Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Cell ; 185(25): 4788-4800.e13, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36413996

RESUMO

The TOC and TIC complexes are essential translocons that facilitate the import of the nuclear genome-encoded preproteins across the two envelope membranes of chloroplast, but their exact molecular identities and assembly remain unclear. Here, we report a cryoelectron microscopy structure of TOC-TIC supercomplex from Chlamydomonas, containing a total of 14 identified components. The preprotein-conducting pore of TOC is a hybrid ß-barrel co-assembled by Toc120 and Toc75, while the potential translocation path of TIC is formed by transmembrane helices from Tic20 and YlmG, rather than a classic model of Tic110. A rigid intermembrane space (IMS) scaffold bridges two chloroplast membranes, and a large hydrophilic cleft on the IMS scaffold connects TOC and TIC, forming a pathway for preprotein translocation. Our study provides structural insights into the TOC-TIC supercomplex composition, assembly, and preprotein translocation mechanism, and lays a foundation to interpret the evolutionary conservation and diversity of this fundamental translocon machinery.


Assuntos
Proteínas de Algas , Chlamydomonas , Cloroplastos , Cloroplastos/metabolismo , Microscopia Crioeletrônica , Membranas Intracelulares/metabolismo , Transporte Proteico , Chlamydomonas/química , Chlamydomonas/citologia , Complexos Multiproteicos/metabolismo , Proteínas de Algas/metabolismo
2.
Methods Mol Biol ; 2191: 29-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32865737

RESUMO

For a successful characterization of channelrhodopsins with biophysical methods like FTIR, Raman, EPR and NMR spectroscopy and X-ray crystallography, large amounts of purified protein are requested. For proteins of eukaryotic origin, which are poorly expressing in bacterial systems or not at all, the yeast Pichia pastoris represents a promising alternative for overexpression. Here we describe the methods for cloning, overexpression and mutagenesis as well as the purification procedures for channelrhodopsin-2 from Chlamydomonas reinhardtii (CrChR2), channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) and the scaffold protein MSP1D1 for reconstitution of the membrane proteins into nanodiscs. Finally, protocols are provided to study CaChR1 by FTIR difference spectroscopy and by time-resolved UV/Vis spectroscopy.


Assuntos
Channelrhodopsins/genética , Biologia Molecular/métodos , Nanocompostos/química , Saccharomycetales/genética , Fenômenos Biofísicos , Channelrhodopsins/química , Chlamydomonas/química , Regulação da Expressão Gênica/genética , Luz , Proteínas de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier
3.
Proc Natl Acad Sci U S A ; 117(31): 18511-18520, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690698

RESUMO

It is widely believed that cleavage-furrow formation during cytokinesis is driven by the contraction of a ring containing F-actin and type-II myosin. However, even in cells that have such rings, they are not always essential for furrow formation. Moreover, many taxonomically diverse eukaryotic cells divide by furrowing but have no type-II myosin, making it unlikely that an actomyosin ring drives furrowing. To explore this issue further, we have used one such organism, the green alga Chlamydomonas reinhardtii We found that although F-actin is associated with the furrow region, none of the three myosins (of types VIII and XI) is localized there. Moreover, when F-actin was eliminated through a combination of a mutation and a drug, furrows still formed and the cells divided, although somewhat less efficiently than normal. Unexpectedly, division of the large Chlamydomonas chloroplast was delayed in the cells lacking F-actin; as this organelle lies directly in the path of the cleavage furrow, this delay may explain, at least in part, the delay in cytokinesis itself. Earlier studies had shown an association of microtubules with the cleavage furrow, and we used a fluorescently tagged EB1 protein to show that microtubules are still associated with the furrows in the absence of F-actin, consistent with the possibility that the microtubules are important for furrow formation. We suggest that the actomyosin ring evolved as one way to improve the efficiency of a core process for furrow formation that was already present in ancestral eukaryotes.


Assuntos
Actinas/metabolismo , Chlamydomonas/citologia , Chlamydomonas/metabolismo , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Divisão Celular , Chlamydomonas/química , Citocinese , Microtúbulos/metabolismo , Miosinas/química , Miosinas/metabolismo , Ligação Proteica
4.
Proc Natl Acad Sci U S A ; 117(15): 8315-8325, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32217737

RESUMO

Motile cilia are widespread across the animal and plant kingdoms, displaying complex collective dynamics central to their physiology. Their coordination mechanism is not generally understood, with previous work mainly focusing on algae and protists. We study here the entrainment of cilia beat in multiciliated cells from brain ventricles. The response to controlled oscillatory external flows shows that flows at a similar frequency to the actively beating cilia can entrain cilia oscillations. We find that the hydrodynamic forces required for this entrainment strongly depend on the number of cilia per cell. Cells with few cilia (up to five) can be entrained at flows comparable to cilia-driven flows, in contrast with what was recently observed in Chlamydomonas Experimental trends are quantitatively described by a model that accounts for hydrodynamic screening of packed cilia and the chemomechanical energy efficiency of the flagellar beat. Simulations of a minimal model of cilia interacting hydrodynamically show the same trends observed in cilia.


Assuntos
Cílios/fisiologia , Mamíferos/fisiologia , Animais , Encéfalo/fisiologia , Chlamydomonas/química , Chlamydomonas/fisiologia , Hidrodinâmica , Modelos Biológicos
5.
Molecules ; 25(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075128

RESUMO

Channelrhodopsins (ChR) are light-gated ion-channels heavily used in optogenetics. Upon light excitation an ultrafast all-trans to 13-cis isomerization of the retinal chromophore takes place. It is still uncertain by what means this reaction leads to further protein changes and channel conductivity. Channelrhodopsin-1 in Chlamydomonas augustae exhibits a 100 fs photoisomerization and a protonated counterion complex. By polarization resolved ultrafast spectroscopy in the mid-IR we show that the initial reaction of the retinal is accompanied by changes in the protein backbone and ultrafast protonation changes at the counterion complex comprising Asp299 and Glu169. In combination with homology modelling and quantum mechanics/molecular mechanics (QM/MM) geometry optimization we assign the protonation dynamics to ultrafast deprotonation of Glu169, and transient protonation of the Glu169 backbone, followed by a proton transfer from the backbone to the carboxylate group of Asp299 on a timescale of tens of picoseconds. The second proton transfer is not related to retinal dynamics and reflects pure protein changes in the first photoproduct. We assume these protein dynamics to be the first steps in a cascade of protein-wide changes resulting in channel conductivity.


Assuntos
Channelrhodopsins/química , Modelos Moleculares , Conformação Proteica , Rodopsina/química , Channelrhodopsins/ultraestrutura , Chlamydomonas/química , Isomerismo , Luz , Simulação de Dinâmica Molecular , Prótons , Teoria Quântica , Rodopsina/ultraestrutura , Análise Espectral
6.
Biochemistry ; 59(4): 594-604, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31846308

RESUMO

Cryptochromes are ubiquitous flavin-binding light sensors closely related to DNA-repairing photolyases. The animal-like cryptochrome CraCRY from the green alga Chlamydomonas reinhardtii challenges the paradigm of cryptochromes as pure blue-light receptors by acting as a (6-4) photolyase, using 8-hydroxy-5-deazaflavin (8-HDF) as a light-harvesting antenna with a 17.4 Šdistance to flavin and showing spectral sensitivity up to 680 nm. The expanded action spectrum is attributed to the presence of the flavin neutral radical (FADH•) in the dark, despite a rapid FADH• decay observed in vitro in samples exclusively carrying flavin. Herein, the red-light response of CraCRY carrying flavin and 8-HDF was studied, revealing a 3-fold prolongation of the FADH• lifetime in the presence of 8-HDF. Millisecond time-resolved ultraviolet-visible spectroscopy showed the red-light-induced formation and decay of an absorbance band at 458 nm concomitant with flavin reduction. Time-resolved Fourier transform infrared (FTIR) spectroscopy and density functional theory attributed these changes to the deprotonation of 8-HDF, challenging the paradigm of 8-HDF being permanently deprotonated in photolyases. FTIR spectra showed changes in the hydrogen bonding network of asparagine 395, a residue suggested to indirectly control flavin protonation, indicating the involvement of N395 in the stabilization of FADH•. Fluorescence spectroscopy revealed a decrease in the energy transfer efficiency of 8-HDF upon flavin reduction, possibly linked to 8-HDF deprotonation. The discovery of the interdependence of flavin and 8-HDF beyond energy transfer processes highlights the essential role of the antenna, introducing a new concept enabling CraCRY and possibly other bifunctional cryptochromes to fulfill their dual function.


Assuntos
Chlamydomonas reinhardtii/química , Dinitrocresóis/metabolismo , Riboflavina/análogos & derivados , Chlamydomonas/química , Chlamydomonas/metabolismo , Chlamydomonas reinhardtii/metabolismo , Cor , Criptocromos/química , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliase/química , Dinitrocresóis/química , Flavina-Adenina Dinucleotídeo/química , Flavinas/química , Flavinas/metabolismo , Luz , Riboflavina/química , Riboflavina/metabolismo , Espectrofotometria Ultravioleta/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Mol Biotechnol ; 62(2): 91-103, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863411

RESUMO

Cryptochromes (CRYs) are flavin-binding proteins that sense blue and near-ultraviolet light and participate in the photoreactions of organisms and the regulation of biological clocks. In this study, the complete open reading frame (ORF) of CiCRY-DASH1 (GenBank ID MK392361), encoding one kind of cryptochrome, was cloned from the Antarctic microalga Chlamydomonas sp. ICE-L. The quantitative real-time PCR study showed that the CiCRY-DASH1 had the highest expression at 5 °C and salinity of 32‰. The CiCRY-DASH1 was positively regulated by blue, yellow, or red light. Moreover, the CiCRY-DASH1 can positively respond to extreme polar day and night treatment and exhibit a certain circadian rhythm, which indicated that CiCRY-DASH1 participated in the circadian clock and its expression was regulated by circadian rhythms. And the CiCRY-DASH1 was more noticeably affected by ultraviolet-B radiation than ultraviolet-A radiation, indicating ultraviolet-B light does obvious damage to Antarctic microalgae.


Assuntos
Chlamydomonas/genética , Criptocromos/metabolismo , Criptocromos/efeitos da radiação , Sequência de Aminoácidos , Regiões Antárticas , Chlamydomonas/química , Chlamydomonas/crescimento & desenvolvimento , Clorofila/química , Clorofila/efeitos da radiação , Ritmo Circadiano , Clonagem Molecular , Biologia Computacional , Criptocromos/química , Criptocromos/genética , DNA Complementar/genética , Expressão Gênica , Luz , Microalgas/metabolismo , Fases de Leitura Aberta , Filogenia , Salinidade , Homologia de Sequência de Aminoácidos , Temperatura , Raios Ultravioleta
8.
Proc Natl Acad Sci U S A ; 116(16): 8048-8053, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30923119

RESUMO

In land plants and algae, the Calvin-Benson (CB) cycle takes place in the chloroplast, a specialized organelle in which photosynthesis occurs. Thioredoxins (TRXs) are small ubiquitous proteins, known to harmonize the two stages of photosynthesis through a thiol-based mechanism. Among the 11 enzymes of the CB cycle, the TRX target phosphoribulokinase (PRK) has yet to be characterized at the atomic scale. To accomplish this goal, we determined the crystal structures of PRK from two model species: the green alga Chlamydomonas reinhardtii (CrPRK) and the land plant Arabidopsis thaliana (AtPRK). PRK is an elongated homodimer characterized by a large central ß-sheet of 18 strands, extending between two catalytic sites positioned at its edges. The electrostatic surface potential of the catalytic cavity has both a positive region suitable for binding the phosphate groups of substrates and an exposed negative region to attract positively charged TRX-f. In the catalytic cavity, the regulatory cysteines are 13 Å apart and connected by a flexible region exclusive to photosynthetic eukaryotes-the clamp loop-which is believed to be essential for oxidation-induced structural rearrangements. Structural comparisons with prokaryotic and evolutionarily older PRKs revealed that both AtPRK and CrPRK have a strongly reduced dimer interface and an increased number of random-coiled regions, suggesting that a general loss in structural rigidity correlates with gains in TRX sensitivity during the molecular evolution of PRKs in eukaryotes.


Assuntos
Arabidopsis , Chlamydomonas , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fotossíntese/fisiologia , Proteínas de Plantas/química , Arabidopsis/química , Arabidopsis/enzimologia , Chlamydomonas/química , Chlamydomonas/enzimologia , Cristalografia , Modelos Moleculares , Oxirredução , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/química
9.
Plant Biotechnol J ; 17(8): 1538-1546, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30637910

RESUMO

Glycolate is produced in autotrophic cells under high temperatures and Ci -limitation via oxygenation of ribulose-1,5-bisphosphate. In unicellular algae, glycolate is lost via excretion or metabolized via the C2 cycle by consuming reductants, ATP and CO2 emission (photorespiration). Therefore, photorespiration is an inhibitory process for biomass production. However, cells can be manipulated in a way that they become glycolate-producing 'cell factories', when the ratio carboxylation/oxygenation is 2. If under these conditions the C2 cycle is blocked, glycolate excretion becomes the only pathway of photosynthetic carbon flow. The study aims to proof the biotechnological applicability of algal-based glycolate excretion as a new biotechnological platform. It is shown that cells of Chlamydomonas can be cultivated under specific conditions to establish a constant and long-term stable glycolate excretion during the light phase. The cultures achieved a high efficiency of 82% of assimilated carbon transferred into glycolate biosynthesis without losses of function in cell vitality. Moreover, the glycolate accumulation in the medium is high enough to be directly used for microbial fermentation but does not show toxic effects to the glycolate-producing cells.


Assuntos
Biotecnologia , Carbono/química , Glicolatos/química , Microalgas/química , Fotossíntese , Dióxido de Carbono , Chlamydomonas/química
10.
Biotechnol J ; 14(4): e1800380, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30520272

RESUMO

Marine microalgae has great potential for lutein production with the advantage of saving fresh water resource. Thus, marine microalga Chlamydomonas sp. JSC4 is investigated as a potential lutein producer in this study. The medium types, nitrate-N and sea salt concentration are individually investigated to promote the cell growth rate and lutein production of JSC4. In Modified Bold Basal 3N medium, cell growth and lutein content are optimal at the nitrate-N concentration of 1000 mg L-1 and sea salt concentration of 2%. In addition, an innovative salinity-gradient strategy is operated to dramatically enhance biomass productivity (560 mg/L/d) and lutein content (3.42 mg g-1 ), resulting in the optimal lutein productivity (1.92 mg/L/d). Overall, this study clearly demonstrates that salinity is a significant inducer of lutein accumulation by strain JSC4 and that lutein production can be successfully optimized using the salinity-gradient strategy, which is beneficial for the outdoor large-scale lutein production in the future.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Biomassa , Luteína/biossíntese , Estresse Fisiológico/genética , Chlamydomonas/química , Chlamydomonas/genética , Luteína/química , Microalgas/química , Microalgas/genética , Nitratos/química , Nitratos/metabolismo , Salinidade
11.
Protist ; 169(5): 632-644, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30096709

RESUMO

To circumvent nuclei isolation for nucleosomal mapping of wild-type (cell walled) algal cells, we developed a quick and versatile methodology, by abrasion of whole cells (Chlamydomonas, Scenedesmus and yeast), allowing Micrococcal Nuclease (MNase) direct access to nuclear chromatin, in situ. Varying parameters such as bead abrasion, vortex and incubation conditions, we optimized capture of an 'early digest' which may probe chromatin differentially, based on nucleosome accessibility. A comparison of such ladders across vegetative cells, gametes and zygotes revealed an increase in the average nucleosomal repeat length (+17-34nt) upon gametogenesis, indicating a trend of chromatin compaction. Using PCR, we compared promoter enrichment in increasing orders of fractionated nucleosomal repeats (mono-, di-, up to penta-), each differing in cleavability based on chromatin accessibility. Concordant with higher gene expression (mating locus), promoters revealed an enrichment in mono-nucleosomal fractions. Interestingly, the zygote specific gene, MT0828 displayed rapid remodelling from penta-nucleosomal enrichment when completely repressed (vegetative), to intermediate states during gametogenesis (24hrs), which finally shifted to being largely mono-nucleosomal, when induced (1h zygotes). Summarizing three candidate genes from the mating locus, we conclude that the MNase based 'Chromatin Accessibility Assay' can track a range of large-scale rapid chromatin remodelling transitions within the binaries of gene expression.


Assuntos
Chlamydomonas/genética , Cromatina/metabolismo , Gametogênese , Mapeamento por Restrição/métodos , Biocatálise , Chlamydomonas/química , Chlamydomonas/citologia , Chlamydomonas/fisiologia , Cromatina/química , Cromatina/genética , Montagem e Desmontagem da Cromatina , Nuclease do Micrococo/química , Nucleossomos/química , Nucleossomos/genética , Nucleossomos/metabolismo , Reprodução
12.
Nat Commun ; 8(1): 1756, 2017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29170415

RESUMO

Photosynthetic unicellular organisms, known as microalgae, are key contributors to carbon fixation on Earth. Their biotic interactions with other microbes shape aquatic microbial communities and influence the global photosynthetic capacity. So far, limited information is available on molecular factors that govern these interactions. We show that the bacterium Pseudomonas protegens strongly inhibits the growth and alters the morphology of the biflagellated green alga Chlamydomonas reinhardtii. This antagonistic effect is decreased in a bacterial mutant lacking orfamides, demonstrating that these secreted cyclic lipopeptides play an important role in the algal-bacterial interaction. Using an aequorin Ca2+-reporter assay, we show that orfamide A triggers an increase in cytosolic Ca2+ in C. reinhardtii and causes deflagellation of algal cells. These effects of orfamide A, which are specific to the algal class of Chlorophyceae and appear to target a Ca2+ channel in the plasma membrane, represent a novel biological activity for cyclic lipopeptides.


Assuntos
Antibiose , Cálcio/metabolismo , Chlamydomonas/metabolismo , Clorófitas/metabolismo , Pseudomonas/fisiologia , Células Imobilizadas/química , Células Imobilizadas/metabolismo , Chlamydomonas/química , Chlamydomonas/crescimento & desenvolvimento , Clorófitas/química , Clorófitas/crescimento & desenvolvimento , Homeostase , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Pseudomonas/genética
13.
Appl Biochem Biotechnol ; 182(1): 382-399, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27864781

RESUMO

Exploring indigenous microalgae capable of producing significant amounts of neutral lipids through high-throughput screening is crucial for sustainable biodiesel production. In this study, 31 indigenous microalgal strains were isolated from diverse aquatic habitats in KwaZulu-Natal, South Africa. Eight superior lipid-producing strains were selected for further analysis, based on Nile red fluorescence microscopy screening. The microalgal isolates were identified to belong to the genera Chlorella, Neochloris and Chlamydomonas via morpho-taxonomic and molecular approach by 18S rRNA gene sequencing. Chlorella vulgaris PH2 had the highest specific growth rate (µ) and lowest doubling time of 0.24 day-1 and 2.89 ± 0.05 day-1, respectively. Chlorella vulgaris T4 had the highest biomass productivity of 35.71 ± 0.03 mg L-1day-1. Chlorella vulgaris PH2 had the highest lipid content of 34.28 ± 0.47 and 38 ± 9.2% (dcw) as determined by gravimetric analysis and the sulfo-phospho-vanillin (SPV) method, respectively. Chlorella vulgaris PH2 exhibited a high content of saturated fatty acids, while Chlorella sp. T4 exhibited a high total content of saturated and monounsaturated fatty acids with a low content of polyunsaturated fatty acids. The preponderance of neutral lipids suggests that Chlorella sp. T4 is a suitable candidate for biomass feedstock for biodiesel production.


Assuntos
Chlamydomonas/metabolismo , Chlorella/metabolismo , Ácidos Graxos Monoinsaturados/isolamento & purificação , Ácidos Graxos Insaturados/isolamento & purificação , Ácidos Graxos/isolamento & purificação , Microalgas/metabolismo , Organismos Aquáticos , Biocombustíveis , Biomassa , Chlamydomonas/química , Chlamydomonas/genética , Chlorella/química , Chlorella/genética , Ácidos Graxos/biossíntese , Ácidos Graxos Monoinsaturados/metabolismo , Ácidos Graxos Insaturados/biossíntese , Ensaios de Triagem em Larga Escala , Microalgas/química , Microalgas/genética , RNA Ribossômico 18S/genética , África do Sul
14.
Br J Nutr ; 116(12): 2044-2052, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28025954

RESUMO

Diet and nutritional factors have emerged as possible interventions for inflammatory bowel diseases (IBD), which are characterised by chronic uncontrolled inflammation of the intestinal mucosa. Microalgal species are a promising source of n-3 PUFA and derived oxylipins, which are lipid mediators with a key role in the resolution of inflammation. The aim of the present study was to investigate the effects of an oxylipin-containing lyophilised biomass from Chlamydomonas debaryana on a recurrent 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis mice model. Moderate chronic inflammation of the colon was induced in BALB/c mice by weekly intracolonic instillations of low dose of TNBS. Administration of the lyophilised microalgal biomass started 2 weeks before colitis induction and was continued throughout colitis development. Mice were killed 48 h after the last TNBS challenge. Oral administration of the microalgal biomass reduced TNBS-induced intestinal inflammation, evidenced by an inhibition of body weight loss, an improvement in colon morphology and a decrease in pro-inflammatory cytokines TNF-α, IL-1ß, IL-6 and IL-17. This product also down-regulated colonic expressions of inducible nitric oxide, cyclo-oxygenase 2 and NF-κB, as well as increased PPAR-γ. In addition, lyophilised microalgal biomass up-regulated the expressions of the antioxidant transcription factor nuclear factor E2-related factor 2 and the target gene heme oxygenase 1. This study describes for the first time the prophylactic effects of an oxylipin-containing lyophilised microalgae biomass from C. debaryana in the acute phase of a recurrent TNBS-induced colitis model in mice. These findings suggest the potential use of this microalga, or derived oxylipins, as a nutraceutical in the treatment of IBD.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Colite Ulcerativa/prevenção & controle , Colo/imunologia , Suplementos Nutricionais , Mucosa Intestinal/imunologia , Microalgas/química , Oxilipinas/uso terapêutico , Ração Animal , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Biomassa , Chlamydomonas/química , Colite Ulcerativa/dietoterapia , Colite Ulcerativa/imunologia , Colite Ulcerativa/fisiopatologia , Colo/metabolismo , Colo/patologia , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Liofilização , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Camundongos Endogâmicos BALB C , Infiltração de Neutrófilos , Estresse Oxidativo , Oxilipinas/administração & dosagem , Prevenção Secundária , Ácido Trinitrobenzenossulfônico
15.
Astrobiology ; 16(12): 913-924, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27901343

RESUMO

We tested the potential of a miniaturized Raman spectrometer for use in field detection of snow algae pigments. A miniature Raman spectrometer, equipped with an excitation laser at 532 nm, allowed for the detection of carotenoids in cells of Chloromonas nivalis and Chlamydomonas nivalis at different stages of their life cycle. Astaxanthin, the major photoprotective pigment, was detected in algal blooms originating in snows at two alpine European sites that differed in altitude (Krkonose Mts., Czech Republic, 1502 m a.s.l., and Ötztal Alps, Austria, 2790 m a.s.l.). Comparison is made with a common microalga exclusively producing astaxanthin (Haematococcus pluvialis). The handheld Raman spectrometer is a useful tool for fast and direct field estimations of the presence of carotenoids (mainly astaxanthin) within blooms of snow algae. Application of miniature Raman instruments as well as flight prototypes in areas where microbes are surviving under extreme conditions is an important stage in preparation for successful deployment of this kind of instrumentation in the framework of forthcoming astrobiological missions to Mars. Key Words: Snow algae-Chloromonas nivalis-Chlamydomonas nivalis-On-site field detection-Raman spectroscopy-Astaxanthin. Astrobiology 16, 913-924.


Assuntos
Carotenoides/análise , Clorófitas/química , Miniaturização/instrumentação , Neve/microbiologia , Análise Espectral Raman/instrumentação , Chlamydomonas/química , República Tcheca , Camada de Gelo
16.
Artigo em Inglês | MEDLINE | ID: mdl-27421236

RESUMO

Eicosanoids derive from essential polyunsaturated fatty acids (PUFA) and play crucial roles in immunity, development, and reproduction. However, potential links between dietary PUFA supply and eicosanoid biosynthesis are poorly understood, especially in invertebrates. Using Daphnia magna and its bacterial parasite Pasteuria ramosa as model system, we studied the expression of genes coding for key enzymes in eicosanoid biosynthesis and of genes related to oogenesis in response to dietary arachidonic acid and eicosapentaenoic acid in parasite-exposed and non-exposed animals. Gene expression related to cyclooxygenase activity was especially responsive to the dietary PUFA supply and parasite challenge, indicating a role for prostanoid eicosanoids in immunity and reproduction. Vitellogenin gene expression was induced upon parasite exposure in all food treatments, suggesting infection-related interference with the host's reproductive system. Our findings highlight the potential of dietary PUFA to modulate the expression of key enzymes involved in eicosanoid biosynthesis and reproduction and thus underpin the idea that the dietary PUFA supply can influence invertebrate immune functions and host-parasite interactions.


Assuntos
Daphnia/genética , Daphnia/microbiologia , Gorduras Insaturadas na Dieta/administração & dosagem , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/administração & dosagem , Pasteuria/patogenicidade , Animais , Chlamydomonas/química , Daphnia/fisiologia , Dieta , Feminino , Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Oogênese/genética , Estramenópilas/química
17.
J Am Chem Soc ; 138(14): 4757-62, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26999496

RESUMO

Channelrhodopsins are light-gated ion channels with extensive applications in optogenetics. Channelrhodopsin-1 from Chlamydomonas augustae (CaChR1) exhibits a red-shifted absorption spectrum as compared to Channelrhodopsin-2, which is highly beneficial for optogenetic application. The primary event in the photocycle of CaChR1 involves an isomerization of the protein-bound retinal chromophore. Here, we apply highly time-resolved vibronic spectroscopy to reveal the electronic and structural dynamics associated with the first step of the photocycle of CaChR1. We observe vibrationally coherent formation of the P1 intermediate exhibiting a twisted 13-cis retinal with a 110 ± 7 fs time constant. Comparison with low-temperature resonance Raman spectroscopy of the corresponding trapped photoproduct demonstrates that this rapidly formed P1 intermediate is stable for several hundreds of nanoseconds.


Assuntos
Retinaldeído/química , Rodopsina/química , Chlamydomonas/química , Isomerismo , Processos Fotoquímicos , Proteínas de Plantas/química , Análise Espectral Raman
18.
Bioresour Technol ; 199: 362-366, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26342785

RESUMO

Pyrolysis of residues from the oil extraction process of two types of microalgae, Chlamydomonas (C. sp. JSC4) and Chlorella sorokiniana (C. Sorokiniana CY1) was studied by means of a thermogravimetric analyzer. Five pseudo-components (hemicellulose, cellulose, lignin, lipid and protein) model with n=1 or n#1 was assumed for a kinetic analysis of the collected pyrolysis data. The model with n#1 resulted in a slightly better fit quality and reasonable kinetic parameters. The calculated activation energy of hemicellulose, cellulose, lignin, lipid, protein was 115.12-117.12 kJ/mol, 181.67-198.30 kJ/mol, 61.74-62.75 kJ/mol, 104.93-114.14 kJ/mol and 90.75-99.31 kJ/mol, respectively, for C. sp. JSC4; and 113.12-117.12 kJ/mol, 218.73-28.79 kJ/mol, 64.77-66.39 kJ/mol, 131.97-143.63 kJ/mol and 108.03-118.13 kJ/mol, respectively, for C. Sorokiniana CY1.


Assuntos
Biotecnologia/métodos , Chlamydomonas/química , Chlorella/química , Microalgas/química , Celulose/química , Cinética , Lignina/química , Lipídeos/química , Modelos Teóricos , Proteínas de Plantas/química , Termogravimetria
19.
Nat Prod Commun ; 11(12): 1871-1875, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30508355

RESUMO

Oxylipins are metabolites derived from lipid peroxidation. The plant oxylipin methyl jasmonate (MJ) shows cytotoxic activity against cancer cell lines of various origins, with ATP-depletion being one of the mechanisms responsible for this effect. The cytotoxic activity of oxylipins (OXLs) isolated from the microalgae Chlamydomonas debaryana (13-HOTE) and Nannochloropsis gaditana (15-HEPE) was higher against UACC-62 (melanoma) than towards HT-29 (colon adenocarcinoma) cells. OXLs lowered the ATP levels of HT-29 and UACC-62 cells, but the effect was higher on the second cell line, which had higher basal ATP. This result proves a link between the cytotoxicity and the capability of these compounds to deplete ATP. In addition, the combination of 13-HOTE with the anticancer drug 5-fluorouracil (5-FU) induced a synergistic toxicity against HT-29 cells. These results highlight the therapeutic potential of oxylipins derived from microalgae.


Assuntos
Trifosfato de Adenosina/metabolismo , Antineoplásicos/farmacologia , Chlamydomonas/química , Microalgas/química , Oxilipinas/farmacologia , Estramenópilas/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluoruracila/farmacologia , Humanos , Oxilipinas/isolamento & purificação
20.
Biochemistry ; 54(46): 6896-908, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26523621

RESUMO

In addition to its well-known roles as an electrophile and general acid, the side chain of histidine often serves as a hydrogen bond (H-bond) acceptor. These H-bonds provide a convenient pH-dependent switch for local structure and functional motifs. In hundreds of instances, a histidine caps the N-terminus of α- and 310-helices by forming a backbone NH···Nδ1 H-bond. To characterize the resilience and dynamics of the histidine cap, we measured the trans H-bond scalar coupling constant, (2h)JNN, in several forms of Group 1 truncated hemoglobins and cytochrome b5. The set of 19 measured (2h)JNN values were between 4.0 and 5.4 Hz, generally smaller than in nucleic acids (~6-10 Hz) and indicative of longer, weaker bonds in the studied proteins. A positive linear correlation between (2h)JNN and the difference in imidazole ring (15)N chemical shift (Δ(15)N = |δ(15)Nδ1 - δ(15)Nε2|) was found to be consistent with variable H-bond length and variable cap population related to the ionization of histidine in the capping and noncapping states. The relative ease of (2h)JNN detection suggests that this parameter can become part of the standard arsenal for describing histidines in helix caps and other key structural and catalytic elements involving NH···N H-bonds. The combined nucleic acid and protein data extend the utility of (2h)JNN as a sensitive marker of local structural, dynamic, and thermodynamic properties in biomolecules.


Assuntos
Histidina/química , Proteínas/química , Hemoglobinas Truncadas/química , Proteínas de Bactérias/química , Chlamydomonas/química , Citocromos b5/química , Heme/química , Hemoglobinas/química , Ligação de Hidrogênio , Metemoglobina/análogos & derivados , Metemoglobina/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Synechococcus/química , Synechocystis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA