Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Physiol ; 176(1): 524-537, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122986

RESUMO

Flowers of Tanacetum cinerariifolium produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated. TcCDS produces free trans-chrysanthemol in addition to trans-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of trans-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNA sequencing-based approach and coexpression correlation analysis to identify several candidate genes encoding putative trans-chrysanthemol and trans-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of in vitro biochemical assays and heterologous expression in planta to demonstrate that TcADH2 encodes an enzyme that oxidizes trans-chrysanthemol to trans-chrysanthemal, while TcALDH1 encodes an enzyme that oxidizes trans-chrysanthemal into trans-chrysanthemic acid. Transient coexpression of TcADH2 and TcALDH1 together with TcCDS in Nicotiana benthamiana leaves results in the production of trans-chrysanthemic acid as well as several other side products. The majority (58%) of trans-chrysanthemic acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host.


Assuntos
Vias Biossintéticas/genética , Chrysanthemum cinerariifolium/enzimologia , Chrysanthemum cinerariifolium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inseticidas/química , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Piretrinas/química , Chrysanthemum cinerariifolium/genética , Flores/metabolismo , Genes de Plantas , Estudos de Associação Genética , Cinética , Oxirredutases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piretrinas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo
2.
J Biol Chem ; 289(52): 36325-35, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25378387

RESUMO

Chrysanthemyl diphosphate synthase (CDS) is the first pathway-specific enzyme in the biosynthesis of pyrethrins, the most widely used plant-derived pesticide. CDS catalyzes c1'-2-3 cyclopropanation reactions of two molecules of dimethylallyl diphosphate (DMAPP) to yield chrysanthemyl diphosphate (CPP). Three proteins are known to catalyze this cyclopropanation reaction of terpene precursors. Two of them, phytoene and squalene synthase, are bifunctional enzymes with both prenyltransferase and terpene synthase activity. CDS, the other member, has been reported to perform only the prenyltransferase step. Here we show that the NDXXD catalytic motif of CDS, under the lower substrate conditions prevalent in plants, also catalyzes the next step, converting CPP into chrysanthemol by hydrolyzing the diphosphate moiety. The enzymatic hydrolysis reaction followed conventional Michaelis-Menten kinetics, with a Km value for CPP of 196 µm. For the chrysanthemol synthase activity, DMAPP competed with CPP as substrate. The DMAPP concentration required for half-maximal activity to produce chrysanthemol was ∼100 µm, and significant substrate inhibition was observed at elevated DMAPP concentrations. The N-terminal peptide of CDS was identified as a plastid-targeting peptide. Transgenic tobacco plants overexpressing CDS emitted chrysanthemol at a rate of 0.12-0.16 µg h(-1) g(-1) fresh weight. We propose that CDS should be renamed a chrysanthemol synthase utilizing DMAPP as substrate.


Assuntos
Alquil e Aril Transferases/fisiologia , Chrysanthemum cinerariifolium/enzimologia , Proteínas de Plantas/fisiologia , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Sequência de Aminoácidos , Vias Biossintéticas , Dados de Sequência Molecular , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Nicotiana/genética
3.
Biosci Biotechnol Biochem ; 77(9): 1822-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24018659

RESUMO

We have recently discovered that a GDSL lipase/esterase (TcGLIP) in Tanacetum cinerariifolium catalyzed acyltransferase activity to form an ester bond in the natural insecticide, pyrethrin. TcGLIP contained Ser40 in Block I, Gly64 in Block II, Asn168 in Block III and Asp318 and His321 in Block V, suggesting underlying hydrolase activity, although little is known about their role in acyltransferase activity. We expressed TcGLIP here in Esherichia coli as a fusion with maltose-binding protein (MBP), part of the fusion being cleaved with a protease to obtain MBP-free TcGLIP. A kinetic analysis revealed that the MBP moiety scarcely influenced the kinetic parameters. The effects on acyltransferase activity of mutations of Gly64, Asn168, Asp318 and His321 were investigated by using MBP-fused TcGLIP. Mutations of these amino acids markedly reduced the acyltransferase activity, suggesting their critical role in the production of pyrethrins.


Assuntos
Aciltransferases/metabolismo , Biocatálise , Chrysanthemum cinerariifolium/enzimologia , Lipase/química , Lipase/metabolismo , Piretrinas/metabolismo , Sequência de Aminoácidos , Esterificação , Lipase/genética , Proteínas Ligantes de Maltose/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Lipids ; 48(10): 1005-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893337

RESUMO

The lipid precursor alcohols of pyrethrins-jasmolone, pyrethrolone and cinerolone-have been proposed as sharing parts of the oxylipin pathway with jasmonic acid. This implies that one of the first committed steps of pyrethrin biosynthesis is catalyzed by a lipoxygenase, catalyzing the hydroperoxidation of linolenic acid at position 13. Previously, we showed that the expression and activity of chrysanthemyl diphosphate synthase (TcCDS), the enzyme catalyzing the first committed step in the biosynthesis of the acid moiety of pyrethrins, is trichome-specific and developmentally regulated in flowers. In the present study we characterized the expression pattern of 25 lipoxygenase EST contigs, and subsequently carried out the molecular cloning of two pyrethrum lipoxygenases, TcLOX1 and TcLOX2, that have a similar pattern to TcCDS. Only recombinant TcLOX1 catalyzed the peroxidation of the linolenic acid substrate. Just as TcCDS, TcLOX1, are exclusively expressed in trichomes. Phylogenetic analysis showed that the enzyme shared the highest homology with chloroplast-localized 13-type-lipoxygenases that are involved in maintaining basal levels of jasmonate.


Assuntos
Chrysanthemum cinerariifolium , Ácido Linoleico/química , Lipoxigenase , Piretrinas/metabolismo , Tricomas , Sequência de Aminoácidos , Chrysanthemum cinerariifolium/classificação , Chrysanthemum cinerariifolium/enzimologia , Chrysanthemum cinerariifolium/genética , Clonagem Molecular , Lipoxigenase/genética , Lipoxigenase/metabolismo , Dados de Sequência Molecular , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tricomas/química , Tricomas/enzimologia
5.
Plant J ; 71(2): 183-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22385412

RESUMO

Although natural insecticides pyrethrins produced by Tanacetum cinerariifolium are used worldwide to control insect pest species, little information is known of their biosynthesis. From the buds of T. cinerariifolium, we have purified a protein that is able to transfer the chrysanthemoyl group from the coenzyme A (CoA) thioester to pyrethrolone to produce pyrethrin I and have isolated cDNAs that encode the enzyme. To our surprise, the active principle was not a member of a known acyltransferase family but a member of the GDSL lipase family. The recombinant enzyme (TcGLIP) was expressed in Escherichia coli and displayed the acyltransferase reaction with high substrate specificity, recognized the absolute configurations of three asymmetric carbons and also showed esterase activity. A S40A mutation in the Block I domain reduced both acyltransferase and esterase activities, which suggested an important role of this serine residue in these two activities. The signal peptide directed the localization of TcGLIP::enhanced green fluorescent protein (EGFP) fusion, as well as EGFP, to the extracellular space. High TcGLIP gene expression was observed in the leaves of mature plants and seedlings as well as in buds and flowers, a finding that was consistent with the pyrethrin I content in these parts. Expression was enhanced in response to wounding, which suggested that the enzyme plays a key role in the defense mechanism of T. cinerariifolium.


Assuntos
Aciltransferases/metabolismo , Chrysanthemum cinerariifolium/enzimologia , Inseticidas/metabolismo , Lipase/metabolismo , Piretrinas/metabolismo , Aciltransferases/genética , Aciltransferases/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Chrysanthemum cinerariifolium/química , Chrysanthemum cinerariifolium/citologia , Chrysanthemum cinerariifolium/genética , Esterases/genética , Esterases/isolamento & purificação , Esterases/metabolismo , Ésteres , Flores/enzimologia , Flores/genética , Expressão Gênica/genética , Inseticidas/análise , Inseticidas/química , Cinética , Lipase/genética , Lipase/isolamento & purificação , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Caules de Planta/enzimologia , Caules de Planta/genética , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Piretrinas/análise , Piretrinas/química , Proteínas Recombinantes de Fusão , Plântula/enzimologia , Plântula/genética , Especificidade por Substrato
6.
Science ; 316(5821): 73-6, 2007 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-17412950

RESUMO

The carbon skeletons of over 55,000 naturally occurring isoprenoid compounds are constructed from four fundamental coupling reactions: chain elongation, cyclopropanation, branching, and cyclobutanation. Enzymes that catalyze chain elongation and cyclopropanation are well studied, whereas those that catalyze branching and cyclobutanation are unknown. We have catalyzed the four reactions with chimeric proteins generated by replacing segments of a chain-elongation enzyme with corresponding sequences from a cyclopropanation enzyme. Stereochemical and mechanistic considerations suggest that the four coupling enzymes could have evolved from a common ancestor through relatively small changes in the catalytic site.


Assuntos
Geraniltranstransferase/metabolismo , Terpenos/metabolismo , Sequência de Aminoácidos , Artemisia/enzimologia , Catálise , Domínio Catalítico , Chrysanthemum cinerariifolium/enzimologia , Ciclopropanos/química , Evolução Molecular , Geraniltranstransferase/química , Geraniltranstransferase/genética , Cinética , Conformação Molecular , Dados de Sequência Molecular , Estrutura Molecular , Mutagênese Sítio-Dirigida , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Estereoisomerismo , Terpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA