cargo transport assay, the Nesprin-2 fragment encompassing the motor binding sites generates persistent movements toward both microtubule minus and plus ends. Nesprin-2 drives bidirectional cargo movements over a prolonged period along perinuclear microtubules, which advance during the migration of neurons. We propose that Nesprin-2 keeps the nucleus mobile by coordinating opposing motors, enabling continuous nuclear transport along advancing microtubules in migrating cells.


Assuntos
Núcleo Celular , Dineínas , Cinesinas , Proteínas Associadas aos Microtúbulos , Microtúbulos , Proteínas do Tecido Nervoso , Neurônios , Animais , Microtúbulos/metabolismo , Neurônios/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Dineínas/metabolismo , Núcleo Celular/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Transporte Ativo do Núcleo Celular , Complexo Dinactina/metabolismo , Complexo Dinactina/genética , Movimento Celular , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Cerebelo/metabolismo , Cerebelo/citologia , Sítios de Ligação , Humanos
10.
J Cell Biol ; 223(10)2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39137043

RESUMO

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.


Assuntos
Diferenciação Celular , Cerebelo , Cílios , Proteínas Hedgehog , Neurônios , Cílios/metabolismo , Cílios/ultraestrutura , Animais , Neurônios/metabolismo , Neurônios/citologia , Neurônios/ultraestrutura , Camundongos , Cerebelo/metabolismo , Cerebelo/citologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neurogênese , Centríolos/metabolismo , Centríolos/ultraestrutura , Camundongos Endogâmicos C57BL
11.
Proc Natl Acad Sci U S A ; 121(34): e2405901121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39150780

RESUMO

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with ASTN2 mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity, repetitive behaviors, altered behavior in the three-chamber test, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors are also prominent in Astn2 cKO animals, but they do not show altered behavior in the three-chamber test. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrate a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.


Assuntos
Transtorno do Espectro Autista , Cerebelo , Camundongos Knockout , Células de Purkinje , Animais , Camundongos , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/fisiopatologia , Células de Purkinje/metabolismo , Cerebelo/metabolismo , Comportamento Animal/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Modelos Animais de Doenças , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Masculino
12.
Neuropharmacology ; 258: 110097, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094831

RESUMO

Aging is characterized by a functional decline in several physiological systems. α-Klotho-hypomorphic mice (Kl-/-) exhibit accelerated aging and cognitive decline. We evaluated whether male and female α-Klotho-hypomorphic mice show changes in the expression of synaptic proteins, N-methyl-d-aspartate receptor (NMDAR) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunits, postsynaptic density protein 95 (PSD-95), synaptophysin and synapsin, and the activity of Na+, K+-ATPase (NaK) isoforms in the cerebellum and hippocampus. In this study, we demonstrated that in the cerebellum, Kl-/- male mice have reduced expression of GluA1 (AMPA) compared to wild-type (Kl+/+) males and Kl-/- females. Also, Kl-/- male and female mice show reduced ɑ2/ɑ3-NaK and Mg2+-ATPase activities in the cerebellum, respectively, and sex-based differences in NaK and Mg2+-ATPase activities in both the regions. Our findings suggest that α-Klotho could influence the expression of AMPAR and the activity of NaK isoforms in the cerebellum in a sex-dependent manner, and these changes may contribute, in part, to cognitive decline.


Assuntos
Cerebelo , Hipocampo , Proteínas Klotho , Receptores de AMPA , Caracteres Sexuais , ATPase Trocadora de Sódio-Potássio , Animais , Cerebelo/metabolismo , Masculino , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Feminino , Hipocampo/metabolismo , Receptores de AMPA/metabolismo , Receptores de AMPA/genética , Proteínas Klotho/metabolismo , Camundongos , Sinaptofisina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Proteína 4 Homóloga a Disks-Large/genética , Camundongos Knockout , Sinapsinas/metabolismo , Sinapsinas/genética , Camundongos Endogâmicos C57BL , Receptores de N-Metil-D-Aspartato/metabolismo , Receptores de N-Metil-D-Aspartato/genética
13.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(8): 957-961, 2024 Aug 10.
Artigo em Chinês | MEDLINE | ID: mdl-39097279

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic basis for a fetus with Joubert syndrome. METHODS: A pregnant woman who had visited Suzhou Municipal Hospital on February 26, 2021 was selected as the study subject. The fetus and her parents were subjected to whole exome sequencing (WES), and candidate variants were verified by Sanger sequencing. cDNA analysis of her father and RNA sequencing of her sister were also carried out. RESULTS: The fetus was found to harbor compound heterozygous variants of the TCTN1 gene, namely c.624G>A and c.96dupA (p.Glu33Argfs*49), which were inherited from her father and mother, respectively. Her sister also carried the paternal c.624G>A variant, and mRNA transcripts with the c.624G>A variant of the TCTN1 gene were not detected by cDNA analysis of her father and RNA sequencing of her sister. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.624G>A and c.96dupA variants were both classified as likely pathogenic (PVS1+PM2_Supporting). CONCLUSION: The compound heterozygous variants of the TCTN1 gene probably underlay the pathogenesis in this fetus. Above finding has also expanded the mutational spectrum of the TCTN1 gene.


Assuntos
Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Feto , Doenças Renais Císticas , Adulto , Feminino , Humanos , Masculino , Gravidez , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Sequenciamento do Exoma , Anormalidades do Olho/genética , Feto/anormalidades , Heterozigoto , Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Mutação , Retina/anormalidades , Diagnóstico Pré-Natal
14.
Nat Commun ; 15(1): 6357, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39069555

RESUMO

DNA hydroxymethylation (5hmC), the most abundant oxidative derivative of DNA methylation, is typically enriched at enhancers and gene bodies of transcriptionally active and tissue-specific genes. Although aberrant genomic 5hmC has been implicated in age-related diseases, its functional role in aging remains unknown. Here, using mouse liver and cerebellum as model organs, we show that 5hmC accumulates in gene bodies associated with tissue-specific function and restricts the magnitude of gene expression changes with age. Mechanistically, 5hmC decreases the binding of splicing associated factors and correlates with age-related alternative splicing events. We found that various age-related contexts, such as prolonged quiescence and senescence, drive the accumulation of 5hmC with age. We provide evidence that this age-related transcriptionally restrictive function is conserved in mouse and human tissues. Our findings reveal that 5hmC regulates tissue-specific function and may play a role in longevity.


Assuntos
5-Metilcitosina , Envelhecimento , Cerebelo , Metilação de DNA , Fígado , Animais , Envelhecimento/genética , Envelhecimento/metabolismo , 5-Metilcitosina/metabolismo , 5-Metilcitosina/análogos & derivados , Fígado/metabolismo , Camundongos , Humanos , Cerebelo/metabolismo , Camundongos Endogâmicos C57BL , Longevidade/genética , Masculino , Processamento Alternativo , Transcrição Gênica , Feminino , Regulação da Expressão Gênica
15.
Neurobiol Dis ; 199: 106600, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996985

RESUMO

Familial Dysautonomia (FD) is an autosomal recessive disorder caused by a splice site mutation in the gene ELP1, which disproportionally affects neurons. While classically characterized by deficits in sensory and autonomic neurons, neuronal defects in the central nervous system have also been described. Although ELP1 expression remains high in the normal developing and adult cerebellum, its role in cerebellar development is unknown. To explore the role of Elp1 in the cerebellum, we knocked out Elp1 in cerebellar granule cell progenitors (GCPs) and examined the outcome on animal behavior and cellular composition. We found that GCP-specific conditional knockout of Elp1 (Elp1cKO) resulted in ataxia by 8 weeks of age. Cellular characterization showed that the animals had smaller cerebella with fewer granule cells. This defect was already apparent as early as 7 days after birth, when Elp1cKO animals also had fewer mitotic GCPs and shorter Purkinje dendrites. Through molecular characterization, we found that loss of Elp1 was associated with an increase in apoptotic cell death and cell stress pathways in GCPs. Our study demonstrates the importance of ELP1 in the developing cerebellum, and suggests that loss of Elp1 in the GC lineage may also play a role in the progressive ataxia phenotypes of FD patients.


Assuntos
Cerebelo , Disautonomia Familiar , Camundongos Knockout , Fenótipo , Animais , Disautonomia Familiar/genética , Disautonomia Familiar/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Camundongos , Modelos Animais de Doenças , Ataxia/genética , Ataxia/patologia , Ataxia/metabolismo , Células-Tronco Neurais/metabolismo , Apoptose/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular
16.
Dis Model Mech ; 17(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39034883

RESUMO

Pontocerebellar hypoplasia type 2a (PCH2a) is an ultra-rare, autosomal recessive pediatric disorder with limited treatment options. Its anatomical hallmark is hypoplasia of the cerebellum and pons accompanied by progressive microcephaly. A homozygous founder variant in TSEN54, which encodes a tRNA splicing endonuclease (TSEN) complex subunit, is causal. The pathological mechanism of PCH2a remains unknown due to the lack of a model system. Therefore, we developed human models of PCH2a using regionalized neural organoids. We generated induced pluripotent stem cell (iPSC) lines from three males with genetically confirmed PCH2a and subsequently differentiated cerebellar and neocortical organoids. Mirroring clinical neuroimaging findings, PCH2a cerebellar organoids were reduced in size compared to controls starting early in differentiation. Neocortical PCH2a organoids demonstrated milder growth deficits. Although PCH2a cerebellar organoids did not upregulate apoptosis, their stem cell zones showed altered proliferation kinetics, with increased proliferation at day 30 and reduced proliferation at day 50 compared to controls. In summary, we generated a human model of PCH2a, providing the foundation for deciphering brain region-specific disease mechanisms. Our first analyses suggest a neurodevelopmental aspect of PCH2a.


Assuntos
Encéfalo , Diferenciação Celular , Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Organoides/patologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Encéfalo/patologia , Cerebelo/anormalidades , Cerebelo/patologia , Atrofias Olivopontocerebelares/patologia , Atrofias Olivopontocerebelares/genética , Proliferação de Células , Tamanho do Órgão , Modelos Biológicos , Apoptose , Doenças Cerebelares
17.
Biol Res ; 57(1): 48, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39034395

RESUMO

BACKGROUND: Multiple sclerosis (MS) is an irreversible progressive CNS pathology characterized by the loss of myelin (i.e. demyelination). The lack of myelin is followed by a progressive neurodegeneration triggering symptoms as diverse as fatigue, motor, locomotor and sensory impairments and/or bladder, cardiac and respiratory dysfunction. Even though there are more than fourteen approved treatments for reducing MS progression, there are still no cure for the disease. Thus, MS research is a very active field and therefore we count with different experimental animal models for studying mechanisms of demyelination and myelin repair, however, we still lack a preclinical MS model assembling demyelination mechanisms with relevant clinical-like signs. RESULTS: Here, by inducing the simultaneous demyelination of both callosal and cerebellar white matter fibers by the double-site injection of lysolecithin (LPC), we were able to reproduce CNS demyelination, astrocyte recruitment and increases levels of proinflammatory cytokines levels along with motor, locomotor and urinary impairment, as well as cardiac and respiratory dysfunction, in the same animal model. Single site LPC-injections either in corpus callosum or cerebellum only, fails in to reproduce such a complete range of MS-like signs. CONCLUSION: We here report that the double-site LPC injections treatment evoke a complex MS-like mice model. We hope that this experimental approach will help to deepen our knowledge about the mechanisms of demyelinated diseases such as MS.


Assuntos
Cerebelo , Corpo Caloso , Doenças Desmielinizantes , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Animais , Esclerose Múltipla/patologia , Corpo Caloso/patologia , Cerebelo/patologia , Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/induzido quimicamente , Camundongos , Masculino , Lisofosfatidilcolinas , Citocinas/metabolismo , Bainha de Mielina/patologia
18.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38960706

RESUMO

The cerebellum is a conserved structure of the vertebrate brain involved in the timing and calibration of movements. Its function is supported by the convergence of fibers from granule cells (GCs) and inferior olive neurons (IONs) onto Purkinje cells (PCs). Theories of cerebellar function postulate that IONs convey error signals to PCs that, paired with the contextual information provided by GCs, can instruct motor learning. Here, we use the larval zebrafish to investigate (1) how sensory representations of the same stimulus vary across GCs and IONs and (2) how PC activity reflects these two different input streams. We use population calcium imaging to measure ION and GC responses to flashes of diverse luminance and duration. First, we observe that GCs show tonic and graded responses, as opposed to IONs, whose activity peaks mostly at luminance transitions, consistently with the notion that GCs and IONs encode context and error information, respectively. Second, we show that GC activity is patterned over time: some neurons exhibit sustained responses for the entire duration of the stimulus, while in others activity ramps up with slow time constants. This activity could provide a substrate for time representation in the cerebellum. Together, our observations give support to the notion of an error signal coming from IONs and provide the first experimental evidence for a temporal patterning of GC activity over many seconds.


Assuntos
Cerebelo , Estimulação Luminosa , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Cerebelo/fisiologia , Estimulação Luminosa/métodos , Células de Purkinje/fisiologia , Neurônios/fisiologia , Percepção Visual/fisiologia
19.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39063141

RESUMO

KIAA0586 variants have been associated with a wide range of ciliopathies, mainly Joubert syndrome (JS, OMIM #616490) and short-rib thoracic dysplasia syndrome (SRTD, OMIM #616546). However, the hypothesis that this gene is involved with hydrolethalus syndrome (HSL, OMIM #614120) and orofaciodigital syndrome IV (OMIM #258860) has already been raised. Ciliopathies' clinical features are often overlapped despite differing in phenotype severity. Besides KIAA0586, HYLS1 and KIF7 are also known for being causative of ciliopathies, indicating that all three genes may have similar or converging genomic pathways. Overall, the genotypic and phenotypic spectrum of ciliopathies becomes wider and conflicting while more and more new variants are added to this group of disorders' molecular pot. In this case report we discuss the first Brazilian individual clinically diagnosed with hydrolethalus syndrome and molecular findings that demonstrate the role of KIAA0586 as a causative gene of a group of genetic disorders. Also, recent reports on individuals with intronic and exonic variants combined leading to ciliopathies support our patient's molecular diagnosis. At the same time, we discuss variable expressivity and overlapping features in ciliopathies.


Assuntos
Anormalidades Múltiplas , Cerebelo , Anormalidades do Olho , Doenças Renais Císticas , Fenótipo , Retina , Humanos , Anormalidades do Olho/genética , Anormalidades do Olho/patologia , Doenças Renais Císticas/genética , Anormalidades Múltiplas/genética , Retina/anormalidades , Retina/patologia , Retina/metabolismo , Cerebelo/anormalidades , Cerebelo/patologia , Ciliopatias/genética , Masculino , Mutação , Feminino , Proteínas de Ciclo Celular
20.
Adv Tech Stand Neurosurg ; 52: 207-227, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39017796

RESUMO

Pineal lesions represent less than 1% of all brain tumors (Villani et al., Clin Neurol Neurosurg 109:1-6, 2007). The abysmal location and critical neurovascular structures remain a surgical challenge, despite the advent of microneurosurgery. The classical wide surgical suboccipital craniotomy with the supracerebellar infratentorial approach, described by Sir Victor Horsley (Victor, Proc R Soc Med 3:77-78, 1910), is infamous for its considerable surgical morbidity and mortality. This was later upgraded microneurosurgically by Stein to improve surgical outcomes (Stein, J Neurosurg 35:197-202, 1971).Ruge et al. reported the first purely endoscopic fenestration of quadrigeminal arachnoid cysts via this corridor (Ruge et al., Neurosurgery 38:830-7, 1996). A cadaver-based anatomical study by Cardia et al. demonstrated the viability for endoscope-assisted techniques (Cardia et al., J Neurosurg 2006;104(6 Suppl):409-14). However, the first purely endoscopic supracerebellar infratentorial (eSCIT) approach to a pineal cyst was performed in 2008 by Gore et al. (Gore PA et al., Neurosurgery 62:108-9, 2008).Unlike transventricular endoscopy, eSCIT approach poses no mechanical risk to the fornices and can be utilized irrespective of ventricular size. More vascular control and resultant reduction in uncontrolled hemorrhage improve the feasibility of attaining complete resection, especially around corners (Zaidi et al,, World Neurosurg 84, 2015). Gravity-dependent positioning and cerebrospinal fluid (CSF) diversion aid cerebellar relaxation, creating the ideal anatomical pathway. Also, angle of the straight sinus, tentorium, and tectal adherence can often influence the choice of approach; thus direct endoscopic visualization not only counteracts access to the engorged Galenic complex but also encourages sharp dissection of the arachnoid (Cardia et al., J Neurosurg 104:409-14, 2006). These tactics help provide excellent illumination with magnification, making it less fatiguing for the surgeon (Broggi et al., Neurosurgery 67:159-65, 2010).The purely endoscopic approach thwarts the dreaded risk of air embolisms, via simple copious irrigation from a small burr hole (Shahinian and Ra, J Neurol Surg B Skull Base 74:114-7, 2013). The tiny opening and closure are rapid to create, and the smaller wound decreases postoperative pain and morbidity. Recent literature supports its numerous advantages and favorable outcomes, making it a tough contender to traditional open methods.


Assuntos
Glândula Pineal , Criança , Humanos , Neoplasias Encefálicas/cirurgia , Cerebelo/cirurgia , Endoscopia/métodos , Neuroendoscopia/métodos , Procedimentos Neurocirúrgicos/métodos , Glândula Pineal/cirurgia , Pinealoma/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA