Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.261
Filtrar
1.
Sci Transl Med ; 16(747): eadl1408, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38748772

RESUMO

Essential tremor (ET) is the most prevalent movement disorder, characterized primarily by action tremor, an involuntary rhythmic movement with a specific frequency. However, the neuronal mechanism underlying the coding of tremor frequency remains unexplored. Here, we used in vivo electrophysiology, optogenetics, and simultaneous motion tracking in the Grid2dupE3 mouse model to investigate whether and how neuronal activity in the olivocerebellum determines the frequency of essential tremor. We report that tremor frequency was encoded by the temporal coherence of population neuronal firing within the olivocerebellums of these mice, leading to frequency-dependent cerebellar oscillations and tremors. This mechanism was precise and generalizable, enabling us to use optogenetic stimulation of the deep cerebellar nuclei to induce frequency-specific tremors in wild-type mice or alter tremor frequencies in tremor mice. In patients with ET, we showed that deep brain stimulation of the thalamus suppressed tremor symptoms but did not eliminate cerebellar oscillations measured by electroencephalgraphy, indicating that tremor-related oscillations in the cerebellum do not require the reciprocal interactions with the thalamus. Frequency-disrupting transcranial alternating current stimulation of the cerebellum could suppress tremor amplitudes, confirming the frequency modulatory role of the cerebellum in patients with ET. These findings offer a neurodynamic basis for the frequency-dependent stimulation of the cerebellum to treat essential tremor.


Assuntos
Cerebelo , Tremor Essencial , Neurônios , Núcleo Olivar , Tremor Essencial/fisiopatologia , Animais , Humanos , Núcleo Olivar/fisiopatologia , Cerebelo/fisiopatologia , Camundongos , Masculino , Optogenética , Feminino , Estimulação Encefálica Profunda , Pessoa de Meia-Idade , Eletroencefalografia , Idoso
2.
Cereb Cortex ; 34(5)2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38741271

RESUMO

This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.


Assuntos
Infartos do Tronco Encefálico , Cerebelo , Imageamento por Ressonância Magnética , Vias Neurais , Ponte , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Vias Neurais/fisiopatologia , Vias Neurais/diagnóstico por imagem , Ponte/diagnóstico por imagem , Ponte/fisiopatologia , Infartos do Tronco Encefálico/fisiopatologia , Infartos do Tronco Encefálico/diagnóstico por imagem , Idoso , Adulto , Córtex Cerebral/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Rede Nervosa/diagnóstico por imagem
3.
Exp Brain Res ; 242(6): 1517-1531, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38722346

RESUMO

Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.


Assuntos
Aprendizagem , Destreza Motora , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Cerebelares/fisiopatologia , Doenças Cerebelares/reabilitação , Cerebelo/fisiopatologia , Cerebelo/fisiologia , Doença Crônica , Aprendizagem/fisiologia , Destreza Motora/fisiologia , Desempenho Psicomotor/fisiologia , Robótica , Acidente Vascular Cerebral/fisiopatologia , Reabilitação do Acidente Vascular Cerebral/métodos , Estudos Prospectivos , Adolescente , Idoso de 80 Anos ou mais
4.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658164

RESUMO

Pain is considered a multidimensional experience that embodies not merely sensation, but also emotion and perception. As is appropriate for this complexity, pain is represented and processed by an extensive matrix of cortical and subcortical structures. Of these structures, the cerebellum is gaining increasing attention. Although association between the cerebellum and both acute and chronic pain have been extensively detailed in electrophysiological and neuroimaging studies, a deep understanding of what functions are mediated by these associations is lacking. Nevertheless, the available evidence implies that lobules IV-VI and Crus I are especially pertinent to pain processing, and anatomical studies reveal that these regions connect with higher-order structures of sensorimotor, emotional, and cognitive function. Therefore, we speculate that the cerebellum exerts a modulatory role in pain via its communication with sites of sensorimotor, executive, reward, and limbic function. On this basis, in this review, we propose numerous ways in which the cerebellum might contribute to both acute and chronic pain, drawing particular attention to emotional and cognitive elements of pain. In addition, we emphasise the importance of advancing our knowledge about the relationship between the cerebellum and pain by discussing novel therapeutic opportunities that capitalize on this association.


Assuntos
Cerebelo , Dor , Humanos , Cerebelo/fisiopatologia , Cerebelo/diagnóstico por imagem , Animais , Dor/fisiopatologia , Dor/psicologia , Emoções/fisiologia
5.
Schizophr Res ; 267: 497-506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582653

RESUMO

BACKGROUND: Abnormal cerebellar functional connectivity (FC) has been implicated in the pathophysiology of schizophrenia (SCZ) and bipolar disorder (BD). However, the patterns of cerebellar dysconnectivity in these two disorders and their association with cognitive functioning and clinical symptoms have not been fully clarified. In this study, we examined cerebellar FC alterations in SCZ and BD-I and their association with cognition and psychotic symptoms. METHODS: Resting-state functional magnetic resonance imaging (rs-fMRI) data of 39 SCZ, 43 BD-I, and 61 healthy controls from the Consortium for Neuropsychiatric Phenomics dataset were examined. The cerebellum was parcellated into ten functional networks, and seed-based FC was calculated for each cerebellar system. Principal component analyses were used to reduce the dimensionality of the diagnosis-related FC and cognitive variables. Multiple regression analyses were used to assess the relationship between FC and cognitive and clinical data. RESULTS: We observed decreased cerebellar FC with the frontal, temporal, occipital, and thalamic areas in individuals with SCZ, and a more widespread decrease in cerebellar FC in individuals with BD-I, involving the frontal, cingulate, parietal, temporal, occipital, and thalamic regions. SCZ had increased within-cerebellum and cerebellar frontal FC compared to BD-I. In BD-I, memory and verbal learning performances, which were higher compared to SCZ, showed a greater interaction with cerebellar FC patterns. Additionally, patterns of increased cortico-cerebellar FC were marginally associated with positive symptoms in patients. CONCLUSIONS: Our findings suggest that shared and distinct patterns of cortico-cerebellar dysconnectivity in SCZ and BD-I could underlie cognitive impairments and psychotic symptoms in these disorders.


Assuntos
Transtorno Bipolar , Cerebelo , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/complicações , Masculino , Feminino , Adulto , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Adulto Jovem , Conectoma , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/diagnóstico por imagem , Pessoa de Meia-Idade
6.
Brain Cogn ; 177: 106160, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670051

RESUMO

While procedural learning (PL) has been implicated in delayed motor skill observed in developmental coordination disorder (DCD), few studies have considered the impact of co-occurring attentional problems. Furthermore, the neurostructural basis of PL in children remains unclear. We investigated PL in children with DCD while controlling for inattention symptoms, and examined the role of fronto-basal ganglia-cerebellar morphology in PL. Fifty-nine children (6-14 years; nDCD = 19, ncontrol = 40) completed the serial reaction time (SRT) task to measure PL. The Attention-Deficit Hyperactivity Disorder Rating Scale-IV was administered to measure inattention symptoms. Structural T1 images were acquired for a subset of participants (nDCD = 10, ncontrol = 28), and processed using FreeSurfer. Volume was extracted for the cerebellum, basal ganglia, and frontal regions. After controlling for inattention symptoms, the reaction time profile of controls was consistent with learning on the SRT task. This was not the case for those with DCD. SRT task performance was positively correlated with cerebellar cortical volume, and children with DCD trended towards lower cerebellar volume compared to controls. Children with DCD may not engage in PL during the SRT task in the same manner as controls, with this differential performance being associated with atypical cerebellar morphology.


Assuntos
Cerebelo , Aprendizagem , Imageamento por Ressonância Magnética , Transtornos das Habilidades Motoras , Tempo de Reação , Humanos , Criança , Masculino , Feminino , Adolescente , Transtornos das Habilidades Motoras/fisiopatologia , Transtornos das Habilidades Motoras/diagnóstico por imagem , Tempo de Reação/fisiologia , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Aprendizagem/fisiologia , Imageamento por Ressonância Magnética/métodos , Transtorno do Deficit de Atenção com Hiperatividade/fisiopatologia , Transtorno do Deficit de Atenção com Hiperatividade/diagnóstico por imagem , Neuroimagem/métodos , Atenção/fisiologia , Gânglios da Base/fisiopatologia , Gânglios da Base/diagnóstico por imagem , Desempenho Psicomotor/fisiologia , Destreza Motora/fisiologia
7.
Exp Brain Res ; 242(5): 1087-1100, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483566

RESUMO

Fatigue and balance disorders are common challenges experienced by Multiple Sclerosis (MS) individuals. The purpose of this study was to compare the concurrent effects of cerebellar and prefrontal anodal trans-cranial direct current stimulation (a-tDCS) with postural training on balance and fatigue in MS patients. 51 patients were evaluated to randomly allocation to a-tDCS over cerebellum, a-tDCS over dorsolateral prefrontal cortex (DLPFC) and sham group. 46 individuals (n = 16 in experimental groups and n = 14 in control group) followed treatment. All the groups received 10 sessions of postural training. The experimental groups underwent a-tDCS with a current of 1.5 mA for a period of 20 min. While, in the sham group, tDCS was only activated for 30 s and then turned off. The treatment included 10 sessions for four weeks. Before and after intervention, fatigue and balance were assessed using Fatigue Severity Scale (FSS), Timed Up and Go (TUG) test and Berg Balance Score (BBS), respectively. There was found a significant reduction in fatigue in the group receiving a-tDCS over the prefrontal cortex with postural training compared to the other two groups (P < 0.001). Additionally, a significant improvement was found in balance in the group receiving a-tDCS over the cerebellum concurrent with postural training in comparison to the other two groups (P < 0.001). Besides, in the sham group, the significant results were not reported in the variables. (P > 0.001). The results demonstrated that a-tDCS enhances the effects of postural training on balance and fatigue in MS patients.


Assuntos
Cerebelo , Fadiga , Esclerose Múltipla , Equilíbrio Postural , Córtex Pré-Frontal , Estimulação Transcraniana por Corrente Contínua , Humanos , Masculino , Feminino , Equilíbrio Postural/fisiologia , Estimulação Transcraniana por Corrente Contínua/métodos , Adulto , Método Duplo-Cego , Esclerose Múltipla/complicações , Esclerose Múltipla/fisiopatologia , Esclerose Múltipla/terapia , Fadiga/terapia , Fadiga/fisiopatologia , Fadiga/etiologia , Fadiga/reabilitação , Pessoa de Meia-Idade , Córtex Pré-Frontal/fisiopatologia , Cerebelo/fisiopatologia , Cerebelo/fisiologia , Resultado do Tratamento , Adulto Jovem
8.
Mov Disord ; 39(5): 892-897, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480525

RESUMO

BACKGROUND: Little is known about the impact of the cerebellar ataxia, neuropathy, vestibular areflexia syndrome (CANVAS) on cognition. OBJECTIVE: Our objective was to determine the frequency and severity of cognitive impairment in RFC1-positive patients and describe the pattern of deficits. METHODS: Participants underwent a comprehensive neuropsychological assessment. Volume of the cerebellum and its lobules was measured in those who underwent a 3 Tesla-magnetic resonance scan. RESULTS: Twenty-one patients underwent a complete assessment, including 71% scoring lower than the cutoff at the Montreal Cognitive assessment and 71% having a definite cerebellar cognitive affective/Schmahmann syndrome. Three patients had dementia and seven met the criteria of mild cognitive impairment. Severity of cognitive impairment did not correlate with severity of clinical manifestations. Performance at memory and visuospatial functions tests negatively correlated with the severity of cerebellar manifestations. CONCLUSION: Cognitive manifestations are frequent in RFC1-related disorders. They should be included in the phenotype and screened systematically. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Ataxia Cerebelar , Disfunção Cognitiva , Fenótipo , Humanos , Feminino , Masculino , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/fisiopatologia , Ataxia Cerebelar/fisiopatologia , Ataxia Cerebelar/complicações , Pessoa de Meia-Idade , Idoso , Adulto , Testes Neuropsicológicos , Proteína de Replicação C/genética , Imageamento por Ressonância Magnética , Cerebelo/diagnóstico por imagem , Cerebelo/fisiopatologia , Cerebelo/patologia , Doenças Vestibulares/fisiopatologia
9.
J Neurol Sci ; 451: 120726, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421883

RESUMO

INTRODUCTION: Pseudobulbar affect (PBA) is a distressing symptom of a multitude of neurological conditions affecting patients with a rage of neuroinflammatory, neurovascular and neurodegenerative conditions. It manifests in disproportionate emotional responses to minimal or no contextual stimulus. It has considerable quality of life implications and treatment can be challenging. METHODS: A prospective multimodal neuroimaging study was conducted to explore the neuroanatomical underpinnings of PBA in patients with primary lateral sclerosis (PLS). All participants underwent whole genome sequencing and screening for C9orf72 hexanucleotide repeat expansions, a comprehensive neurological assessment, neuropsychological screening (ECAS, HADS, FrSBe) and PBA was evaluated by the emotional lability questionnaire. Structural, diffusivity and functional MRI data were systematically evaluated in whole-brain (WB) data-driven and region of interest (ROI) hypothesis-driven analyses. In ROI analyses, functional and structural corticobulbar connectivity and cerebello-medullary connectivity alterations were evaluated separately. RESULTS: Our data-driven whole-brain analyses revealed associations between PBA and white matter degeneration in descending corticobulbar as well as in commissural tracts. In our hypothesis-driven analyses, PBA was associated with increased right corticobulbar tract RD (p = 0.006) and decreased FA (p = 0.026). The left-hemispheric corticobulbar tract, as well as functional connectivity, showed similar tendencies. While uncorrected p-maps revealed both voxelwise and ROI trends for associations between PBA and cerebellar measures, these did not reach significance to unequivocally support the "cerebellar hypothesis". CONCLUSIONS: Our data confirm associations between cortex-brainstem disconnection and the clinical severity of PBA. While our findings may be disease-specific, they are consistent with the classical cortico-medullary model of pseudobulbar affect.


Assuntos
Cerebelo , Córtex Cerebral , Choro , Riso , Modelos Neurológicos , Doença dos Neurônios Motores , Tratos Piramidais , Radiologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/diagnóstico por imagem , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/fisiopatologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Cerebelo/fisiopatologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Lobo Frontal/fisiopatologia , Imageamento por Ressonância Magnética , Bulbo/diagnóstico por imagem , Bulbo/patologia , Bulbo/fisiopatologia , Córtex Motor/diagnóstico por imagem , Córtex Motor/patologia , Córtex Motor/fisiopatologia , Doença dos Neurônios Motores/complicações , Doença dos Neurônios Motores/diagnóstico por imagem , Doença dos Neurônios Motores/patologia , Doença dos Neurônios Motores/fisiopatologia , Tratos Piramidais/diagnóstico por imagem , Tratos Piramidais/patologia , Tratos Piramidais/fisiopatologia , Qualidade de Vida , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Lobo Temporal/fisiopatologia
10.
J Trace Elem Med Biol ; 78: 127189, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37201369

RESUMO

BACKGROUND: In connection with the widespread use of explosive devices in military conflicts, in particular in Ukraine, is relevant to detect the biometals changes in the cerebellum and determine the presence of their influence on the behavior changes of rats in the elevated plus maze in the acute period of a mild blast-traumatic brain injury (bTBI). METHODS: The selected rats were randomly divided into 3 groups: Group I - Experimental with bTBI (with an excess pressure of 26-36 kPa), Group II - Sham and Group III - Intact. Behavior studies was in the elevated plus maze. Brain spectral analysis was with using of energy dispersive X-ray fluorescence analysis, after obtaining the quantitative mass fractions of biometals, the ratios of Cu/Fe, Cu/Zn, Zn/Fe were calculated and the data between the three groups were compared. RESULTS: The results showed an increase in mobility in the experimental rats, which indicates functional disorders of the cerebellum in the form of maladaptation in space. Changes in cognitive activity also is an evidence of cerebellum suppression, which is indicated by changes in vertical locomotor activity. Grooming time was shortened. We established a significant increase in Cu/Fe and Zn/Fe ratios in the cerebellum, a decrease in Cu/Zn. CONCLUSIONS: Changes in the Cu/Fe, Cu/Zn, and Zn/Fe ratios in the cerebellum correlate with impaired locomotor and cognitive activity in rats in the acute posttraumatic period. Accumulation of Fe on the 1st and 3rd day leads to disturbance of the Cu and Zn balance on the 7th day and starts a "vicious cycle" of neuronal damage. Cu/Fe, Cu/Zn, and Zn/Fe imbalances are secondary factors in the pathogenesis of brain damage as a result of primary bTBI.


Assuntos
Traumatismos por Explosões , Lesões Encefálicas , Cerebelo , Cobre , Ferro , Oligoelementos , Zinco , Oligoelementos/análise , Oligoelementos/metabolismo , Animais , Ratos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/fisiopatologia , Traumatismos por Explosões/metabolismo , Traumatismos por Explosões/fisiopatologia , Cerebelo/química , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Masculino , Ratos Wistar , Cobre/análise , Cobre/metabolismo , Ferro/análise , Ferro/metabolismo , Zinco/análise , Zinco/metabolismo , Asseio Animal , Locomoção , Espectrometria por Raios X
11.
Parkinsonism Relat Disord ; 99: 1-7, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35537274

RESUMO

INTRODUCTION: The pathophysiology of paroxysmal kinesigenic dyskinesia (PKD) remains elusive to date; however, several lines of evidence from neuroimaging studies suggest involvement of the basal ganglia-thalamocortical network in PKD. We combined fractional amplitude of low-frequency fluctuation (fALFF) and seed-based functional connectivity (FC) analyses in order to comprehensively investigate intrinsic brain activity alterations and their relationships with disease severity in patients with idiopathic PKD. METHODS: Resting-state functional MRI data were obtained and processed in 34 PKD patients and 34 matched controls. fALFF and seed-based FC maps were computed and compared between patients and controls. Linear regression analysis was further performed between regional fALFF values or FC strengths and clinical parameters in patients. RESULTS: PKD patients had a significant increase in fALFF in bilateral thalamus and cerebellum compared with controls. FC analysis seeding at the thalamic clusters revealed significant FC increases in motor cortex and supplementary motor area in PKD patients relative to controls. Longer disease duration was associated with increasing FC strength between the thalamus and motor cortex. CONCLUSION: We have provided evidence for abnormal intrinsic activity in the cerebello-thalamic circuit and increased thalamofrontal FC in PKD patients, implicating interictal cerebello-thalamofrontal dysconnectivity in the pathophysiology of PKD. Given the increasing FC strength in proportion to disease duration, the thalamofrontal hyperconnectivity might reflect either a consequence of recurrent dyskinesias on the brain or an innate pathology causing dyskinesias in PKD.


Assuntos
Cerebelo , Distonia , Imageamento por Ressonância Magnética , Estudos de Casos e Controles , Cerebelo/patologia , Cerebelo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Tálamo/patologia , Tálamo/fisiopatologia
12.
J Neuroimmunol ; 367: 577870, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35468417

RESUMO

Immune system dysfunction has been described in autism spectrum disorder. Here we tested the hypothesis that cerebellar defects are accompanied by immune dysfunction in adult mice lacking the autism-candidate gene Engrailed 2 (En2). Gene ontology analyses revealed that biological processes related to immune function were over-represented in the cerebellar transcriptome of En2-/- mice. Pro-inflammatory molecules and chemokines were reduced in the En2-/- cerebellum compared to controls. Conversely, pro-inflammatory molecules were increased in the peripheral blood of mutant mice. Our results suggest a link between immune dysfunction and cerebellar defects detected in En2-/- mice.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Proteínas de Homeodomínio , Proteínas do Tecido Nervoso , Animais , Transtorno Autístico/genética , Cerebelo/imunologia , Cerebelo/fisiopatologia , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética
13.
J Integr Neurosci ; 21(1): 30, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35164466

RESUMO

Apoptosis, autophagy and necrosis are the three main types of programmed cell death. One or more of these types of programmed cell death may take place in neurons leading to their death in various neurodegenerative disorders in humans. Purkinje neurons (PNs) are among the most highly vulnerable population of neurons to cell death in response to intrinsic hereditary diseases or extrinsic toxic, hypoxic, ischemic, and traumatic injury. In this review, we will describe the three main types of programmed cell death, including the molecular mechanisms and the sequence of events in each of them, and thus illustrating the intracellular proteins that mediate and regulate each of these types. Then, we will discuss the role of Ca2+ in PN function and increased vulnerability to cell death. Additionally, PN death will be described in animal models, namely lurcher mutant mouse and shaker mutant rat, in order to illustrate the potential therapeutic implications of programmed cell death in PNs by reviewing the previous studies that were carried out to interfere with the programmed cell death in an attempt to rescue PNs from death.


Assuntos
Apoptose , Autofagia , Cerebelo , Necrose , Doenças Neurodegenerativas , Células de Purkinje , Animais , Apoptose/fisiologia , Autofagia/fisiologia , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/patologia , Cerebelo/fisiopatologia , Humanos , Camundongos , Necrose/metabolismo , Necrose/patologia , Necrose/fisiopatologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Células de Purkinje/citologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia , Células de Purkinje/fisiologia , Ratos
14.
Cerebellum ; 21(1): 19-22, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35088299

RESUMO

Highly contagious pandemic due to novel coronavirus SARS-CoV-2, COVID-19 has significantly affected humankind. At the onset of the pandemic, it was believed that it primarily affects the respiratory and hematological system, and has minimal influence on the human brain, even less so on the cerebellum. It was thought that the effects of a pandemic on cerebellar disorders would be the same as it would affect any other chronic neurological disease. It turned out that our understanding of the effects of COVID-19 on the cerebellar system was premature. Over the last 2 years, we appreciated many diverse and direct effects of COVID-19 on cerebellar function. SARS-CoV-2 affects the cerebellum via direct viral invasion, but even more so through its effects on immune, hematological, and metabolic pathways. Increasing evidence suggested the indirect effects of COVID-19 on preexisting chronic cerebellar disease due to lack of in-person care and social isolation. This editorial concisely summarizes critical literature on COVID-19 and the cerebellum published over the last 2 years.


Assuntos
COVID-19 , Cerebelo , Doenças do Sistema Nervoso , COVID-19/fisiopatologia , Cerebelo/fisiopatologia , Humanos , Doenças do Sistema Nervoso/epidemiologia , Doenças do Sistema Nervoso/fisiopatologia , Pandemias , SARS-CoV-2
15.
Nat Commun ; 13(1): 161, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013317

RESUMO

Dravet syndrome is a severe epileptic encephalopathy caused primarily by haploinsufficiency of the SCN1A gene. Repetitive seizures can lead to endurable and untreatable neurological deficits. Whether this severe pathology is reversible after symptom onset remains unknown. To address this question, we generated a Scn1a conditional knock-in mouse model (Scn1a Stop/+) in which Scn1a expression can be re-activated on-demand during the mouse lifetime. Scn1a gene disruption leads to the development of seizures, often associated with sudden unexpected death in epilepsy (SUDEP) and behavioral alterations including hyperactivity, social interaction deficits and cognitive impairment starting from the second/third week of age. However, we showed that Scn1a gene re-activation when symptoms were already manifested (P30) led to a complete rescue of both spontaneous and thermic inducible seizures, marked amelioration of behavioral abnormalities and normalization of hippocampal fast-spiking interneuron firing. We also identified dramatic gene expression alterations, including those associated with astrogliosis in Dravet syndrome mice, that, accordingly, were rescued by Scn1a gene expression normalization at P30. Interestingly, regaining of Nav1.1 physiological level rescued seizures also in adult Dravet syndrome mice (P90) after months of repetitive attacks. Overall, these findings represent a solid proof-of-concept highlighting that disease phenotype reversibility can be achieved when Scn1a gene activity is efficiently reconstituted in brain cells.


Assuntos
Disfunção Cognitiva/genética , Epilepsias Mioclônicas/genética , Hipocampo/metabolismo , Interneurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Morte Súbita Inesperada na Epilepsia/prevenção & controle , Potenciais de Ação/fisiologia , Animais , Cerebelo/metabolismo , Cerebelo/fisiopatologia , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/prevenção & controle , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Dependovirus/genética , Dependovirus/metabolismo , Modelos Animais de Doenças , Epilepsias Mioclônicas/metabolismo , Epilepsias Mioclônicas/fisiopatologia , Epilepsias Mioclônicas/prevenção & controle , Técnicas de Introdução de Genes , Terapia Genética/métodos , Hipocampo/fisiopatologia , Humanos , Interneurônios/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.1/deficiência , Morte Súbita Inesperada na Epilepsia/patologia
16.
Schizophr Bull ; 48(2): 505-513, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34525195

RESUMO

It has previously been shown that cerebello-thalamo-cortical (CTC) hyperconnectivity is likely a state-independent neural signature for psychosis. However, the potential clinical utility of this change has not yet been evaluated. Here, using fMRI and clinical data acquired from 214 untreated first-episode patients with schizophrenia (62 of whom were clinically followed-up at least once at the 12th and 24th months after treatment initiation) and 179 healthy controls, we investigated whether CTC hyperconnectivity would serve as an individualized biomarker for diagnostic classification and prediction of long-term treatment outcome. Cross-validated LASSO regression was conducted to estimate the accuracy of baseline CTC connectivity for patient-control classification, with the generalizability of classification performance tested in an independent sample including 42 untreated first-episode patients and 65 controls. Associations between baseline CTC connectivity and clinical outcomes were evaluated using linear mixed model and leave-one-out cross validation. We found significantly increased baseline CTC connectivity in patients (P = .01), which remained stable after treatment. Measures of CTC connectivity discriminated patients from controls with moderate classification accuracy (AUC = 0.68, P < .001), and the classification model had good generalizability in the independent sample (AUC = 0.70, P < .001). Higher CTC connectivity at baseline significantly predicted poorer long-term symptom reduction in negative symptoms (R = 0.31, P = .01) but not positive or general symptoms. These findings provide initial evidence for the putative "CTC hyperconnectivity" anomaly as an individualized diagnostic and prognostic biomarker for schizophrenia, and highlight the potential of this measure in precision psychiatry.


Assuntos
Cerebelo/fisiologia , Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Esquizofrenia/fisiopatologia , Tálamo/fisiologia , Adolescente , Adulto , Área Sob a Curva , Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Masculino , Curva ROC , Esquizofrenia/terapia , Tálamo/fisiopatologia , Resultado do Tratamento
17.
Hum Brain Mapp ; 43(2): 633-646, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34609038

RESUMO

Neuromodulation treatment effect size for bothersome tinnitus may be larger and more predictable by adopting a target selection approach guided by personalized striatal networks or functional connectivity maps. Several corticostriatal mechanisms are likely to play a role in tinnitus, including the dorsal/ventral striatum and the putamen. We examined whether significant tinnitus treatment response by deep brain stimulation (DBS) of the caudate nucleus may be related to striatal network increased functional connectivity with tinnitus networks that involve the auditory cortex or ventral cerebellum. The first study was a cross-sectional 2-by-2 factorial design (tinnitus, no tinnitus; hearing loss, normal hearing, n = 68) to define cohort level abnormal functional connectivity maps using high-field 7.0 T resting-state fMRI. The second study was a pilot case-control series (n = 2) to examine whether tinnitus modulation response to caudate tail subdivision stimulation would be contingent on individual level striatal connectivity map relationships with tinnitus networks. Resting-state fMRI identified five caudate subdivisions with abnormal cohort level functional connectivity maps. Of those, two connectivity maps exhibited increased connectivity with tinnitus networks-dorsal caudate head with Heschl's gyrus and caudate tail with the ventral cerebellum. DBS of the caudate tail in the case-series responder resulted in dramatic reductions in tinnitus severity and loudness, in contrast to the nonresponder who showed no tinnitus modulation. The individual level connectivity map of the responder was in alignment with the cohort expectation connectivity map, where the caudate tail exhibited increased connectivity with tinnitus networks, whereas the nonresponder individual level connectivity map did not.


Assuntos
Córtex Auditivo/fisiopatologia , Núcleo Caudado/fisiopatologia , Cerebelo/fisiopatologia , Conectoma , Estimulação Encefálica Profunda , Perda Auditiva/fisiopatologia , Rede Nervosa/fisiopatologia , Zumbido/fisiopatologia , Zumbido/terapia , Adulto , Idoso , Córtex Auditivo/diagnóstico por imagem , Estudos de Casos e Controles , Núcleo Caudado/diagnóstico por imagem , Cerebelo/diagnóstico por imagem , Estudos Transversais , Feminino , Perda Auditiva/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Zumbido/diagnóstico por imagem
18.
Sleep Breath ; 26(1): 31-36, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33990908

RESUMO

The cerebellum is widely regarded as a brain region involved in motor processing, non-motor processing, and even sleep-wake cycles. Cerebellar dysfunction may cause changes in the sleep-wake cycle, leading to sleep disturbances. At present, there is limited research on its effect on postoperative sleep after general anesthesia, despite the suspicion of its implication in postoperative sleep disturbances. With this review, we aim to provide a clear and comprehensive review of the cerebellar activity during the normal sleep-wake cycle, the correlation between cerebellar dysfunction and postoperative sleep disturbances, and the effects of general anesthesia on cerebellar dysfunction. Future large-scale multicenter trials are needed to objectively support the present results, identify the initial cerebellar dysfunction to prevent postoperative sleep disturbances, and develop new therapeutic measures targeting sleep disturbances with possible far-reaching implications for neurodegenerative diseases in general.


Assuntos
Anestesia Geral/efeitos adversos , Doenças Cerebelares/etiologia , Transtornos do Sono-Vigília/etiologia , Doenças Cerebelares/fisiopatologia , Cerebelo/fisiopatologia , Humanos , Período Pós-Operatório , Transtornos do Sono-Vigília/fisiopatologia
19.
Brain Dev ; 44(2): 161-165, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34750010

RESUMO

BACKGROUND: Ciliopathies are the outcomes of defects of primary cilia structures and functions which cause multisystemic developmental disorders, such as polycystic kidney disease, nephronophthisis, retinitis pigmentosa, Joubert syndrome (JS), and JS-related disorders (JSRD) with additional organ involvement including oral-facial-digital syndrome and so on. They often share common and unexpected phenotypic features. CASE PRESENTATION: We report a 4-year-old-boy case with compound heterozygous variants of ADAMTS9. Unlike the cases with ADAMTS9 variants in the previous report, which identified that homozygous variants of ADAMTS9 were responsible for nephronophthisis-related ciliopathies in two cases, the current case did not have nephronophthisis nor renal dysfunction, and his clinical features, such as oculomotor apraxia, hypotonia, developmental delay, bifid tongue, and mild hypoplasia of cerebellar vermis indicated JSRD. CONCLUSIONS: The case suggested a possible association between the clinical presentation of JSRD and ADAMTS9-related disease, and it shows a wide spectrum of ADAMTS9 phenotype.


Assuntos
Proteína ADAMTS9/genética , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Ciliopatias/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Retina/anormalidades , Anormalidades Múltiplas/patologia , Anormalidades Múltiplas/fisiopatologia , Cerebelo/patologia , Cerebelo/fisiopatologia , Pré-Escolar , Ciliopatias/patologia , Ciliopatias/fisiopatologia , Anormalidades do Olho/patologia , Anormalidades do Olho/fisiopatologia , Humanos , Doenças Renais Císticas/patologia , Doenças Renais Císticas/fisiopatologia , Masculino , Retina/patologia , Retina/fisiopatologia
20.
Food Chem Toxicol ; 159: 112751, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871666

RESUMO

Recent studies showed a possible association between perfluorooctane sulfonate (PFOS) and developmental disabilities. We previously found the specific effects of PFOS exposure on learning and memory, however, its effect on the other developmental disabilities such as motor and social deficits remains unclear. We examined the effect of early lactational PFOS exposure on motor coordination, social activity, and anxiety in male mice. We orally administered a PFOS solution to dams from postnatal day 1-14. At 10 weeks old, we conducted a behavior test battery to evaluate motor performance, social activity, and anxiety, followed by electrophysiology and Western blot analysis. PFOS-exposed mice displayed impaired motor coordination. Whole-cell patch-clamp recordings from Purkinje cells revealed that the short-term and long-term plasticity at parallel fiber-Purkinje cell synapses are affected by PFOS exposure. Western blot analysis indicated that PFOS exposure increased syntaxin binding protein 1 (Munc18-1) and glutamate metabotropic receptor 1 (mGluR1) protein levels, which may be associated with the change in neurotransmitter release from parallel fibers and the level of long-term depression, respectively. The present study demonstrates that lactational PFOS exposure may have disrupted the pre- and postsynaptic plasticity at parallel fiber-Purkinje cell synapses, causing profound, long-lasting abnormal effects on the cerebellar function.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Cerebelo/efeitos dos fármacos , Exposição Dietética , Fluorocarbonos/toxicidade , Exposição Materna , Neurotoxinas/toxicidade , Animais , Ansiedade , Comportamento Animal/efeitos dos fármacos , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiopatologia , Feminino , Lactação , Masculino , Camundongos , Desempenho Psicomotor/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA