Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 353
Filtrar
1.
BMC Genomics ; 25(1): 759, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097683

RESUMO

BACKGROUND: Chrysanthemum morifolium 'HangBaiJu', a popular medicinal and edible plant, exerts its biological activities primarily through the presence of flavones and caffeoylquinic acids (CQAs). However, the regulatory mechanism of flavone and CQA biosynthesis in the chrysanthemum capitulum remains unclear. RESULTS: In this study, the content of flavones and CQAs during the development of chrysanthemum capitulum was determined by HPLC, revealing an accumulation pattern with higher levels at S1 and S2 and a gradual decrease at S3 to S5. Transcriptomic analysis revealed that CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT were key structural genes in flavones and CQAs biosynthesis. Furthermore, weighted gene co-expression correlation network analysis (WGCNA), k-means clustering, correlation analysis and protein interaction prediction were carried out in this study to identify transcription factors (TFs) associated with flavone and CQA biosynthesis, including MYB, bHLH, AP2/ERF, and MADS-box families. The TFs CmERF/PTI6 and CmCMD77 were proposed to act as upstream regulators of CmMYB3 and CmbHLH143, while CmMYB3 and CmbHLH143 might form a complex to directly regulate the structural genes CmPAL1/2, CmCHS1/2, CmFNS, CmHQT, and CmHCT, thereby controlling flavone and CQA biosynthesis. CONCLUSIONS: Overall, these findings provide initial insights into the TF regulatory network underlying flavones and CQAs accumulation in the chrysanthemum capitulum, which laid a theoretical foundation for the quality improvement of C. morifolium 'HangBaiJu' and the high-quality development of the industry.


Assuntos
Chrysanthemum , Flavonas , Ácido Quínico , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonas/metabolismo , Ácido Quínico/metabolismo , Ácido Quínico/análogos & derivados , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metabolômica , Transcriptoma
2.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125984

RESUMO

'Hangju' is a variety of Chrysanthemum × morifolium Ramat. with both edible and medicinal value, cultivated as a traditional Chinese medicine for four centuries. The cultivation of 'Hangju' is currently at risk due to waterlogging, yet there is a lack of comprehensive understanding regarding its response to waterlogging stress. This study compared the waterlogging-tolerant 'Hangju' variety Enhanced Waterlogging Tolerance (EWT) with the waterlogging-sensitive variety CK ('zaoxiaoyangju'). EWT exhibited a more developed aeration tissue structure and demonstrated rapid growth regarding the adventitious roots following waterlogging. The time-course transcriptome analysis indicated that EWT could swiftly adjust the expression of the genes involved in the energy metabolism signaling pathways to acclimate to the waterlogged environment. Through WGCNA analysis, we identified Integrase-Type DNA-Binding Protein (CmTINY2) as a key factor in regulating the waterlogging tolerance in EWT. CmTINY2, a transcription factor belonging to the ethylene-responsive factor (ERF) subfamily III, operated within the nucleus and activated downstream gene expression. Its role in enhancing the waterlogging tolerance might be linked to the control of the stomatal aperture via the Ethylene-Responsive Element (ERE) gene. In summary, our research elucidated that the waterlogging tolerance displayed by EWT is a result of a combination of the morphological structure and molecular regulatory mechanisms. Furthermore, the study of the functions of CmTINY2 from ERF subfamily III also broadened our knowledge of the role of the ERF genes in the waterlogging signaling pathways.


Assuntos
Chrysanthemum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Água/metabolismo
3.
Int J Mol Sci ; 25(14)2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39062834

RESUMO

Chrysanthemum (Chrysanthemum morifolium, ground-cover Chrysanthemums), one of the important garden flowers, has a high ornamental and economic value. However, its ornamental value is significantly diminished by the low temperature experienced in northeastern China. Here, metabolomics and transcriptomics were performed on three Chrysanthemum cultivars before and after a low temperature to investigate the dynamic metabolite changes and the molecular regulatory mechanisms. The results showed that 1324 annotated metabolites were detected, among which 327 were identified as flavonoids derived from Chrysanthemum. The accumulation of metabolites and gene expression related to the flavonoid biosynthesis pathway significantly increased in the three cultivars under the low temperature, indicating flavonoid metabolism actively participates in the Chrysanthemum cold response. Specifically, the content of cyanidin and pelargonidin derivatives and the expression of anthocyanin biosynthesis genes significantly increases in XHBF, providing a reasonable explanation for the change in petal color from white to purple under the low temperature. Six candidate UDP-glycosyltransferase genes involved in the glycosylation of flavonoids were identified through correlation networks and phylogenetic analysis. CmNAC1, CmbZIP3, and other transcription factors potentially regulating flavonoid metabolism and responding to low temperatures were discovered by correlation analysis and weighted gene co-expression network analysis (WGCNA). In conclusion, this study elucidated the specific response of flavonoids to low temperatures in Chrysanthemums, providing valuable insights and metabolic data for investigating cold tolerance.


Assuntos
Chrysanthemum , Flavonoides , Regulação da Expressão Gênica de Plantas , Metabolômica , Transcriptoma , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flavonoides/metabolismo , Metabolômica/métodos , Temperatura Baixa , Perfilação da Expressão Gênica/métodos , Flores/metabolismo , Flores/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Antocianinas/metabolismo , Resposta ao Choque Frio , Redes Reguladoras de Genes , Metaboloma
4.
Physiol Plant ; 176(3): e14373, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38894555

RESUMO

Chrysanthemum morifolium is cultivated worldwide and has high ornamental, tea, and medicinal value. With the increasing area of chrysanthemum cultivation and years of continuous cropping, Fusarium wilt disease frequently occurs in various production areas, seriously affecting the quality and yield and causing huge economic losses. However, the molecular response mechanism of Fusarium wilt infection remains unclear, which limits the molecular breeding process for disease resistance in chrysanthemums. In the present study, we analyzed the molecular response mechanisms of 'Huangju,' one of the tea chrysanthemum cultivars severely infested with Fusarium wilt in the field at the early, middle, and late phases of F. oxysporum infestation. 'Huangju' responded to the infestation mainly through galactose metabolism, plant-pathogen interaction, auxin, abscisic acid, and ethylene signalling in the early phase; galactose metabolism, plant-pathogen interaction, auxin, salicylic acid signal, and certain transcription factors (e.g., CmWRKY48) in the middle phase; and galactose metabolism in the late phase. Notably, the galactose metabolism was important in the early, middle, and late phases of 'Huangju' response to F. oxysporum. Meanwhile, the phytohormone auxin was involved in the early and middle responses. Furthermore, silencing of CmWRKY48 in 'Huangju' resulted in resistance to F. oxysporum. Our results revealed a new molecular pattern for chrysanthemum in response to Fusarium wilt in the early, middle, and late phases, providing a foundation for the molecular breeding of chrysanthemum for disease resistance.


Assuntos
Chrysanthemum , Fusarium , Doenças das Plantas , Reguladores de Crescimento de Plantas , Fusarium/patogenicidade , Fusarium/fisiologia , Chrysanthemum/microbiologia , Chrysanthemum/genética , Chrysanthemum/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Reguladores de Crescimento de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Resistência à Doença/genética , Ácido Abscísico/metabolismo , Interações Hospedeiro-Patógeno , Galactose/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
5.
BMC Genomics ; 25(1): 593, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867153

RESUMO

BACKGROUND: Terpenes are important components of plant aromas, and terpene synthases (TPSs) are the key enzymes driving terpene diversification. In this study, we characterized the volatile terpenes in five different Chrysanthemum nankingense tissues. In addition, genome-wide identification and expression analysis of TPS genes was conducted utilizing an improved chromosome-scale genome assembly and tissue-specific transcriptomes. The biochemical functions of three representative TPSs were also investigated. RESULTS: We identified tissue-specific volatile organic compound (VOC) and volatile terpene profiles. The improved Chrysanthemum nankingense genome assembly was high-quality, including a larger assembled size (3.26 Gb) and a better contig N50 length (3.18 Mb) compared to the old version. A total of 140 CnTPS genes were identified, with the majority representing the TPS-a and TPS-b subfamilies. The chromosomal distribution of these TPS genes was uneven, and 26 genes were included in biosynthetic gene clusters. Closely-related Chrysanthemum taxa were also found to contain diverse TPS genes, and the expression profiles of most CnTPSs were tissue-specific. The three investigated CnTPS enzymes exhibited versatile activities, suggesting multifunctionality. CONCLUSIONS: We systematically characterized the structure and diversity of TPS genes across the Chrysanthemum nankingense genome, as well as the potential biochemical functions of representative genes. Our results provide a basis for future studies of terpene biosynthesis in chrysanthemums, as well as for the breeding of improved chrysanthemum varieties.


Assuntos
Alquil e Aril Transferases , Chrysanthemum , Genoma de Planta , Família Multigênica , Terpenos , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Chrysanthemum/genética , Chrysanthemum/enzimologia , Terpenos/metabolismo , Filogenia , Compostos Orgânicos Voláteis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma
6.
Sci Rep ; 14(1): 14170, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898082

RESUMO

Dendranthema grandiflora is an important cut flower with high economic importance in the floriculture industry. Identification of stable and high yielding genotypes of Dendranthema grandiflora, hence becomes paramount for ensuring its year-round production. In this context, the genotype by environment interaction effects on 22 chrysanthemum hybrids across six test environments were investigated. The experiment was conducted using Randomized Complete Block Design with three replications for 6 years and data on various agro-morphological and yield-contributing traits were evaluated. Our analysis revealed significant mean sum of squares due to environmental, genotypic and genotype by environment interaction variations for all examined traits. A 2D GGE biplot constructed using first two principal components computed as 59.2% and 23.3% of the differences in genotype by environment interaction for flower yield per plant. The GGE biplot identified two top-performing genotypes, G2 and G5, while the AMMI model highlighted genotypes G17, G15, G6, G5, and G2 as the best performers. Genotype G17 ranked highest for multiple traits, while G2 displayed high mean flower yield as well as stability across all environments. According to AEC line, genotypes G2 and G5 exhibited exceptional stability, whereas genotypes G4, G18 and G19 demonstrated lower stability but maintained high average flower yields. Hence, our findings provide valuable insights into chrysanthemum hybrids that were not only best performing but also hold promise to meet the growers demand of the cut flower industry and can be recommended for large scale commercial cultivation.


Assuntos
Chrysanthemum , Flores , Genótipo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Hibridização Genética , Interação Gene-Ambiente , Fenótipo , Melhoramento Vegetal/métodos , Himalaia
7.
Plant J ; 119(3): 1336-1352, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864745

RESUMO

Acacetin, a flavonoid compound, possesses a wide range of pharmacological effects, including antimicrobial, immune regulation, and anticancer effects. Some key steps in its biosynthetic pathway were largely unknown in flowering plants. Here, we present the first haplotype-resolved genome of Chrysanthemum indicum, whose dried flowers contain abundant flavonoids and have been utilized as traditional Chinese medicine. Various phylogenetic analyses revealed almost equal proportion of three tree topologies among three Chrysanthemum species (C. indicum, C. nankingense, and C. lavandulifolium), indicating that frequent gene flow among Chrysanthemum species or incomplete lineage sorting due to rapid speciation might contribute to conflict topologies. The expanded gene families in C. indicum were associated with oxidative functions. Through comprehensive candidate gene screening, we identified five flavonoid O-methyltransferase (FOMT) candidates, which were highly expressed in flowers and whose expressional levels were significantly correlated with the content of acacetin. Further experiments validated two FOMTs (CI02A009970 and CI03A006662) were capable of catalyzing the conversion of apigenin into acacetin, and these two genes are possibly responsible acacetin accumulation in disc florets and young leaves, respectively. Furthermore, combined analyses of ancestral chromosome reconstruction and phylogenetic trees revealed the distinct evolutionary fates of the two validated FOMT genes. Our study provides new insights into the biosynthetic pathway of flavonoid compounds in the Asteraceae family and offers a model for tracing the origin and evolutionary routes of single genes. These findings will facilitate in vitro biosynthetic production of flavonoid compounds through cellular and metabolic engineering and expedite molecular breeding of C. indicum cultivars.


Assuntos
Chrysanthemum , Evolução Molecular , Flavonas , Genoma de Planta , Filogenia , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Chrysanthemum/enzimologia , Flavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta/genética , Haplótipos , Diploide , Flavonoides/metabolismo , Flavonoides/biossíntese , Flores/genética , Flores/enzimologia , Flores/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo
8.
Plant Cell Rep ; 43(6): 157, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38819475

RESUMO

KEY MESSAGE: CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.


Assuntos
Antocianinas , Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Pigmentação , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/genética , Flores/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antocianinas/metabolismo , Pigmentação/genética , Transcriptoma/genética , Metabolômica/métodos , Metaboloma/genética , Perfilação da Expressão Gênica , Cor , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
PLoS One ; 19(5): e0301721, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718030

RESUMO

Small molecular heat shock proteins (sHSPs) belong to the HSP family of molecular chaperones. Under high-temperature stress, they can prevent the aggregation of irreversible proteins and maintain the folding of denatured proteins to enhance heat resistance. In this study, the CmHSP17.9-1 and CmHSP17.9-2 genes, which were cloned from chrysanthemum (Chrysanthemum×morifolium 'Jinba') by homologous cloning, had a complete open reading frame of 480 bp each, encoding 159 amino acids. The protein subcellular localization analysis showed that CmHSP17.9-1 and CmHSP17.9-2 were located in the cytoplasm and mostly aggregated in granules, especially around the nucleus. Real-time quantitative PCR (qRT-PCR) analysis showed that the relative expression level of the CmHSP17.9-1 and CmHSP17.9-2 genes was highest in the terminal buds of the chrysanthemum, followed by the leaves. CmHSP17.9-1 and CmHSP17.9-2 overex-pression vectors were constructed and used to transform the chrysanthemum; overexpression of these genes led to the chrysanthemum phenotypes being less affected by high-temperature, and the antioxidant capacity was enhanced. The results showed that chrysanthemum with overex-pression of the CmHSP17.9-1 and CmHSP17.9-2 genes had stronger tolerance than the wild type chrysanthemum after high-temperature treatment or some degree of heat exercise, and overex-pression of the CmHSP17.9-1 gene led to stronger heat resistance than that of the CmHSP17.9-2 gene, providing an important theoretical basis for the subsequent molecular breeding and pro-duction applications of chrysanthemum.


Assuntos
Chrysanthemum , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas , Proteínas de Plantas , Sequência de Aminoácidos , Chrysanthemum/genética , Clonagem Molecular , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética
10.
Plant Physiol ; 195(4): 3119-3135, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38668629

RESUMO

Excessive soil salinity not only hampers plant growth and development but can also lead to plant death. Previously, we found that heat-shock factor A4 (CmHSFA4) enhances the tolerance of chrysanthemum (Chrysanthemum morifolium) to salt. However, the underlying molecular mechanism remains unclear. In this study, we identified a candidate MYB transcription factor, CmMYB121, which responded to salt stress. We observed that the CmMYB121 transcription is suppressed by CmHSFA4. Moreover, overexpression of CmMYB121 exacerbated chrysanthemum sensitivity to salt stress. CmHSFA4 directly bound to the promoter of CmMYB121 at the heat-shock element. Protein-protein interaction assays identified an interaction between CmHSFA4 and CmMYBS3, a transcriptional repressor, and recruited the corepressor TOPLESS (CmTPL) to inhibit CmMYB121 transcription by impairing the H3 and H4 histone acetylation levels of CmMYB121. Our study demonstrated that a CmHSFA4-CmMYBS3-CmTPL complex modulates CmMYB121 expression, consequently regulating the tolerance of chrysanthemum to salt. The findings shed light on the responses of plants to salt stress.


Assuntos
Chrysanthemum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Tolerância ao Sal , Fatores de Transcrição , Chrysanthemum/genética , Chrysanthemum/fisiologia , Chrysanthemum/efeitos dos fármacos , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Tolerância ao Sal/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Estresse Salino/genética
11.
Plant Cell Environ ; 47(8): 2923-2935, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38629334

RESUMO

Floral transition, the switch from vegetative to reproductive growth, is extremely important for the growth and development of flowering plants. In the summer chrysanthemum, CmBBX8, a member of the subgroup II B-box (BBX) family, positively regulates the transition by physically interacting with CmERF3 to inhibit CmFTL1 expression. In this study, we show that CmBBX5, a B-box subgroup I member comprising two B-boxes and a CCT domain, interacts with CmBBX8. This interaction suppresses the recruitment of CmBBX8 to the CmFTL1 locus without affecting its transcriptional activation activity. CmBBX5 overexpression led to delayed flowering under both LD (long-day) and SD (short-day) conditions, while lines expressing the chimeric repressor gene-silencing (CmBBX5-SRDX) exhibited the opposite phenotype. Subsequent genetic evidence indicated that in regulating flowering, CmBBX5 is partially dependent on CmBBX8. Moreover, during the vegetative growth period, levels of CmBBX5 expression were found to exceed those of CmBBX8. Collectively, our findings indicate that both CmERF3 and CmBBX5 interact with CmBBX8 to dampen the regulation of CmFTL1 via distinct mechanisms, which contribute to preventing the premature flowering of summer chrysanthemum.


Assuntos
Chrysanthemum , Flores , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Chrysanthemum/genética , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/metabolismo , Chrysanthemum/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Flores/crescimento & desenvolvimento , Flores/genética , Flores/metabolismo , Plantas Geneticamente Modificadas , Reprodução , Fotoperíodo
12.
Plant Sci ; 344: 112105, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38663481

RESUMO

As the most prominent proton pumps in plants, vacuolar H+-ATPases (VHAs) comprise multiple subunits that are important for physiological processes and stress tolerance in plants. However, few studies on the roles of subunit genes of VHAs in chrysanthemum have been reported to date. In this study, the gene of A subunit of V-ATPase in chrysanthemum (CmVHA-A) was cloned and identified. CmVHA-A was conserved with VHA-A proteins from other plants. Expression analysis showed that CmVHA-A was highly expressed in most tissues of chrysanthemum except for the flower bud, and was readily induced by polyethylene glycol (PEG) treatment. Functional analysis demonstrated that CmVHA-A exerted a negative influence on the growth and development of shoot and root of chrysanthemum under normal conditions. RNA-sequencing (RNA-seq) analysis revealed the possible explanations for phenotypic differences between transgenic and wild-type (WT) plants. Under drought conditions, CmVHA-A positively affected the drought tolerance of chrysanthemum by enhancing antioxidase activity and alleviating photosynthetic disruption. Overall, CmVHA-A plays opposite roles in plant growth and drought tolerance of chrysanthemums under different growing conditions.


Assuntos
Chrysanthemum , Proteínas de Plantas , ATPases Vacuolares Próton-Translocadoras , Chrysanthemum/genética , Chrysanthemum/fisiologia , Chrysanthemum/crescimento & desenvolvimento , Chrysanthemum/enzimologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Filogenia , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Resistência à Seca
13.
Zhongguo Zhong Yao Za Zhi ; 49(3): 702-716, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38621874

RESUMO

Uridine diphosphate glycosyltransferase(UGT) is involved in the glycosylation of a variety of secondary metabolites in plants and plays an important role in plant growth and development and regulation of secondary metabolism. Based on the genome of a diploid Chrysanthemum indicum, the UGT gene family from Ch. indicum was identified by bioinformatics methods, and the physical and chemical properties, subcellular localization prediction, conserved motif, phylogeny, chromosome location, gene structure, and gene replication events of UGT protein were analyzed. Transcriptome and real-time fluorescence quantitative polymerase chain reaction(PCR) were used to analyze the expression pattern of the UGT gene in flowers and leaves of Ch. indicum. Quasi-targeted metabolomics was used to analyze the differential metabolites in flowers and leaves. The results showed that a total of 279 UGT genes were identified in the Ch. indicum genome. Phylogenetic analysis showed that these UGT genes were divided into 8 subfamilies. Members of the same subfamily were distributed in clusters on the chromosomes. Tandem duplications were the main driver of the expansion of the UGT gene family from Ch. indicum. Structural domain analysis showed that 262 UGT genes had complete plant secondary metabolism signal sequences(PSPG box). The analysis of cis-acting elements indicated that light-responsive elements were the most ubiquitous elements in the promoter regions of UGT gene family members. Quasi-targeted metabolome analysis of floral and leaf tissue revealed that most of the flavonoid metabolites, including luteolin-7-O-glucoside and kaempferol-7-O-glucoside, had higher accumulation in flowers. Comparative transcriptome analysis of flower and leaf tissue showed that there were 72 differentially expressed UGT genes, of which 29 genes were up-regulated in flowers, and 43 genes were up-regulated in leaves. Correlation network and phylogenetic analysis showed that CindChr9G00614970.1, CindChr2G00092510.1, and CindChr2G00092490.1 may be involved in the synthesis of 7-O-flavonoid glycosides in Ch. indicum, and real-time fluorescence quantitative PCR analysis further confirmed the reliability of transcriptome data. The results of this study are helpful to understand the function of the UGT gene family from Ch. indicum and provide data reference and theoretical basis for further study on the molecular regulation mechanism of flavonoid glycosides synthesis in Ch. indicum.


Assuntos
Chrysanthemum , Glicosiltransferases , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Chrysanthemum/genética , Difosfato de Uridina , Filogenia , Reprodutibilidade dos Testes , Plantas/metabolismo , Flavonoides , Glicosídeos , Regulação da Expressão Gênica de Plantas
14.
BMC Plant Biol ; 24(1): 232, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561659

RESUMO

BACKGROUND: Chrysanthemum, one of the four major cut flowers all over the world, is very sensitive to salinity during cultivation. DNA binding with one finger (DOF) transcription factors play important roles in biological processes in plants. The response mechanism of CmDOF18 from chrysanthemum to salt stress remains unclear. RESULTS: In this study, CmDOF18 was cloned from Chrysanthemum morifolium, and its expression was induced by salinity stress. The gene encodes a 291-amino acid protein with a typical DOF domain. CmDOF18 was localized to the nucleus in onion epidermal cells and showed transcriptional activation in yeast. CmDOF18 transgenic plants were generated to identify the role of this gene in resistance to salinity treatment. Chrysanthemum plants overexpressing CmDOF18 were more resistant to salinity stress than wild-type plants. Under salinity stress, the malondialdehyde content and leaf electrolyte conductivity in CmDOF18-overexpressing transgenic plants were lower than those in wild-type plants, while the proline content, chlorophyll content, superoxide dismutase activity and peroxidase activity were higher than those in wild-type plants. The opposite findings were observed in gene-silenced plants compared with wild-type plants. The gene expression levels of oxidoreductase increased in CmDOF18-overexpressing transgenic plants but decreased in CmDOF18-SRDX gene-silenced transgenic plants. CONCLUSION: In summary, we analyzed the function of CmDOF18 from chrysanthemum, which may regulate salinity stress in plants, possibly due to its role in the regulation of oxidoreductase.


Assuntos
Chrysanthemum , Oxirredutases , Oxirredutases/metabolismo , Tolerância ao Sal/genética , Chrysanthemum/genética , Chrysanthemum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Saccharomyces cerevisiae/metabolismo , Salinidade , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico/genética
15.
BMC Plant Biol ; 24(1): 259, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594635

RESUMO

BACKGROUND: Heterosis breeding is one of the most important breeding methods for chrysanthemum. To date, the genetic mechanisms of heterosis for waterlogging tolerance in chrysanthemum are still unclear. This study aims to analyze the expression profiles and potential heterosis-related genes of two hybrid lines and their parents with extreme differences in waterlogging tolerance under control and waterlogging stress conditions by RNA-seq. RESULTS: A population of 140 F1 progeny derived from Chrysanthemum indicum (Nanchang) (waterlogging-tolerant) and Chrysanthemum indicum (Nanjing) (waterlogging-sensitive) was used to characterize the extent of genetic variation in terms of seven waterlogging tolerance-related traits across two years. Lines 98 and 95, respectively displaying positive and negative overdominance heterosis for the waterlogging tolerance traits together with their parents under control and waterlogging stress conditions, were used for RNA-seq. In consequence, the maximal number of differentially expressed genes (DEGs) occurred in line 98. Gene ontology (GO) enrichment analysis revealed multiple stress-related biological processes for the common up-regulated genes. Line 98 had a significant increase in non-additive genes under waterlogging stress, with transgressive up-regulation and paternal-expression dominant patterns being the major gene expression profiles. Further, GO analysis identified 55 and 95 transgressive up-regulation genes that overlapped with the up-regulated genes shared by two parents in terms of responses to stress and stimulus, respectively. 6,640 genes in total displaying maternal-expression dominance patterns were observed in line 95. In addition, 16 key candidate genes, including SAP12, DOX1, and ERF017 which might be of significant importance for the formation of waterlogging tolerance heterosis in line 98, were highlighted. CONCLUSION: The current study provides a comprehensive overview of the root transcriptomes among F1 hybrids and their parents under waterlogging stress. These findings lay the foundation for further studies on molecular mechanisms underlying chrysanthemum heterosis on waterlogging tolerance.


Assuntos
Chrysanthemum , Transcriptoma , Vigor Híbrido/genética , Chrysanthemum/genética , Melhoramento Vegetal , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
16.
Int J Mol Sci ; 25(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38542341

RESUMO

The diversity in the petal morphology of chrysanthemums makes this species an excellent model for investigating the regulation mechanisms of petal size. However, our understanding of the molecular regulation of petal growth in chrysanthemums remains limited. The GASA (gibberellic acid [GA]-stimulated Arabidopsis) protein plays a significant role in various aspects of plant growth and development. Previous studies have indicated that GEG (a gerbera homolog of the gibberellin-stimulated transcript 1 [GAST1] from tomato) is involved in regulating ray petal growth by inhibiting cell expansion in gerberas. In this study, we successfully cloned the GASA family gene from chrysanthemums, naming it CmGEG, which shares 81.4% homology with GEG. Our spatiotemporal expression analysis revealed that CmGEG is expressed in all tissues, with the highest expression levels observed in the ray florets, particularly during the later stages of development. Through transformation experiments, we demonstrated that CmGEG inhibits petal elongation in chrysanthemums. Further observations indicated that CmGEG restricts cell elongation in the top, middle, and basal regions of the petals. To investigate the relationship between CmGEG and GA in petal growth, we conducted a hormone treatment assay using detached chrysanthemum petals. Our results showed that GA promotes petal elongation while downregulating CmGEG expression. In conclusion, the constrained growth of chrysanthemum petals may be attributed to the inhibition of cell elongation by CmGEG, a process regulated by GA.


Assuntos
Proteínas de Arabidopsis , Asteraceae , Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Flores/metabolismo , Giberelinas/farmacologia , Giberelinas/metabolismo , Asteraceae/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
17.
Plant Cell Rep ; 43(4): 84, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448703

RESUMO

KEY MESSAGE: The dynamic genetic architecture of flowering time in chrysanthemum was elucidated by GWAS. Thirty-six known genes and 14 candidate genes were identified around the stable QTNs and QEIs, among which ERF-1 was highlighted. Flowering time (FT) adaptation is one of the major breeding goals in chrysanthemum, a multipurpose ornamental plant. In order to reveal the dynamic genetic architecture of FT in chrysanthemum, phenotype investigation of ten FT-related traits was conducted on 169 entries in 2 environments. The broad-sense heritability of five non-conditional FT traits, i.e., budding (FBD), visible coloring (VC), early opening (EO), full-bloom (OF) and decay period (DP), ranged from 56.93 to 84.26%, which were higher than that of the five derived conditional FT traits (38.51-75.13%). The phenotypic variation coefficients of OF_EO and DP_OF were relatively large ranging from 30.59 to 36.17%. Based on 375,865 SNPs, the compressed variance component mixed linear model 3VmrMLM was applied for a multi-locus genome-wide association study (GWAS). As a result, 313 quantitative trait nucleotides (QTNs) were identified for the non-conditional FT traits in single-environment analysis, while 119 QTNs and 67 QTN-by-environment interactions (QEIs) were identified in multi-environment analysis. As for the conditional traits, 343 QTNs were detected in single-environment analysis, and 119 QTNs and 83 QEIs were identified in multi- environment analysis. Among the genes around stable QTNs and QEIs, 36 were orthologs of known FT genes in Arabidopsis and other plants; 14 candidates were mined by combining the transcriptomics data and functional annotation, including ERF-1, ACA10, and FOP1. Furthermore, the haplotype analysis of ERF-1 revealed six elite accessions with extreme FBD. Our findings contribute to the understanding of dynamic genetic architecture of FT and provide valuable resources for future chrysanthemum molecular breeding programs.


Assuntos
Arabidopsis , Chrysanthemum , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Reprodução , Chrysanthemum/genética
18.
Cell Rep ; 43(2): 113725, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38300800

RESUMO

Flavonoids are a class of secondary metabolites widely distributed in plants. Regiospecific modification by methylation and glycosylation determines flavonoid diversity. A rare flavone glycoside, diosmin (luteolin-4'-methoxyl-7-O-glucosyl-rhamnoside), occurs in Chrysanthemum indicum. How Chrysanthemum plants evolve new biosynthetic capacities remains elusive. Here, we assemble a 3.11-Gb high-quality C. indicum genome with a contig N50 value of 4.39 Mb and annotate 50,606 protein-coding genes. One (CiCOMT10) of the tandemly repeated O-methyltransferase genes undergoes neofunctionalization, preferentially transferring the methyl group to the 4'-hydroxyl group of luteolin with ortho-substituents to form diosmetin. In addition, CiUGT11 (UGT88B3) specifically glucosylates 7-OH group of diosmetin. Next, we construct a one-pot cascade biocatalyst system by combining CiCOMT10, CiUGT11, and our previously identified rhamnosyltransferase, effectively producing diosmin with over 80% conversion from luteolin. This study clarifies the role of transferases in flavonoid diversity and provides important gene elements essential for producing rare flavone.


Assuntos
Chrysanthemum , Diosmina , Flavonas , Metiltransferases/genética , Luteolina , Glucosiltransferases/genética , Chrysanthemum/genética , Genômica , Flavonoides
19.
J Integr Plant Biol ; 66(2): 285-299, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38314502

RESUMO

Roots are fundamental for plants to adapt to variable environmental conditions. The development of a robust root system is orchestrated by numerous genetic determinants and, among them, the MADS-box gene ANR1 has garnered substantial attention. Prior research has demonstrated that, in chrysanthemum, CmANR1 positively regulates root system development. Nevertheless, the upstream regulators involved in the CmANR1-mediated regulation of root development remain unidentified. In this study, we successfully identified bric-a-brac, tramtrack and broad (BTB) and transcription adapter putative zinc finger (TAZ) domain protein CmBT1 as the interacting partner of CmANR1 through a yeast-two-hybrid (Y2H) screening library. Furthermore, we validated this physical interaction through bimolecular fluorescence complementation and pull-down assays. Functional assays revealed that CmBT1 exerted a negative influence on root development in chrysanthemum. In both in vitro and in vivo assays, it was evident that CmBT1 mediated the ubiquitination of CmANR1 through the ubiquitin/26S proteasome pathway. This ubiquitination subsequently led to the degradation of the CmANR1 protein and a reduction in the transcription of CmANR1-targeted gene CmPIN2, which was crucial for root development in chrysanthemum. Genetic analysis suggested that CmBT1 modulated root development, at least in part, by regulating the level of CmANR1 protein. Collectively, these findings shed new light on the regulatory role of CmBT1 in degrading CmANR1 through ubiquitination, thereby repressing the expression of its targeted gene and inhibiting root development in chrysanthemum.


Assuntos
Chrysanthemum , Chrysanthemum/genética , Chrysanthemum/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitinação , Ligação Proteica , Dedos de Zinco , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
20.
Plant Physiol Biochem ; 207: 108405, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354529

RESUMO

Low temperatures can severely affect plant growth and reduce their ornamental value. A family of plant histone deacetylases allows plants to cope with both biotic and abiotic stresses. In this study, we screened and cloned the cDNA of DgSRT2 obtained from transcriptome sequencing of chrysanthemum leaves under low-temperature stress. Sequence analysis showed that DgSRT2 belongs to the sirtuin family of histone deacetylases. We obtained the stable transgenic chrysanthemum lines OE-2 and OE-12. DgSRT2 showed tissue specificity in wild-type chrysanthemum and was most highly expressed in leaves. Under low-temperature stress, the OE lines showed higher survival rates, proline content, solute content, and antioxidant enzyme activities, and lower relative electrolyte leakage, malondialdehyde, hydrogen peroxide, and superoxide ion accumulation than the wild-type lines. This work suggests that DgSRT2 can serve as an essential gene for enhancing cold resistance in plants. In addition, a series of cold-responsive genes in the OE line were compared with WT. The results showed that DgSRT2 exerted a positive regulatory effect by up-regulating the transcript levels of cold-responsive genes. The above genes help to increase antioxidant activity, maintain membrane stability and improve osmoregulation, thereby enhancing survival under cold stress. It can be concluded from the above work that DgSRT2 enhances chrysanthemum tolerance to low temperatures by scavenging the ROS system.


Assuntos
Chrysanthemum , Espécies Reativas de Oxigênio , Temperatura , Chrysanthemum/genética , Superóxidos/metabolismo , Estresse Fisiológico/genética , Resposta ao Choque Frio , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA