Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Plant Sci ; 344: 112105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663481

RESUMO

As the most prominent proton pumps in plants, vacuolar H+-ATPases (VHAs) comprise multiple subunits that are important for physiological processes and stress tolerance in plants. However, few studies on the roles of subunit genes of VHAs in chrysanthemum have been reported to date. In this study, the gene of A subunit of V-ATPase in chrysanthemum (CmVHA-A) was cloned and identified. CmVHA-A was conserved with VHA-A proteins from other plants. Expression analysis showed that CmVHA-A was highly expressed in most tissues of chrysanthemum except for the flower bud, and was readily induced by polyethylene glycol (PEG) treatment. Functional analysis demonstrated that CmVHA-A exerted a negative influence on the growth and development of shoot and root of chrysanthemum under normal conditions. RNA-sequencing (RNA-seq) analysis revealed the possible explanations for phenotypic differences between transgenic and wild-type (WT) plants. Under drought conditions, CmVHA-A positively affected the drought tolerance of chrysanthemum by enhancing antioxidase activity and alleviating photosynthetic disruption. Overall, CmVHA-A plays opposite roles in plant growth and drought tolerance of chrysanthemums under different growing conditions.


Assuntos
Chrysanthemum , Proteínas de Plantas , ATPases Vacuolares Próton-Translocadoras , Chrysanthemum/genética , Chrysanthemum/fisiologia , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Resistência à Seca
2.
Plant Cell Environ ; 47(8): 2923-2935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629334

RESUMO

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.


Assuntos
Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas , Reprodução , Fotoperíodo
3.
Plant J ; 116(6): 1652-1666, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37696505

RESUMO

TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.


Assuntos
Chrysanthemum , Proteínas de Plantas , Fatores de Transcrição , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/fisiologia , Etilenos/metabolismo , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Plantas/metabolismo
4.
Plant J ; 112(5): 1159-1175, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36214418

RESUMO

Chrysanthemum (Chrysanthemum morifolium) is well known as a photoperiod-sensitive flowering plant. However, it has also evolved into a temperature-sensitive ecotype. Low temperature can promote the floral transition of the temperature-sensitive ecotype, but little is known about the underlying molecular mechanisms. Here, we identified MADS AFFECTING FLOWERING 2 (CmMAF2), a putative MADS-box gene, which induces floral transition in response to low temperatures independent of day length conditions in this ecotype. CmMAF2 was shown to bind to the promoter of the GA biosynthesis gene CmGA20ox1 and to directly regulate the biosynthesis of bioactive GA1 and GA4 . The elevated bioactive GA levels activated LEAFY (CmLFY) expression, ultimately initiating floral transition. In addition, CmMAF2 expression in response to low temperatures was directly activated by CmC3H1, a CCCH-type zinc-finger protein upstream. In summary, our results reveal that the CmC3H1-CmMAF2 module regulates flowering time in response to low temperatures by regulating GA biosynthesis in the temperature-sensitive chrysanthemum ecotype.


Assuntos
Chrysanthemum , Chrysanthemum/fisiologia , Giberelinas/metabolismo , Temperatura , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotoperíodo
5.
Int J Mol Sci ; 23(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269590

RESUMO

Light is a critical environmental factor that influences plant growth and development, ranging from seed germination to flowering and fruiting. This study was carried out to explore how the optimal combination of various lighting directions increases the light usage efficiency and influences the plant morphophysiology, by investigating the plant growth parameters, leaf anatomy, epidermal morphology, stomatal properties, chlorophyll content, key physiological changes, and correlated gene expressions. In closed-type plant growth chambers, rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, "Pearl Egg" and "Gaya Glory", were subjected to a 10-h photoperiod with 600 µmol∙m-2·s-1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) in each light-direction combination (top (1/1) (T), top (1/2) + side (1/2) (TS), top (1/2) + bottom (1/2) (TB), side (1/2) + bottom (1/2) (SB), and top (1/3) + side (1/3) + bottom (1/3) (TSB)). The TS lighting significantly enhanced the morphophysiological performance, compared to the other lighting direction combinations. Notably, the excellent branch formation and earlier flowering were induced by the TS lighting in both "Pearl Egg" and "Gaya Glory" plants.


Assuntos
Clorofila/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/genética , Chrysanthemum/anatomia & histologia , Regulação da Expressão Gênica de Plantas , Luz , Fotoperíodo , Fotossíntese , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia
6.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884575

RESUMO

'Jimba' is a white chrysanthemum cultivar, which occasionally and spontaneously produces red flower petals under natural cultivation due to cyanidin-based anthocyanin accumulation. To investigate the underlying mechanism of this process, a comparative transcriptome was analyzed between white and turning red 'Jimba'. The structural and regulatory genes of anthocyanin pathway were significantly up-regulated in turning red 'Jimba'. Among them, two alternative splicings, CmbHLH2 and CmbHLH2.1, showed the most significantly up-regulated in turning red tissue. Transiently over-expressed 35S::CmMYB6-CmbHLH2 strongly induced anthocyanin accumulation in 'Jimba' flower petals, while moderate amount of anthocyanin was detected when over-expressed 35S::CmMYB6-CmbHLH2.1. Both CmbHLH2 and CmbHLH2.1 could interact with CmMYB6 to activate CmDFR promoter according to Yeast two-hybrid and dual-luciferase assay. Moreover, CmMYB6-CmbHLH2 but not CmMYB6-CmbHLH2.1 could activate the CmbHLH2 promoter to provide positive feedback loop regulation. Taken together, it suggested that both CmbHLH2 and CmbHLH2.1 involved in regulation flower color alteration in turning red 'Jimba', and CmbHLH2 played a predominant role in this process.


Assuntos
Processamento Alternativo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Chrysanthemum/fisiologia , Cor , Flores/fisiologia , Proteínas de Plantas/metabolismo , Transcriptoma , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética
7.
Int J Mol Sci ; 22(21)2021 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-34769450

RESUMO

Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, 'Gaya Glory' and 'Pearl Egg', were subjected to a 10 h photoperiod with a 300 µmol∙m-2∙s-1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.


Assuntos
Chrysanthemum/fisiologia , Iluminação/métodos , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/efeitos da radiação , Fotoperíodo , Fotossíntese , Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
8.
Mol Biol Rep ; 48(11): 7293-7301, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34689280

RESUMO

BACKGROUND: Low light is a primary regulator of chrysanthemum growth. Our aim was to analyse the different transcriptomic responses of two Chrysanthemum morifolium cultivars to low light. METHODS AND RESULTS: We conducted a transcriptomic analysis of leaf samples from the 'Nannonggongfen' and 'Nannongxuefeng' chrysanthemum cultivars following a 5-day exposure to optimal light (70%, control [CK]) or low-light (20%, LL) conditions. Gene Ontology (GO) classification of upregulated genes revealed these genes to be associated with 11 cellular components, 9 molecular functions, and 15 biological processes, with the majority being localized to the chloroplast, highlighting the role of chloroplast proteins as regulators of shading tolerance. Downregulated genes were associated with 11 cellular components, 8 molecular functions, and 16 biological processes. Heat map analyses suggested that basic helix-loop-helix domain genes and elongation factors were markedly downregulated in 'Nannongxuefeng' leaves, consistent with the maintenance of normal stem length, whereas no comparable changes were observed in 'Nanonggongfen' leaves. Subsequent qPCR analyses revealed that phytochrome-interacting factors and dormancy-associated genes were significantly upregulated under LL conditions relative to CK conditions, while succinate dehydrogenase 1, elongated hypocotyls 5, and auxin-responsive gene of were significantly downregulated under LL conditions. CONCLUSIONS: These findings suggest that LL plants were significantly lower than those of the CK plants. Low-light tolerant chrysanthemum cultivars may maintain reduced indole-3-acetic acid (IAA) and elongation factor expression as a means of preventing the onset of shade-avoidance symptoms.


Assuntos
Adaptação Fisiológica , Chrysanthemum/genética , Regulação da Expressão Gênica de Plantas , Luz , Cloroplastos/metabolismo , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Perfilação da Expressão Gênica , Ontologia Genética , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia
9.
Photosynth Res ; 149(1-2): 155-170, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33131005

RESUMO

It is hypothesized that plant submergence tolerance could be assessed from the decline of plant biomass due to submergence, as biomass integrates all eco-physiological processes leading to fitness. An alternative hypothesis stated that the consumption rate of carbohydrate is essential in differing tolerance to submergence. In the present study, the responses of biomass, biomass allocation, and carbohydrate content to simulated long-term winter submergence were assessed in four tolerant and four sensitive perennials. The four tolerant perennials occur in a newly established riparian ecosystem created by The Three Gorges Dam, China. They had 100% survival after 120 days' simulated submergence, and had full photosynthesis recovery after 30 days' re-aeration, and the photosynthetic rate was positively related to the growth during the recovery period. Tolerant perennials were characterized by higher carbohydrate levels, compared with the four sensitive perennials (0% survival) at the end of submergence. Additionally, by using a method which simulates posterior estimates, and bootstraps the confidence interval for the difference between strata means, it was found that the biomass response to post-hypoxia, rather than that to submergence, could be a reliable indicator to assess submergence tolerance. Interestingly, the differences of changes in carbohydrate content between tolerant and sensitive perennials during submergence were significant, which were distinct from the biomass response, supporting the hypothesis that tolerant perennials could sacrifice non-vital components of biomass to prioritize the saving of carbohydrates for later recovery. Our study provides some insight into the underlying mechanism(s) of perennials' tolerance to submergence in ecosystems such as temperate wetland and reservoir riparian.


Assuntos
Adaptação Fisiológica , Biomassa , Metabolismo dos Carboidratos , Inundações , Imersão/fisiopatologia , Fotossíntese/fisiologia , Estações do Ano , Agrimonia/fisiologia , Amaranthaceae/fisiologia , China , Chrysanthemum/fisiologia , Cynodon/fisiologia , Paspalum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Plantaginaceae/fisiologia , Poaceae/fisiologia
10.
Plant J ; 104(1): 226-240, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32645754

RESUMO

Flowers are the most vulnerable plant organ to infection by the necrotrophic fungus Botrytis cinerea. Here we show that pre-treatment of chrysanthemum (Chrysanthemum morifolium) flowers with phenylalanine (Phe) significantly reduces their susceptibility to B. cinerea. To comprehend how Phe treatment induces resistance, we monitored the dynamics of metabolites (by GC/LC-MS) and transcriptomes (by RNAseq) in flowers after Phe treatment and B. cinerea infection. Phe treatment resulted in accumulation of 3-phenyllactate and benzaldehyde, and in particular induced the expression of genes related to Ca2+ signaling and receptor kinases, implicating an induction of the defense response. Interestingly, the main effects of Phe treatment were observed in flowers exposed to B. cinerea infection, stabilizing the global fluctuations in the levels of metabolites and transcripts while reducing susceptibility to the fungus. We suggest that Phe-induced resistance is associated to cell priming, enabling rapid and targeted reprogramming of cellular defense responses to resist disease development. After Phe pre-treatment, the levels of the anti-fungal volatiles phenylacetaldehyde and eugenol were maintained and the level of coniferin, a plausible monolignol precursor in cell wall lignification, was strongly increased. In addition, Phe pre-treatment reduced ROS generation, prevented ethylene emission, and caused changes in the expression of a minor number of genes related to cell wall biogenesis, encoding the RLK THESEUS1, or involved in Ca2+ and hormonal signaling processes. Our findings point to Phe pre-treatment as a potential orchestrator of a broad-spectrum defense response which may not only provide an ecologically friendly pest control strategy but also offers a promising way of priming plants to induce defense responses against B. cinerea.


Assuntos
Botrytis , Chrysanthemum/fisiologia , Flores/fisiologia , Fenilalanina/fisiologia , Doenças das Plantas/imunologia , Chrysanthemum/imunologia , Chrysanthemum/microbiologia , Etilenos/metabolismo , Flores/imunologia , Fenilalanina/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Espécies Reativas de Oxigênio
11.
Plant J ; 103(5): 1783-1795, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32488968

RESUMO

Drought is an environmental factor that can severely influence plant development and distribution, and greatly affect the yield and economic value of crops. We characterized CmBBX19, a BBX family subgroup IV member gene, from the transcriptome database of Chrysanthemum morifolium in response to drought stress. Drought stress and ABA treatments downregulated the expression of CmBBX19. We generated CmBBX19-overexpressing (CmBBX19-OX) lines and CmBBX19-suppressing lines (CmBBX19-RNAi), and found that suppressed expression of CmBBX19 led to enhanced drought tolerance compared with the wild-type (WT) controls, while CmBBX19-OX lines exhibited reduced drought tolerance. Downstream gene analysis showed that CmBBX19 modulates drought tolerance mainly through inducing changes in the expression of ABA-dependent pathway genes, including protective protein, redox balance and cell wall biogenesis genes, such as responsive to ABA 18, peroxidase 12, and cellulose synthase-like protein G2. Moreover, CmBBX19 was shown to interact with CmABF3, a master ABA signaling component, to suppress expression of these downstream genes. We conclude that BBX19-ABF3 module functions in the regulation of drought tolerance of chrysanthemum through an ABA-dependent pathway.


Assuntos
Chrysanthemum/metabolismo , Proteínas de Plantas/metabolismo , Dedos de Zinco , Ácido Abscísico/metabolismo , Chrysanthemum/fisiologia , Desidratação , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Transdução de Sinais , Dedos de Zinco/fisiologia
12.
Physiol Plant ; 169(1): 10-26, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31957014

RESUMO

Vertical farming using light-emitting diode offers potential for the early production phase (few weeks) of young ornamental plants. However, once transferred to the greenhouse, the photosynthetic acclimation of these young plants might depend on this initial light regime. To obtain insight about this acclimatization, Chrysanthemum (sun species) and Spathiphyllum (shade species) were preconditioned in growth chambers for 4 weeks under four light qualities: blue (B), red (R), red/blue (RB, 60% R) and white (W) at 100 µmol m-2 s-1 . Monochromatic light (R and B) limited leaf development of both species, which resulted in a lower leaf mass per area when compared to multispectral light (RB for Chrysanthemum, RB and W for Spathiphyllum). R-developed leaves had a lower photosynthetic efficiency in both species. After the light quality pretreatment, plants were transferred to the greenhouse with high-intensity natural light conditions. On the first day of transfer, R and B preconditioned leaves of both species had an inhibited photosynthesis. After 1 week in natural light condition, rapid light curve parameters of Chrysanthemum leaves that developed under B acclimated to sunlight had a similar level than RB-developed leaves unlike R-leaves. Spathiphyllum leaves showed a decrease in maximum electron transport rate and this was most pronounced for the R pretreatment. After 1 month, R-preconditioned Chrysanthemum had the lowest dry mass, while no effects on the dry weight of Spathiphyllum with respect to the pretreatments were observed. Light quality during preconditioning affected the leaf ability to acclimate to natural high light intensities in greenhouse environment.


Assuntos
Aclimatação , Araceae/fisiologia , Araceae/efeitos da radiação , Chrysanthemum/fisiologia , Chrysanthemum/efeitos da radiação , Fotossíntese , Luz Solar , Luz , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação
13.
BMC Genomics ; 20(1): 776, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31653200

RESUMO

BACKGROUND: Aphid (Macrosiphoniella sanbourni) stress drastically influences the yield and quality of chrysanthemum, and grafting has been widely used to improve tolerance to biotic and abiotic stresses. However, the effect of grafting on the resistance of chrysanthemum to aphids remains unclear. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze the self-rooted grafted chrysanthemum (Chrysanthemum morifolium T. 'Hangbaiju') and the grafted Artermisia-chrysanthemum (grafted onto Artemisia scoparia W.) transcription response to aphid stress. RESULTS: The results showed that there were 1337 differentially expressed genes (DEGs), among which 680 were upregulated and 667 were downregulated, in the grafted Artemisia-chrysanthemum compared to the self-rooted grafted chrysanthemum. These genes were mainly involved in sucrose metabolism, the biosynthesis of secondary metabolites, the plant hormone signaling pathway and the plant-to-pathogen pathway. KEGG and GO enrichment analyses revealed the coordinated upregulation of these genes from numerous functional categories related to aphid stress responses. In addition, we determined the physiological indicators of chrysanthemum under aphid stress, and the results were consistent with the molecular sequencing results. All evidence indicated that grafting chrysanthemum onto A. scoparia W. upregulated aphid stress responses in chrysanthemum. CONCLUSION: In summary, our study presents a genome-wide transcript profile of the self-rooted grafted chrysanthemum and the grafted Artemisia-chrysanthemum and provides insights into the molecular mechanisms of C. morifolium T. in response to aphid infestation. These data will contribute to further studies of aphid tolerance and the exploration of new candidate genes for chrysanthemum molecular breeding.


Assuntos
Afídeos/fisiologia , Artemisia/citologia , Chrysanthemum/genética , Chrysanthemum/parasitologia , Perfilação da Expressão Gênica , Horticultura , Interações Hospedeiro-Parasita/genética , Animais , Chrysanthemum/citologia , Chrysanthemum/fisiologia , Anotação de Sequência Molecular , Estresse Fisiológico/genética
14.
Plant Sci ; 285: 165-174, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31203881

RESUMO

The TPL/TPR co-repressor is involved in many plant signaling pathways, including those regulating the switch from vegetative to reproductive growth. Here, a TPL homolog (TPL 1-2) was isolated from chrysanthemum. Its product was found to be deposited in the nucleus. The abundance of TPL1-2 transcript varied across the plant, with its highest level being recorded in the stem apex, and its lowest in the root and stem. In the leaf, the abundance of TPL1-2 transcript was highest at dusk in plants exposed to long days, and at dawn in those exposed to short days. Site-directed mutagenesis was used to induce an N176H mutation in TPL1-2. The constitutive expression in Arabidopsis thaliana of the wild type and the mutated alleles of TPL1-2 had a contrasting effect on flowering time, with the mutant transgene expressors flowering later than the wild type transgene expressors. The flowering-related genes FT, TSF, FUL and AP1 were all more strongly transcribed in the mutant transgene expressors than in the wild type transgene expressors.


Assuntos
Chrysanthemum/genética , Flores/crescimento & desenvolvimento , Genes de Plantas/genética , Proteínas de Plantas/genética , Arabidopsis , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética , Genes de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Fatores de Tempo , Técnicas do Sistema de Duplo-Híbrido
15.
Plant Cell Physiol ; 60(7): 1581-1594, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31058993

RESUMO

Lateral root (LR) formation and development play a vital role in plant development by permitting the establishment of branched root systems. It is well known that nutrient availability controls LR development. Moreover, LR development is fine-tuned by a myriad of hormonal signals. Many transcription factors (TFs) participate in LR development. Here, we discuss the TFs involved in the nitrate and auxin signaling pathways and how these function in the regulation of LR formation and development in chrysanthemum. AtTCP20 is a plant-specific TF, which can modulate LR development in response to nitrate. The roles of CmTCP20 in LR development were identified by overexpression in chrysanthemum and heterologous expression in Arabidopsis. Overexpression of CmTCP20 significantly increased the number and average length of LRs compared with the wild type in chrysanthemum and Arabidopsis. We also found that CmTCP20 positively influenced auxin accumulation in the LRs at least partly by improving auxin biosynthesis, transport and response, thereby promoting LR development. Moreover, we found that CmTCP20 interacts with an auxin response factor, CmARF8, which also can be induced by nitrate and combined to proximal sites in the upstream promoter region of CmCYCB1;1 to positively regulate the cell cycle. The CmTCP20-CmARF8 heterodimer links nitrate and auxin signaling and converts cell-cycle signals to regulate LR initiation and growth.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Ácidos Indolacéticos/metabolismo , Nitratos/metabolismo , Proteínas de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Fatores de Transcrição/fisiologia , Arabidopsis , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas , Transdução de Sinais , Fatores de Transcrição/metabolismo
16.
Plant Sci ; 283: 247-255, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31128695

RESUMO

Chrysanthemums require continuous short-days (SD) for anthesis. FTL3 (FLOWERING LOCUS T-like 3), a floral promoter expressed in chrysanthemum leaf, forms a complex with its interacting partner FDL1 to induce floral meristem identity gene AFL1. We explored the FTL3 induction mechanism during SD repeats in Chrysanthemum seticuspe. CsFTL3 expression was not immediately induced by a shift from long-day (LD) to SD, but gradually increased until the capitulum development stage under repeated SDs. Overexpression of CsFTL3 transgene increased endogenous leaf CsFTL3 induction under SD but not LD. Overexpression of CsFDL1 promoted anthesis and increased CsAFL1 and CsFTL3 expression under SD. Loss-of-function of CsFDL1 by RNAi resulted in delayed anthesis and downregulation of leaf CsAFL1 and CsFTL3, indicating the necessity of CsFDL1 for CsFTL3 induction. Overexpression of an antagonistic protein of CsFTL3 or CsFDL1 inhibited leaf CsFTL3 induction. CsFTL3 expression was positively regulated during SDs by a feedback mechanism involving the CsFTL3-CsFDL1 complex. Furthermore, flowering was accomplished by feedback with high levels of CsFTL3 induction under repeated SDs.


Assuntos
Chrysanthemum/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Proteínas de Plantas/fisiologia , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Retroalimentação Fisiológica , Flores/metabolismo , Flores/fisiologia , Técnicas de Silenciamento de Genes , Fotoperíodo , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Regiões Promotoras Genéticas/fisiologia , Transcriptoma
17.
Plant Sci ; 276: 99-104, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348332

RESUMO

The product of CmFTL, a gene represented by multiple transcripts, is an important determinant of floral development in chrysanthemum. Here, a new transcript CmFTL3ps4 which contains three different amino acid residues compared to CmFTL3 was characterized. When driven by the Arabidopsis thaliana FT promoter, CmFTL3ps4 expression did not rescue the late flowering phenotype of the A. thaliana ft-10 mutant. When the variant sequences CmFTL3Q130K, CmFTL3G136A and CmFTL3D145N were heterologously expressed in A. thaliana, both CmFTL3G136A and CmFTL3D145N were shown to accelerate flowering, although to a different extent. There was no significant difference in the number of leaves which had formed before the flowering of either the CmFTL3Q130K or the CmFTL3ps4 transgenic lines. Neither the transgenic expression of CmFTL3ps4 or CmFTL3Q130K was able to rescue the ft-10 mutant phenotype. A bimolecular fluorescence complementation assay confirmed that CmFTL3Q130K did not interact with CmFDL1, a homolog of the bZIP transcription factor FD. The conclusion was that a novel residue change affected FT activity through its disruption of the interaction with CmFDL1.


Assuntos
Proteínas de Arabidopsis/genética , Chrysanthemum/genética , Florígeno/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/fisiologia , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Modelos Estruturais , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Filogenia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Alinhamento de Sequência , Transgenes
18.
Plant Mol Biol ; 98(3): 233-247, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30203234

RESUMO

KEY MESSAGE: Microspore degeneration at the tetrad stage is associated with tapetum degeneration retardation. Some genes and proteins related to cell senescence and death are the key factors for pollen abortion. Chrysanthemum (Chrysanthemum morifolium) is a major floriculture crop in the world, but pollen contamination is an urgent problem to be solved in chrysanthemum production. C. morifolium 'Kingfisher' is a chrysanthemum cultivar that does not contain any pollen in mature anthers, thus it is a very important material for developing chrysanthemum without pollen contamination. However, the mechanism of its pollen abortion remains unclear. In this study, the cellular and molecular mechanisms of 'Kingfisher' pollen abortion were investigated using transmission electron microscopy, RNA sequencing, isobaric tags for relative and absolute quantitation, and bioinformatics. It was found that the meiosis of microspore mother cells was normal before the tetrad stage, the microspores began to degenerate at the tetrad stage, and no microspores were observed in the anthers after the tetrad stage. In addition, transcriptomic and proteomic analyses showed that some genes and proteins related to cell senescence and death were identified to be implicated in chrysanthemum pollen abortion. These results indicated that the tetrad stage was the main period of pollen abortion, and the genes and proteins related to cell senescence and death contributed to pollen abortion. These add to our understanding of chrysanthemum pollen abortion and will be helpful for development of flowers without pollen contamination in the future.


Assuntos
Chrysanthemum/fisiologia , Pólen/fisiologia , Flores/anatomia & histologia , Flores/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Infertilidade das Plantas/genética , Pólen/citologia
19.
BMC Genomics ; 19(1): 319, 2018 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720105

RESUMO

BACKGROUND: Chrysanthemum is one kind of ornamental plant well-known and widely used in the world. However, its quality and production were severely affected by low temperature conditions in winter and early spring periods. Therefore, we used the RNA-Seq platform to perform a de novo transcriptome assembly to analyze chrysanthemum (Dendranthema grandiflorum) transcription response to low temperature. RESULTS: Using Illumina sequencing technology, a total of 86,444,237 high-quality clean reads and 93,837 unigenes were generated from four libraries: T01, controls; T02, 4 °C cold acclimation (CA) for 24 h; T03, - 4 °C freezing treatments for 4 h with prior CA; and T04, - 4 °C freezing treatments for 4 h without prior CA. In total, 7583 differentially expressed genes (DEGs) of 36,462 annotated unigenes were identified. We performed GO and KEGG pathway enrichment analyses, and excavated a group of important cold-responsive genes related to low temperature sensing and signal transduction, membrane lipid stability, reactive oxygen species (ROS) scavenging and osmoregulation. These genes encode many key proteins in plant biological processes, such as protein kinases, transcription factors, fatty acid desaturase, lipid-transfer proteins, antifreeze proteins, antioxidase and soluble sugars synthetases. We also verified expression levels of 10 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR). In addition, we performed the determination of physiological indicators of chrysanthemum treated at low temperature, and the results were basically consistent with molecular sequencing results. CONCLUSION: In summary, our study presents a genome-wide transcript profile of Dendranthema grandiflorum var. jinba and provides insights into the molecular mechanisms of D. grandiflorum in response to low temperature. These data contributes to our deeper relevant researches on cold tolerance and further exploring new candidate genes for chilling-tolerance and freezing-tolerance chrysanthemum molecular breeding.


Assuntos
Chrysanthemum/genética , Chrysanthemum/fisiologia , Resposta ao Choque Frio/genética , Perfilação da Expressão Gênica , Aclimatação/genética , Membrana Celular/metabolismo , Chrysanthemum/citologia , Chrysanthemum/metabolismo , Anotação de Sequência Molecular , Osmose , Fenótipo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Quinases/metabolismo , Análise de Sequência , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
20.
Plant Cell Rep ; 37(7): 1049-1060, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29687169

RESUMO

KEY MESSAGE: We find that the DREB subfamily transcription factor, CmERF053, has a novel function to regulate the development of shoot branching and lateral root in addition to affecting abiotic stress. Dehydration-responsive element binding proteins (DREBs) are important plant transcription factors that regulate various abiotic stresses. Here, we isolated an APETALA2/ethylene-responsive factor (AP2/ERF) transcription factor from chrysanthemum (Chrysanthemum morifolium 'Jinba'), CmERF053, the expression of which was rapidly up-regulated by main stem decapitation. Phylogenetic analysis indicated that it belongs to the A-6 group of the DREB subfamily, and the subcellular localization assay confirmed that CmERF053 was a nuclear protein. Overexpression of CmERF053 in Arabidopsis exhibited positive effects of plant lateral organs, which had more shoot branching and lateral roots than did the wild type. We also found that the expression of CmERF053 in axillary buds was induced by exogenous cytokinins. These results suggested that CmERF053 may be involved in cytokinins-related shoot branching pathway. In this study, an altered auxin distribution was observed during root elongation in the seedlings of the overexpression plants. Furthermore, overexpress CmERF053 gene could enhance drought tolerance. Together, these findings indicated that CmERF053 plays crucial roles in regulating shoot branching, lateral root, and drought stress in plant. Moreover, our study provides potential application value for improving plant productivity, ornamental traits, and drought tolerance.


Assuntos
Chrysanthemum/fisiologia , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Chrysanthemum/genética , Citocininas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Plântula , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA