Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.291
Filtrar
1.
BMC Plant Biol ; 24(1): 753, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39107711

RESUMO

BACKGROUND: When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT: Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION: Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.


Assuntos
Chlamydomonas reinhardtii , Chlorella , Regulação para Baixo , Ácidos Graxos , Nitrogênio , Chlorella/metabolismo , Chlorella/genética , Nitrogênio/metabolismo , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/genética , Ácidos Graxos/metabolismo , Ácidos Graxos/biossíntese , Serina-Treonina Quinases TOR/metabolismo , Proteômica , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Triglicerídeos/metabolismo , Triglicerídeos/biossíntese
2.
J Hazard Mater ; 477: 135406, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39098198

RESUMO

Global release of plastics exerts various impacts on the ecological cycle, particularly on primary photosynthesis, while the impacts of plastic additives are unknown. As a carrier of fluorescent brightener, plastic particles co-modify Chlorella pyrenoidosa (C. pyrenoidosa) growth and its photosynthetic parameters. In general, adding to the oxidative damage induced by polystyrene, fluorescent brightener-doped polystyrene produces stronger visible light and the amount of negative charge is more likely to cause photodamage in C. pyrenoidosa leading to higher energy dissipation through conditioning than in the control group with a date of ETR (II) inhibition rate of 33 %, Fv/Fm inhibition rate of 8.3 % and Pm inhibition rate of 48.8 %. To elucidate the ecological effect of fluorescent brightener doping in plastic particles, a machine learning method is performed to establish a Gradient Boosting Machine model for predicting the impact of environmental factors on algal growth. Upon validation, the model achieved an average fitting degree of 88 %. Relative concentration of plastic particles and algae claimed the most significant factor by interpretability analysis of the machine learning. Additionally, both Gradient Boosting Machine prediction and experimental results indicate a matching result that plastic additives have an inhibitive effect on algal growth.


Assuntos
Chlorella , Aprendizado de Máquina , Fotossíntese , Chlorella/crescimento & desenvolvimento , Chlorella/efeitos dos fármacos , Chlorella/metabolismo , Fotossíntese/efeitos dos fármacos , Plásticos/química , Plásticos/toxicidade , Poliestirenos/química , Poluentes Químicos da Água/toxicidade , Corantes Fluorescentes/química
3.
J Hazard Mater ; 476: 135062, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959831

RESUMO

Microplastics (MPs) are emerging pollutants, causing potential threats to aquatic ecosystems and serious concern in aggregating with microalgae (critical primary producers). When entering water bodies, MPs are expected to sink below the water surface and disperse into varying water compartments with different light intensities. However, how light influences the aggregation processes of algal cells onto MPs and the associated molecular coupling mechanisms and derivative risks remain poorly understood. Herein, we investigated the aggregation behavior between polystyrene microplastics (mPS, 10 µm) and Chlorella pyrenoidosa under low (LL, 15 µmol·m-2·s-1), normal (NL, 55 µmol·m-2·s-1), and high light (HL, 150 µmol·m-2·s-1) conditions from integrated in vivo and in silico assays. The results indicated that under LL, the mPS particles primarily existed independently, whereas under NL and HL, C. pyrenoidosa tightly bounded to mPS by secreting more protein-rich extracellular polymeric substances. Infrared spectroscopy analysis and density functional theory calculation revealed that the aggregation formation was driven by non-covalent interaction involving van der Waals force and hydrogen bond. These processes subsequently enhanced the deposition and adherence capacity of mPS and relieved its phytotoxicity. Overall, our findings advance the practical and theoretical understanding of the ecological impacts of MPs in complex aquatic environments.


Assuntos
Chlorella , Microalgas , Microplásticos , Poliestirenos , Poluentes Químicos da Água , Microplásticos/toxicidade , Microplásticos/química , Poliestirenos/química , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Microalgas/efeitos dos fármacos , Microalgas/efeitos da radiação , Chlorella/metabolismo , Chlorella/efeitos da radiação , Chlorella/efeitos dos fármacos , Medição de Risco , Luz
4.
Curr Microbiol ; 81(9): 265, 2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39003318

RESUMO

Protists, including ciliates retain crystals in their cytoplasm. However, their functions and properties remain unclear. To comparatively analyze the crystals of Paramecium bursaria, a ciliate, associated with and without the endosymbiotic Chlorella variabilis, we investigated the isolated crystals using a light microscope and analyzed their length and solubility. A negligible number of crystals was found in P. bursaria cells harboring symbiotic algae. The average crystal length in alga-free and algae-reduced cells was about 6.8 µm and 14.4 µm, respectively. The crystals of alga-free cells were spherical, whereas those of algae-reduced cells were angular in shape. The crystals of alga-free cells immediately dissolved in acids and bases, but not in water or organic solvents, and were stable at - 20 °C for more than 3 weeks. This study, for the first time, reveals that the characteristics of crystals present in the cytoplasm of P. bursaria vary greatly depending on the amount of symbiotic algae.


Assuntos
Chlorella , Paramecium , Simbiose , Chlorella/química , Chlorella/metabolismo , Paramecium/metabolismo , Cristalização , Citoplasma/química
5.
Environ Sci Pollut Res Int ; 31(36): 49244-49254, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39060890

RESUMO

The microalgae Chlorella sorokiniana was used for the treatment of winery wastewater (WWW). Batch experiments were initially conducted to investigate how biomass acclimatization in different media, dilution of wastewater, and addition of ammonium nitrogen (NH4-N) affect the growth of microalgae and the removal of major pollutants. Afterwards, two sequencing batch reactor (SBR) systems were tested applying different configurations and hydraulic retention times. The biomass collected at the end of the experiments was characterized for proteins, lipids, carbohydrates, amino acid profile, and the existence of lutein, ß-carotene, chlorophyll a, and tocopherols. Batch experiments showed that Chlorella sorokiniana acclimatization to urban wastewater enhanced the removal of NH4-N and total phosphorus (TP). The operation of a two-stage SBR system achieved COD and NH4-N removal equal to 85 ± 9% and 91 ± 20%, respectively, while the use of a single-stage system feeding with anaerobically pretreated WWW resulted to COD and NH4-N removal of 78 ± 9% and 95 ± 9%, respectively. Analyses of biomass showed higher protein content (up to 58.8%) in batch experiments with NH4-N addition as well as in SBR experiments. The cultivation of microalgae under SBR conditions enhanced the production of pigments and tocopherols. The maximum concentrations of 1075 mg kg-1, 45.5 mg kg-1, and 131.2 mg kg-1 were achieved for lutein, ß-carotene, and tocopherols, respectively, in the one-stage system. Our findings suggested that Chlorella sorokiniana cultivation in WWW not only removed nutrients from WWW but also could potentially serve for the production of value-added ingredients used in food industry, cosmetics, and animal feedstock.


Assuntos
Biomassa , Chlorella , Microalgas , Eliminação de Resíduos Líquidos , Águas Residuárias , Chlorella/metabolismo , Águas Residuárias/química , Microalgas/metabolismo , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/metabolismo
6.
Sci Total Environ ; 948: 174779, 2024 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-39009161

RESUMO

Replete with ammonia nitrogen and organic pollutants, landfill leachate typically undergoes treatment employing expensive and carbon-intensive integrated techniques. We propose a novel microalgae technology for efficient, low-carbon simultaneous treatment of carbon, nitrogen, and phosphorus in landfill leachate (LL). The microbial composition comprises a mixed microalgae culture with Chlorella accounting for 82.58%. After seven days, the process with an N/P ratio of approximately 14:1 removed 98.81% of NH4+-N, 88.62 % of TN, and 99.55% of TP. Notably, the concentrations of NH4+-N and TP met the discharge standards, while the removal rate of NH4+-N was nearly three times higher than previously reported in relevant studies. The microalgae achieved a removal efficiency of 64.27% for Total Organic Carbon (TOC) and 99.26% for Inorganic Carbon (IC) under mixotrophic cultivation, yielding a biomass of 1.18 g/L. The treatment process employed in this study results in a carbon emissions equivalent of -8.25 kgCO2/kgNremoved, representing a reduction of 33.56 kgCO2 compared to the 2AO + MBR process. In addition, shake flask experiments were conducted to evaluate the biodegradability of leachate after microalgae treatment. After microalgae treatment, the TOCB (Biodegradable Total Organic Carbon)/TOC ratio decreased from 56.54% to 27.71%, with no significant improvement in biodegradability. It establishes a fundamental foundation for further applied research in microalgae treatment of leachate.


Assuntos
Carbono , Microalgas , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Fósforo/análise , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental , Chlorella
7.
Planta ; 260(2): 39, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38951320

RESUMO

MAIN CONCLUSION: Nitrogen stress altered important lipid parameters and related genes in Chlorella pyrenoidosa via ROS and Ca2+ signaling. The mutual interference between ROS and Ca2+ signaling was also uncovered. The changed mechanisms of lipid parameters (especially lipid classes and unsaturation of fatty acids) in microalgae are not completely well known under nitrogen stress. Therefore, Chlorella pyrenoidosa was exposed to 0, 0.5, 1 and 1.5 g L-1 NaNO3 for 4 days. Then, the physiological and biochemical changes were measured. It was shown that the total lipid contents, neutral lipid ratios as well as their related genes (accD and DGAT) increased obviously while the polar lipid ratios, degrees of unsaturation as well as their related genes (PGP and desC) decreased significantly in nitrogen stress groups. The obvious correlations supported that gene expressions should be the necessary pathways to regulate the lipid changes in C. pyrenoidosa under nitrogen stress. The changes in ROS and Ca2+ signaling as well as their significant correlations with corresponding genes and lipid parameters were analyzed. The results suggested that ROS and Ca2+ may regulate these gene expressions and lipid changes in C. pyrenoidosa under nitrogen stress conditions. This was verified by the subordinate tests with an ROS inhibitor and calcium reagents. It also uncovered the clues of mutual interference between ROS and Ca2+ signaling. To summarize, this study revealed the signaling pathways of important lipid changes in microalgae under N stress.


Assuntos
Chlorella , Nitrogênio , Espécies Reativas de Oxigênio , Estresse Fisiológico , Chlorella/metabolismo , Chlorella/genética , Chlorella/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Nitrogênio/metabolismo , Metabolismo dos Lipídeos/genética , Cálcio/metabolismo , Lipídeos , Sinalização do Cálcio , Transdução de Sinais , Microalgas/metabolismo , Microalgas/genética
8.
J Environ Sci (China) ; 146: 272-282, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969455

RESUMO

Further treatment of secondary effluents before their discharge into the receiving water bodies could alleviate water eutrophication. In this study, the Chlorella proteinosa was cultured in a membrane photobioreactor to further remove nitrogen from the secondary effluents. The effect of hydraulic retention time (HRT) on microalgae biomass yields and nutrient removal was studied. The results showed that soluble algal products concentration reduced in the suspension at low HRT, thereby alleviating microalgal growth inhibition. In addition, the lower HRT reduced the nitrogen limitation for Chlorella proteinosa's growth through the phase-out of nitrogen-related functional bacteria. As a result, the productivity for Chlorella proteinosa increased from 6.12 mg/L/day at an HRT of 24 hr to 20.18 mg/L/day at an HRT of 8 hr. The highest removal rates of 19.7 mg/L/day, 23.8 mg/L/day, and 105.4 mg/L/day were achieved at an HRT of 8 hr for total nitrogen (TN), ammonia, and chemical oxygen demand (COD), respectively. However, in terms of removal rate, TN and COD were the largest when HRT is 24 hr, which were 74.5% and 82.6% respectively. The maximum removal rate of ammonia nitrogen was 99.2% when HRT was 8 hr.


Assuntos
Biomassa , Chlorella , Nitrogênio , Fotobiorreatores , Eliminação de Resíduos Líquidos , Nitrogênio/metabolismo , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Eliminação de Resíduos Líquidos/métodos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Eutrofização
9.
Commun Biol ; 7(1): 821, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38969726

RESUMO

Algal biomass is a viable source of chemicals and metabolites for various energy, nutritional, medicinal and agricultural uses. While stresses have commonly been used to induce metabolite accumulation in microalgae in attempts to enhance high-value product yields, this is often very detrimental to growth. Therefore, understanding how to modify metabolism without deleterious consequences is highly beneficial. We demonstrate that low-doses (1-5 Gy) of ionizing radiation in the X-ray range induces a non-toxic, hormetic response in microalgae to promote metabolic activation. We identify specific radiation exposure parameters that give reproducible metabolic responses in Chlorella sorokiniana caused by transcriptional changes. This includes up-regulation of >30 lipid metabolism genes, such as genes encoding an acetyl-CoA carboxylase subunit, phosphatidic acid phosphatase, lysophosphatidic acid acyltransferase, and diacylglycerol acyltransferase. The outcome is an increased lipid yield in stationary phase cultures by 25% in just 24 hours, without any negative effects on cell viability or biomass.


Assuntos
Chlorella , Hormese , Metabolismo dos Lipídeos , Chlorella/metabolismo , Chlorella/efeitos da radiação , Chlorella/crescimento & desenvolvimento , Metabolismo dos Lipídeos/efeitos da radiação , Hormese/efeitos da radiação , Radiação Ionizante , Biomassa
10.
Biochemistry (Mosc) ; 89(6): 1133-1145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981706

RESUMO

Primary excitation energy transfer and charge separation in photosystem I (PSI) from the extremophile desert green alga Chlorella ohadii grown in low light were studied using broadband femtosecond pump-probe spectroscopy in the spectral range from 400 to 850 nm and in the time range from 50 fs to 500 ps. Photochemical reactions were induced by the excitation into the blue and red edges of the chlorophyll Qy absorption band and compared with similar processes in PSI from the cyanobacterium Synechocystis sp. PCC 6803. When PSI from C. ohadii was excited at 660 nm, the processes of energy redistribution in the light-harvesting antenna complex were observed within a time interval of up to 25 ps, while formation of the stable radical ion pair P700+A1- was kinetically heterogeneous with characteristic times of 25 and 120 ps. When PSI was excited into the red edge of the Qy band at 715 nm, primary charge separation reactions occurred within the time range of 7 ps in half of the complexes. In the remaining complexes, formation of the radical ion pair P700+A1- was limited by the energy transfer and occurred with a characteristic time of 70 ps. Similar photochemical reactions in PSI from Synechocystis 6803 were significantly faster: upon excitation at 680 nm, formation of the primary radical ion pairs occurred with a time of 3 ps in ~30% complexes. Excitation at 720 nm resulted in kinetically unresolvable ultrafast primary charge separation in 50% complexes, and subsequent formation of P700+A1- was observed within 25 ps. The photodynamics of PSI from C. ohadii was noticeably similar to the excitation energy transfer and charge separation in PSI from the microalga Chlamydomonas reinhardtii; however, the dynamics of energy transfer in C. ohadii PSI also included slower components.


Assuntos
Chlorella , Transferência de Energia , Complexo de Proteína do Fotossistema I , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema I/química , Chlorella/metabolismo , Synechocystis/metabolismo , Processos Fotoquímicos , Clorofila/metabolismo , Clorofila/química , Cinética
11.
J Microbiol Biotechnol ; 34(7): 1425-1432, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-38955803

RESUMO

This study analyzed the effects of Ca2+ metal ions among culture medium components on the Chlorella sorokiniana strain DSCG150 strain cell growth. The C. sorokiniana strain DSCG150 grew based on a multiple fission cell cycle and growth became stagnant in the absence of metal ions in the medium, particularly Ca2+. Flow cytometry and confocal microscopic image analysis results showed that in the absence of Ca2+, cell growth became stagnant as the cells accumulated into four autospores and could not transform into daughter cells. Genetic analysis showed that the absence of Ca2+ caused upregulation of calmodulin (calA) and cell division control protein 2 (CDC2_1) genes, and downregulation of origin of replication complex subunit 6 (ORC6) and dual specificity protein phosphatase CDC14A (CDC14A) genes. Analysis of gene expression patterns by qRT-PCR showed that the absence of Ca2+ did not affect cell cycle progression up to 4n autospore, but it inhibited Chlorella cell fission (liberation of autospores). The addition of Ca2+ to cells cultivated in the absence of Ca2+ resulted in an increase in n cell population, leading to the resumption of C. sorokiniana growth. These findings suggest that Ca2+ plays a crucial role in the fission process in Chlorella.


Assuntos
Cálcio , Ciclo Celular , Chlorella , Chlorella/metabolismo , Chlorella/genética , Chlorella/crescimento & desenvolvimento , Cálcio/metabolismo , Meios de Cultura/química , Calmodulina/metabolismo , Calmodulina/genética , Proliferação de Células
12.
Environ Sci Pollut Res Int ; 31(35): 48062-48072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39017865

RESUMO

Microalgae can promote antibiotic removal, which has attracted growing attention. However, its synergistic removal performance with bacteria in antibiotic pollutants is still poorly understood. In this study, firstly, we selected two green algae (Dictyosphaerium sp. and Chlorella sp.) and exposed them to Enrofloxacin (ENR) to observe their extracellular polysaccharides (EPS) concentration dynamic and the removal of antibiotics. Secondly, EPS was extracted and added to in situ lake water (no algae) to investigate its combined effect with bacteria. The results indicate that both Dictyosphaerium sp. and Chlorella sp. exhibited high tolerance to ENR stress. When the biomass of microalgae was low, ENR could significantly stimulate algae to produce EPS. The removal rates of Dictyosphaerium sp. and Chlorella sp. were 15.8% and 10.5%, respectively. The addition of EPS can both alter the microbial community structure in the lake water and promote the removal of ENR. The LEfSe analysis showed that there were significant differences in the microbial marker taxa, which promoted the increase of special functional bacteria for decomposing ENR, between the EPS-added group and the control group. The EPS of Dictyosphaerium sp. increased the abundance of Moraxellaceae and Spirosomaceae, while the EPS of Chlorella sp. increased the abundance of Sphingomonadaceae and Microbacteriaceae. Under the synergistic effect, Chlorella sp. achieved a maximum removal rate of 24.2%, while Dictyosphaerium sp. achieved a maximum removal rate of 28.9%. Our study provides new insights into the removal performance and mechanism of antibiotics by freshwater microalgae in water bodies and contribute to the development of more effective water treatment strategies.


Assuntos
Enrofloxacina , Microalgas , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Antibacterianos , Chlorella/metabolismo , Lagos/microbiologia , Microbiota
13.
Molecules ; 29(14)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064946

RESUMO

Chlorella sorokiniana, isolated from a pond adjacent to a cement plant, was cultured using flue gas collected directly from kiln emissions using 20 L and 25000 L photobioreactors. Lipids, proteins, and polysaccharides were analyzed to understand their overall composition for potential applications. The lipid content ranged from 17.97% to 21.54% of the dry biomass, with carotenoid concentrations between 8.4 and 9.2 mg/g. Lutein accounted for 55% of the total carotenoids. LC/MS analysis led to the identification of 71 intact triacylglycerols, 8 lysophosphatidylcholines, 10 phosphatidylcholines, 9 monogalactosyldiacylglycerols, 12 digalactosyldiacylglycerols, and 1 sulfoquinovosyl diacylglycerol. Palmitic acid, oleic acid, linoleic acid, and α-linolenic acid were the main fatty acids. Polyunsaturated fatty acid covers ≥ 56% of total fatty acids. Protein isolates and polysaccharides were also extracted. Protein purity was determined to be ≥75% by amino acid analysis, with all essential amino acids present. Monomer analysis of polysaccharides suggested that they are composed of mainly D-(+)-mannose, D-(+)-galactose, and D-(+)-glucose. The results demonstrate that there is no adverse effect on the metabolite profile of C. sorokiniana biomass cultured using flue gas as the primary carbon source, revealing the possibility of utilizing such algal biomass in industrial applications such as animal feed, sources of cosmeceuticals, and as biofuel.


Assuntos
Biomassa , Carbono , Chlorella , Ácidos Graxos , Chlorella/metabolismo , Chlorella/crescimento & desenvolvimento , Chlorella/química , Ácidos Graxos/análise , Ácidos Graxos/metabolismo , Carbono/química , Polissacarídeos/química , Polissacarídeos/análise , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo , Gases/química , Ácido Linoleico/análise , Ácido Linoleico/metabolismo , Lipídeos/análise , Lipídeos/química , Galactolipídeos/análise , Galactolipídeos/metabolismo , Carotenoides/análise , Carotenoides/metabolismo , Ácido Oleico/análise
14.
Bioresour Technol ; 408: 131171, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39074765

RESUMO

This study investigated the bioenergy potential of Chlorella pyrenoidosa (CP) for use as fuel and carbon material through chemical and thermal characterization. The thermo-kinetic characteristics of Chlorella pyrenoidosa were assessed using isoconversional, linear regression, and non-linear regression approaches. The physicochemical analysis revealed high carbon (53.1 %), volatile (69.35 %), and low moisture (2.19 %), ash content (3.42 %). The results indicated that the non-linear model fitting method was the most accurate with the approximated activation energy (Eα) and pre-exponential Arrhenius constant (Ln A) were 124.92 ± 2.74 kJ/mol and 23.38 ± 4.63 min-1, respectively. Additionally, the inclusion of sodium bicarbonate resulted in a significant increase in BET surface area. FTIR analysis revealed several functional groups beneficial for carbon material, while XRD analysis showed a broad peak correlated with an amorphous structure. This study highlighted the potential of Chlorella pyrenoidosa biomass for various applications, including carbon material and renewable fuel.


Assuntos
Biocombustíveis , Biomassa , Carbono , Chlorella , Chlorella/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Cinética , Difração de Raios X , Temperatura
15.
Bioresour Technol ; 408: 131163, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39079573

RESUMO

Microalgal biomass is gaining increasing attention to produce high-value co-products. This study proposes integrating Chlorella microalgal biomass into a zero-waste biorefining system, aiming to produce biodiesel and biofertilizer. It investigates optimal conditions for ultrasound-assisted deep eutectic solvent (DES) pretreatment and lipid recovery to enhance the extraction of lipids. Optimal DES pretreatment was identified as a 1.6:1 acetic acid-to-choline chloride molar ratio, 0.36 g biomass loading, and 2.50 min of pretreatment. Lipid recovery succeeded with a 10-minute extraction time and a 1:3 methanol-to-butanol volume ratio. These conditions yielded biodiesel-quality lipids at 139.52 mg/g microalgal biomass with superior fuel characteristics. The de-oiled microalgal biomass residue exhibited promise as a lettuce biofertilizer, enhancing photosynthetic pigments but potentially reducing yields by 40 %. The study also notes changes in rhizosphere microbial communities, indicating both stimulatory and inhibitory effects on beneficial microbes. This study has the potential to enhance sustainability in energy, agriculture, and the environment.


Assuntos
Biocombustíveis , Biomassa , Chlorella , Fertilizantes , Chlorella/metabolismo , Solventes Eutéticos Profundos , Microalgas/metabolismo , Lipídeos/química , Biotecnologia/métodos
16.
Bioresour Technol ; 408: 131176, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39084534

RESUMO

Microalgae biotechnology holds great potential for mitigating CO2 emissions, yet faces challenges in commercialization due to suboptimal photosynthetic efficiency. This study presents an innovative approach to improve CO2 mass transfer efficiency in microalgae using carbonic anhydrase (CA) in an internal LED flexible air-lift photobioreactor. Optimal conditions initial inoculation with 3.55 × 106 cells/mL and 20 % CO2 concentration, complemented by white LED lighting in Chlorella sp. CA regulated intracellular composition, enhancing chlorophyll, lipid, and protein contents. Metabolomics revealed elevated malic and succinic acids, associated with increased Ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) and Acetoacetyl coenzyme A (Acetyl-CoA) activities, facilitating efficient carbon fixation. CA also mitigated cellular oxidative stress by reducing reactive oxygen species (ROS). Furthermore, CA improved extracellular electron acceptor with currents surpassed CK. This CA-based microalgae biotechnology provides a foundation for future commercial applications, addressing CO2 emissions.


Assuntos
Dióxido de Carbono , Anidrases Carbônicas , Microalgas , Fotobiorreatores , Dióxido de Carbono/metabolismo , Microalgas/metabolismo , Anidrases Carbônicas/metabolismo , Ciclo do Carbono , Chlorella , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
17.
Bioresour Technol ; 406: 131043, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38936677

RESUMO

Microalgae are known to be the richest natural source of polysaccharides. The study aimed to evaluate the ability of microalgae from the Chlorella sp. genus to synthesize polysaccharides. Brody & Emerson max medium proved to be the most effective; the average cell content in the culture fluid at the beginning and at the end of cultivation for IPPAS Chlorella pyrenoidosa Chick was 1.23 ± 0.03 g/L and 1.71 ± 0.20 g/L, respectively. With a high average dry weight of IPPAS Chlorella pyrenoidosa Chick (4.45 ± 0.10 g/L), it produced the least amount of neutral sugars (0.75 ± 0.02 g/L) and uronic acids (0.14 ± 0.01 mg/L). The microalga IPPAS Chlorella vulgaris with the lowest average dry weight (1.18 ± 0.03 g/L) produced 0.80 ± 0.02 g/L of neutral sugars and 0.17 ± 0.01 mg/L of uronic acids. Microalgal polysaccharides have the potential to be used as a source for biologically active food additives, as they contain various types of polysaccharides that can be beneficial to human health.


Assuntos
Chlorella , Microalgas , Polissacarídeos , Chlorella/metabolismo , Microalgas/metabolismo , Ácidos Urônicos/metabolismo , Meios de Cultura
18.
J Chromatogr A ; 1730: 465092, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38914029

RESUMO

Biochar, a sustainable sorbent derived from pyrolyzed biomass, has garnered attention for its efficacy in solid-phase extraction (SPE) of antibiotics, with a particular focus on tetracyclines (TCs). Despite its recognized potential, the intricate separation mechanisms operative in biochar-based SPE systems have not been fully deciphered. This investigation contrasts chlorella biochar against commercial bamboo biochar, harnessing an array of analytical methodologies-microstructure characterization, adsorption thermodynamics, competitive adsorption kinetics, H+ back titration, and selectivity adsorption studies-complemented by a Box-Behnken design for the optimization of chlorella/bamboo-SPE and subsequent application in the analysis of animal-derived foodstuffs. The study unveils that a hybrid sorbent, integrating nitrogen-doped microporous chlorella biochar with mesoporous bamboo biochar in a 95/5 mass ratio, markedly diminishes irreversible adsorption while enhancing selectivity, surpassing the performance of single biochar SPE systems. The elucidated separation mechanisms implicate a partition model, propelled by oxygen-rich functional groups on chlorella biochar and the rapid adsorption kinetics of bamboo biochar, all orchestrated by electrostatic interactions within the mixed biochar framework. Moreover, the synergy of mixed biochar-SPE with high-performance liquid chromatography (HPLC) demonstrates exceptional proficiency in detecting TCs in animal viscera, evidenced by recovery rates spanning 80.80 % to 106.98 % and RSDs ranging from 0.24 % to 14.69 %. In essence, this research not only sheds light on the multifaceted factors influencing SPE efficiency but also propels the use of biochar towards new horizons in environmental monitoring and food safety assurance.


Assuntos
Carvão Vegetal , Chlorella , Extração em Fase Sólida , Tetraciclinas , Carvão Vegetal/química , Extração em Fase Sólida/métodos , Adsorção , Chlorella/química , Tetraciclinas/isolamento & purificação , Tetraciclinas/química , Tetraciclinas/análise , Animais , Cinética , Cromatografia Líquida de Alta Pressão/métodos , Antibacterianos/isolamento & purificação , Antibacterianos/química , Termodinâmica
19.
Bioresour Technol ; 406: 130999, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38885721

RESUMO

Microalgae-based biotechnology holds significant potential for addressing dual challenges of phosphorus removal and recovery from wastewater; however, the removal mechanism and metabolic adaptation of microalgae to dissolved organic phosphorus (DOP) are still unclear. This study investigated the removal mechanisms and metabolomic responses of the Chlorella pyrenoidosa to different DOP forms, including adenosine triphosphate (ATP), glucose-6-phosphate (G-6-P), and ß-glycerophosphate (ß-GP). The results showed C. pyrenoidosa could efficiently take up above 96% DOP through direct transport and post-hydrolysis pathways. The uptake of inorganic phosphorus (IP) followed pseudo first order kinetic model, while DOP followed pseudo second order kinetic model. Metabolite profiling revealed substantial alterations in central carbon metabolism depending on the DOP source. G-6-P upregulated glycolytic and TCA cycle intermediates, reflecting enhanced carbohydrates, amino acids and nucleotides biosynthesis. In contrast, ATP down-regulated carbohydrate and purine metabolism, inhibiting sustainable growth of microalgae. This study offers theoretical support for phosphorus-containing wastewater treatment using microalgae.


Assuntos
Trifosfato de Adenosina , Chlorella , Fósforo , Chlorella/metabolismo , Fósforo/metabolismo , Trifosfato de Adenosina/metabolismo , Microalgas/metabolismo , Cinética , Glucose-6-Fosfato/metabolismo
20.
Environ Pollut ; 357: 124466, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38944181

RESUMO

Oxidative stress is a universal interpretation for the toxicity mechanism of nanoplastics to microalgae. However, there is a lack of deeper insight into the regulation mechanism in microalgae response to oxidative stress, thus affecting the prevention and control for nanoplastics hazard. The integrated analysis of transcriptomics and metabolomics was employed to investigate the mechanism for the oxidative stress response of Chlorella pyrenoidosa to nanoplastics and subsequently lock the according core pathways and driver genes induced. Results indicated that the linoleic acid metabolism, glycine (Gly)-serine (Ser)-threonine (Thr) metabolism, and arginine and proline metabolism pathways of C. pyrenoidosa were collectively involved in oxidative stress. The analysis of linoleic acid metabolism suggested that nanoplastics prompted algal cells to secrete more allelochemicals, thereby leading to destroy the immune system of cells. Gly-Ser-Thr metabolism and arginine and proline metabolism pathways were core pathways involved in algal regulation of cell membrane function and antioxidant system. Key genes, such as LOX2.3, SHM1, TRPA1, and proC1, are drivers of regulating the oxidative stress of algae cells. This investigation lays the foundation for future applications of gene editing technology to limit the hazards of nanoplastics on aquatic organism.


Assuntos
Chlorella , Metabolômica , Estresse Oxidativo , Transcriptoma , Chlorella/genética , Chlorella/metabolismo , Chlorella/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Microalgas/genética , Microalgas/efeitos dos fármacos , Microalgas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA