Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Environ Sci (China) ; 148: 387-398, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095174

RESUMO

Land use and precipitation are two major factors affecting phosphorus (P) pollution of watershed runoff. However, molecular characterization of dissolved organic phosphorus (DOP) in runoff under the joint influences of land use and precipitation remains limited. This study used Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) to study the molecular characteristics of DOP in a typical P-polluted watershed with spatially variable land use and precipitation. The results showed that low precipitation and intense human activity, including phosphate mining and associated industries, resulted in the accumulation of aliphatic DOP compounds in the upper reaches, characterized by low aromaticity and low biological stability. Higher precipitation and widespread agriculture in the middle and lower reaches resulted in highly unsaturated DOP compounds with high biological stability constituting a higher proportion, compared to in the upper reaches. While, under similar precipitation, more aliphatic DOP compounds characterized by lower aromaticity and higher saturation were enriched in the lower reaches due to more influence from urban runoff relative to the middle reaches. Photochemical and/or microbial processes did result in changes in the characteristics of DOP compounds during runoff processes due to the prevalence of low molecular weight and low O/C bioavailable aliphatic DOP molecules in the upper reaches, which were increasingly transformed into refractory compounds from the upper to middle reaches. The results of this study can increase the understanding of the joint impacts of land use and precipitation on DOP compounds in watershed runoff.


Assuntos
Monitoramento Ambiental , Fósforo , Poluentes Químicos da Água , Fósforo/análise , Poluentes Químicos da Água/análise , Chuva/química , Agricultura
2.
Environ Monit Assess ; 196(9): 791, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110317

RESUMO

The presence of polycyclic aromatic hydrocarbons (PAHs) pollution on urban road surfaces is one of the major environmental concerns. However, knowledge on the distribution variability of PAHs in road dusts (RDS) and stormwater is limited, which would restrict the further risk evaluation and mitigation implementation of PAHs in road stormwater runoff. This study collected RDS samples and stormwater samples on fourteen urban roads in Shenzhen, China. This study investigated the variation of sixteen PAHs species in RDS and stormwater, and further evaluated the intrinsic and extrinsic factors which influence PAHs accumulation on urban road surfaces. The research outcomes showed significant differences on spatial distribution of PAHs in RDS and in stormwater. The land use types, industrial, commercial and port areas and vehicular volume have a positive relationship with PAHs abundance while dust particle size showed a negative correlation with PAHs abundance. For two phases in stormwater, fluctuation of PAHs with the rainfall duration in total dissolved solid (TDS) was more intensive than in dissolved liquid phase (DLP). This indicated when PAHs attached to RDS enter stormwater, most of PAHs still tend to be on solid particles than in liquid. The study outcomes are expected to contribute to efficient designs of PAHs polluted stormwater mitigation.


Assuntos
Poeira , Monitoramento Ambiental , Hidrocarbonetos Policíclicos Aromáticos , Chuva , Poluentes Químicos da Água , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Chuva/química , China , Poeira/análise , Cidades
3.
Bull Environ Contam Toxicol ; 113(2): 25, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39126524

RESUMO

Considering the environmental impact of triafamone and ethoxysulfuron, it is crucial to investigate their leaching behaviour under different geographical conditions. The present study evaluates the effects of application rate, soil properties and rainfall conditions on leaching of these herbicides and their metabolites. Ethoxysulfuron leached up to 50-60 cm with 82.95 to 89.23% detected in leachates while triafamone leached only to 10-20 cm and was < 0.01 µg mL-1 in leachates. Highest leachability was observed in loamy sand followed by sandy loam and clay loam soil. M1 metabolite (N-(2-((4,6-dimethoxy-1,3,5-triazin-2-yl) (hydroxy) methyl) -6-fluorophenyl) -1,1-difluoro-N-methyl methane sulfonamide) was majorly present in 0 to 10 cm soil depth. With increase in rainfall, downward mobility of both parent and M1 increased. Amendment of loamy sand soil with farmyard manure reduced the leachability indicating it could mitigate groundwater pollution. However, the effect of different exogenous OM amendments on leaching behaviour of herbicides needs to be evaluated.


Assuntos
Monitoramento Ambiental , Herbicidas , Chuva , Poluentes do Solo , Solo , Herbicidas/análise , Poluentes do Solo/análise , Solo/química , Chuva/química , Triazinas/análise , Poluentes Químicos da Água/análise , Sulfonamidas/análise , Sulfonamidas/química
4.
J Environ Radioact ; 278: 107498, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39013308

RESUMO

This paper explores the environmental hazards associated with nuclear facilities in arid regions, focusing on the rapid migration of radionuclides facilitated by flood runoff resulting from extreme rainstorms. Through a case study of a proposed nuclear facility site in China, the study developed a comprehensive model to calculate the transformation of 90Sr and 137Cs in flood and subsurface water during accidents. The methodology employs a combination of field tests, radionuclide adsorption tests, the SWAT model, and the HGS model to create a fully integrated model. This approach allows for the several complex couplings (radionuclide-flood runoff-subsurface water) that have not been previously examined in the reactive solute transport. The findings reveal that despite groundwater movement being relatively sluggish, 90Sr and 137Cs migrate downstream rapidly due to their transportation by floods, which permeate the Upper Pleistocene gravel aquifer along the route. The study underscores the importance of considering the migration of radionuclides carried by floods generated by extreme rainstorms, as it poses a significant risk that cannot be ignored.


Assuntos
Radioisótopos de Césio , Monitoramento de Radiação , Radioisótopos de Estrôncio , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , China , Radioisótopos de Estrôncio/análise , Monitoramento de Radiação/métodos , Poluentes Radioativos da Água/análise , Inundações , Chuva/química , Água Subterrânea/química , Poluentes Radioativos do Solo/análise
5.
Water Res ; 261: 122044, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38972237

RESUMO

Mercury (Hg) in runoff water poses significant ecological risks to aquatic ecosystems that can affect organisms. However, accurately identifying the sources and transformation processes of Hg in runoff water is challenging due to complex natural conditions. This study provides a comprehensive investigation of Hg dynamics in water from rainfall to runoff. The Hg isotope fractionation in water was characterized, which allows accurate quantification of Hg sources, transport, and transformations in rainfall-runoff processes. Δ200Hg and corrected Δ199Hg values can serve as reliable tracers for identifying Hg sources in the runoff water and the variation of δ202Hg can be explained by Hg transformation processes. During runoff migration processes, Hg from rainfall is rapidly absorbed on the land surface, while terrestrial Hg entering the water by the dissolution process becomes the primary component of dissolved mercury (DHg). Besides the dissolution and adsorption, microbial Hg(II) reduction and demethylation of MeHg were dominant processes for DHg in the runoff water that flows through the rice paddies, while photochemical Hg(II) reduction was the dominant process for DHg in the runoff water with low water exchange rates. Particulate Hg (PHg) in runoff water is dominantly originated by the terrestrial material and derived from the dissolution and adsorption process. Tracking sources and transformations of Hg in runoff water during the rainfall-runoff process provides a basis for studying Hg pollution in larger water bodies under complex environmental factors.


Assuntos
Monitoramento Ambiental , Isótopos de Mercúrio , Mercúrio , Chuva , Poluentes Químicos da Água , Mercúrio/análise , Chuva/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Movimentos da Água
6.
Planta ; 260(2): 40, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954049

RESUMO

MAIN CONCLUSION: Rainwater most probably constitutes a relatively effective solvent for lichen substances in nature which have the potential to provide for human and environmental needs in the future. The aims were (i) to test the hypothesis on the potential solubility of lichen phenolic compounds using rainwater under conditions that partly reflect the natural environment and (ii) to propose new and effective methods for the water extraction of lichen substances. The results of spectrophotometric analyses of total phenolic metabolites in rainwater-based extracts from epigeic and epiphytic lichens, employing the Folin-Ciocalteu (F.-C.) method, are presented. The water solvent was tested at three pH levels: natural, 3, and 9. Extraction methods were undertaken from two perspectives: the partial imitation of natural environmental conditions and the potential use of extraction for economic purposes. From an ecological perspective, room-temperature water extraction ('cold' method) was used for 10-, 60-, and 120-min extraction periods. A variant of water extraction at analogous time intervals was an 'insolation' with a 100W light bulb to simulate the heat energy of the sun. For economic purposes, the water extraction method used the Soxhlet apparatus and its modified version, the 'tea-extraction' method ('hot' ones). The results showed that those extractions without an external heat source were almost ineffective, but insolation over 60- and 120-min periods proved to be more effective. Both tested 'hot' methods also proved to be effective, especially the 'tea-extraction' one. Generally, an increase in the concentration of phenolic compounds in water extracts resulted from an increasing solvent pH. The results show the probable involvement of lichen substances in biogeochemical processes in nature and their promising use for a variety of human necessities.


Assuntos
Líquens , Fenóis , Solubilidade , Espectrofotometria , Água , Líquens/química , Líquens/metabolismo , Fenóis/metabolismo , Fenóis/análise , Água/química , Solventes/química , Concentração de Íons de Hidrogênio , Chuva/química
7.
Environ Sci Pollut Res Int ; 31(29): 42476-42491, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38872041

RESUMO

Global water provision challenges have promoted decentralized water supply alternatives such as rainwater harvesting systems (RWHS). RWHS sustainability demands involve social, technical, and economic criteria in planning. Generally, in rural areas, water provision is more complex due to multiple uses of water, scattering of households, and low economies of scale. This research proposes a multicriteria tool for selecting RWHS in rural areas, considering social, technical, and economic criteria. The tool was developed by systematically identifying subcriteria and their hierarchization through the analytical hierarchy process (AHP), the technique for order of preference by similarity to ideal solution (TOPSIS), and a case study validation. Seven subcriteria were identified. The hierarchy of criteria was social (49.7%), technical (26.4%), and economic (23.9%). The tool involved: (i) users' consultation about the perceived ease of use and availability of water sources other than rainwater; (ii) system dimensioning to establish supply size, maintenance requirements, and required water quality; and (iii) costs and benefits estimation. Tool validation in a rural area included the evaluation of the alternatives proposed: (a) alternative 1: potable domestic uses (PD) and non-potable (NPD); (b) alternative 2: PD and NPD, irrigation of crops and chicken farming for self-consumption; and alternative 3: PD and NPD and chicken farming for profit sale. The sensitivity analysis showed the tool's consistency and robustness. Tool validation highlights the importance of integrating the three dimensions in selecting RWHS. The study provides a systematic methodology to assess and prioritize RWHS, appealing to policymakers, engineers, and practitioners facilitating water management and supply processes in rural areas.


Assuntos
Conservação dos Recursos Hídricos , Chuva , Chuva/química , Abastecimento de Água/estatística & dados numéricos , Conservação dos Recursos Hídricos/métodos , Países em Desenvolvimento , Colômbia , Qualidade da Água , Técnicas de Apoio para a Decisão
8.
J Environ Radioact ; 277: 107432, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38833880

RESUMO

Beryllium-7 activity concentrations in the atmosphere and precipitation were continuously measured every day between April 2011 and December 2015 in Dazaifu, western Japan. The measured data were quantitatively analyzed to determine the precipitation-induced variation in 7Be activity concentrations. The average concentrations on nonprecipitation and precipitation days were 5.5 and 3.8 mBq/m3, respectively. This difference of 31% (1.7 mBq/m3) on average, was attributable to the washout effect, which was more significant in the summer. Regarding the association between 7Be activity concentration and precipitation, the concentration remained at a similar level for the small precipitation amount of <5.0 mm/day and showed a decreasing trend (but was insignificant) for the precipitation of 5.0-10.0 mm/day. A significant decrease in the concentration was observed for ≥10 mm/day. Furthermore, when precipitation occurred on two successive days, the 7Be activity concentrations on the second day significantly decreased regardless of precipitation.


Assuntos
Poluentes Radioativos do Ar , Atmosfera , Berílio , Monitoramento de Radiação , Berílio/análise , Japão , Monitoramento de Radiação/métodos , Poluentes Radioativos do Ar/análise , Atmosfera/química , Radioisótopos/análise , Chuva/química , Estações do Ano
9.
Ying Yong Sheng Tai Xue Bao ; 35(4): 951-960, 2024 Apr 18.
Artigo em Chinês | MEDLINE | ID: mdl-38884230

RESUMO

Precipitation in the plum rain period accounts for 40%-50% of annual precipitation in the monsoon region. To clarify the temporal variability of the isotopic composition of precipitation during the plum rain period from event to interannual time scale and identify the influencing factors, we analyzed the isotopic composition of precipitation and its influencing factors in Nanjing from 2015 to 2022. By using the Hybrid Single-particle Lagran-gian Integrated Trajectory (HYSPLIT) model with specific humidity analysis, we investigated the water vapor source and influencing factors. The results showed that 1) the isotopic abundance of atmospheric precipitation was depleted in the summer and enriched in winter. dx was lower in summer and higher in winter. The isotopic abundance of precipitation from the plum rain was depleted compared to mean value of the whole-year. 2) There was no significant correlation between δ2H and δ18O of the plum rain (precipitation) with local meteorological factors. However, dx was lower in light rain, reflecting the effect of sub-cloud evaporation. The average dx was higher during plum rain period in years with more total plum rain precipitation. 3) The low-latitude South China Sea and the western Pacific Ocean source area provided water vapor for the plum rain. The shift of moisture source region led to abrupt changes in precipitation isotopes. Our results could provide data support for studies on precipitation isotopes in the monsoon region, as well as a reference point for further understanding the precipitation mechanism of the plum rain and stu-dying the seasonal variability of atmospheric circulation in the East Asian monsoon region.


Assuntos
Chuva , Estações do Ano , Chuva/química , China , Isótopos de Oxigênio/análise , Monitoramento Ambiental/métodos , Deutério/análise , Isótopos/análise , Prunus domestica/química , Prunus domestica/crescimento & desenvolvimento
10.
Chemosphere ; 362: 142543, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866339

RESUMO

Rain gardens, a type of green infrastructure (GI), have been recognized for mitigating flooding and improving water quality from minor storms by trapping stormwater pollutants. Yet, the capability of these systems to retain microplastics (MPs) from stormwater, especially in size <125 µm, remains inadequately understood. This study investigated the spatial and temporal distributions of MPs in three rain gardens located in Newark, New Jersey, USA. The rain gardens have been in operation for ∼7 years and located in different land uses: low-density residential (Site 1), commercial (Site 2), and high-density residential (Site 3). The sediment samples were collected during May 2022, August 2022, and February 2023 at various soil depths and horizontal distances of rain gardens. The MPs were quantified and characterized using Fourier transform infrared (FTIR) spectrometer and a Raman microscope. The overall mean concentration varied between sampling sites, with 469 ± 89.8 pkg-1 in Site 1, 604 ± 91.4 pkg-1 in Site 2, and 997 ± 64.3 pkg-1 in Site 3, with Polypropylene as the dominant polymer, followed by nylon and polyethylene. In the vertical direction, larger MPs (250 µm-5 mm) were effectively retained within the top 5 cm and their concentration declined exponentially with the increasing depths. Small-sized MPs (1-250 µm) were prevalent at deeper depths (≥ 10 cm), and no MPs were found below 15 cm. In the horizontal direction, the highest MP concentration was observed near the stormwater inlet, and the concentration decreased away from the inlet. Over the nine-month period, a notable increase in concentration was observed at all sites. These findings contribute valuable knowledge towards developing effective measures for retaining MPs from stormwater and monitoring GIs in urban environments.


Assuntos
Monitoramento Ambiental , Microplásticos , Chuva , Poluentes Químicos da Água , Chuva/química , Microplásticos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , New Jersey , Jardins
11.
Chemosphere ; 362: 142565, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38871187

RESUMO

Compared to the particle-gas partition coefficients (KPG), the rain-gas (KRG) and snow-gas (KSG) partition coefficients are also essential in studying the environmental behavior and fate of chemicals in the atmosphere. While the temperature dependence for the KPG have been extensively studied, the study for KRG and KSG are still lacking. Adsorption coefficients between water surface-air (KIA) and snow surface-air (KJA), as well as partition coefficients between water-air (KWA) and octanol-air (KOA) are vital in calculating KRG and KSG. These four basic adsorption and partition coefficients are also temperature-dependent, given by the well-known two-parameters Antoine equation logKXY = AXY + BXY/T, where KXY is the adsorption or partition coefficients, AXY and BXY are Antoine parameters (XY stand for IA, JA, WA, and OA), and T is the temperature in Kelvin. In this study, the parameters AXY and BXY are calculated for 943 chemicals, and logKXY can be estimated at any ambient temperature for these chemicals using these Antoine parameters. The results are evaluated by comparing these data with published experimental and modeled data, and the results show reasonable accuracy. Based on these coefficients, temperature-dependence of logKRG and logKSG is studied. It is found that both logKRG and logKSG are linearly related to 1/T, and Antoine parameters for logKRG and logKSG are also estimated. Distributions of the 943 chemicals in the atmospheric phases (gas, particle, and rain/snow), are illustrated in a Chemical Space Map. The findings reveal that, at environmental temperatures and precipitation days, the dominant state for the majority of chemicals is the gaseous phase. All the AXY and BXY values for logKSG, logKRG, and basic adsorption and partition coefficients, both modeled by this study and collected from published work, are systematically organized into an accessible dataset for public utilization.


Assuntos
Chuva , Neve , Temperatura , Neve/química , Chuva/química , Adsorção , Gases/química , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/química , Atmosfera/química , Monitoramento Ambiental/métodos , Água/química
12.
J Environ Radioact ; 278: 107470, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852497

RESUMO

Chlorine 36 (36Cl) is a radionuclide of natural and anthropogenic origin, mainly used as a tracer in geochemical studies. Owing to analytical constraints and its low environmental levels, knowledge of 36Cl behavior in the environment is still very limited. In this study, we use environmental measurements to report for the first time the wet deposition fluxes of 36Cl downwind an anthropogenic source, the Orano nuclear reprocessing plant, which chronically emits 36Cl into the environment. Measurements of 36Cl in rainwater samples at our study site were 1-2 orders of magnitude above the environmental background. The isotope ratios 36Cl/Cl of the samples and the 36Cl content in the rainwater averaged 2.3x10-12 at at-1 and 1.7x108 at l-1 respectively. A decrease in these levels was observed 20 km away from the study site, outside the plant's gas plume, indicating that the marking of 36Cl on the study site is related to the plant discharges. Over the sampling period, wet deposition fluxes at the study site averaged 3.4x103 at m-2s-1, with significant values measured when precipitations scavenge the plant's gas plume down onto our study site. Analysis of these fluxes also revealed the presence of a significant rainout phenomenon in the study area. These results provide new data on the wet deposition flux of 36Cl and will thus enable better assessment of impact studies in a context of decommissioning or accidents involving nuclear power plants.


Assuntos
Cloro , Monitoramento de Radiação , França , Cloro/análise , Poluentes Radioativos da Água/análise , Chuva/química , Radioisótopos/análise , Centrais Nucleares
13.
Ecotoxicol Environ Saf ; 281: 116642, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38941660

RESUMO

Following ion-adsorption rare earth mining, the residual tailings experience considerable heavy metal contamination and gradually evolve into a pollution source. Therefore, the leaching characteristics and environmental impact of heavy metals in ion-adsorption rare earth tailings require immediate and thorough investigation. This study adopted batch and column experiments to investigate the leaching behaviour of heavy metals in tailings and assess the impact of tailings on paddy soil, thereby providing a scientific basis for environmental protection in mining areas. The results showed that Mn, Zn, and Pb contents were 431.67, 155.05, and 264.33 mg·kg-1, respectively, which were several times higher than their respective background values, thereby indicating significant heavy metal contamination in the tailings. The batch leaching experiment indicated that Mn and Pb were priority control heavy metals. Heavy metals were divided into fast and slow leaching stages. The Mn and Pb leaching concentrations far exceeded environmental limits. The DoseResp model perfectly fitted the leaching of all heavy metals from the tailings (R2 > 0.99). In conjunction with the findings of the column experiment and correlation analysis, the chemical form, rainfall pH, ammonia nitrogen, and mineral properties were identified as the primary factors controlling heavy metal release from tailings. Rainfall primarily caused heavy metal migration in the acid-extraction form from the tailings. The tailing leachate not only introduced heavy metals into the paddy soil but also caused the transformation of the chemical form of heavy metals in the paddy soil, further exacerbating the environmental risk posed by heavy metals. The study findings are significant for environmental conservation in mining areas and implementing environmentally friendly practices in rare earth mining.


Assuntos
Monitoramento Ambiental , Metais Pesados , Metais Terras Raras , Mineração , Chuva , Poluentes do Solo , Metais Pesados/análise , Poluentes do Solo/análise , Metais Terras Raras/análise , Chuva/química , Solo/química , Adsorção
14.
Environ Pollut ; 356: 124302, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830525

RESUMO

The transport of microplastics (MPs) from urban environments to water resources via stormwater runoff poses significant concerns due to its adverse impacts on water safety and aquatic ecosystems. This study presents a modeling approach aimed at understanding the transport mechanisms of MPs in an urban residential setting, considering settling and buoyant MPs. To consider the effect of MP shapes, the settling velocity of various settling MPs in shapes of fibers, films, and fragments was calculated. Using an analogy of sediment transport, a Rouse number criterion was used to analyze the transport of MPs. For buoyant MPs, it was assumed that they transport as wash-load as soon as they float in the water and the travel time for them to reach the storm drain was determined. The calculation of settling velocity revealed the influence of shape on the settling velocity of MPs was particularly pronounced as the equivalent diameter of the MPs increased. The transport mechanism for the smallest settling MPs, irrespective of their shapes, density, and depth of flow, was wash-load. However, for larger MPs, the shape and size distribution of settling MPs, along with the depth of flow and slope significantly influenced their transport mechanisms compared to sediment particles. The influence of weathering on the MPs' transport mechanisms depended on their sizes and shapes. The site-specific characteristics, including slope and surface friction, significantly influenced the velocity of stormwater runoff and, consequently, the extent of MP transport during rain events. Moreover, an evaluation of the transport mechanism of settling MPs was conducted using the reported field data on MP abundance in road dust collected from residential and traffic sites. This study underscores the complexity of MP transport dynamics and provides a foundation for developing targeted strategies to mitigate MP pollution in urban environments.


Assuntos
Monitoramento Ambiental , Microplásticos , Chuva , Movimentos da Água , Poluentes Químicos da Água , Microplásticos/análise , Poluentes Químicos da Água/análise , Chuva/química , Cidades
15.
Environ Pollut ; 356: 124335, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848957

RESUMO

Organic materials such as bark and biochar can be effective filter materials to treat stormwater. However, the efficiency of such filters in retaining microplastics (MPs) - an emerging stormwater pollutant - has not been sufficiently studied. This study investigated the removal and transport of a mixture of MPs commonly associated with stormwater. Different MP types (polyamide, polyethylene, polypropylene, and polystyrene) were mixed into the initial 2 cm material of horizontal bark and biochar filters of 25, 50, and 100 cm lengths. The MP types consisted of spherical and fragmented shapes in size ranges of 25-900 µm. The filters were subjected to a water flow of 5 mL/min for one week, and the total effluents were analyzed for MPs by µFTIR imaging. To gain a deeper insight, one 100 cm bark filter replica was split into 10 cm segments, and MPs in each segment were extracted and counted. The results showed that MPs were retained effectively, >97%, in all biochar and bark filters. However, MPs were detected in all effluents regardless of filter length. Effluent concentrations of 5-750 MP/L and 35-355 MP/L were measured in bark and biochar effluents, respectively, with >91% of the MP counts consisting of small-sized (25 µm) polyamide spherical particles. Combining all data, a decrease in average MP concentration was noticed with longer filters, likely attributed to channeling in a 25 and 50-cm filter. The analyses of MPs in the bark media revealed that most MPs were retained in the 0-10 cm segment but that some MPs were transported further, with 19% of polyamide retained in the 80-90 cm segment. Overall, this study shows promising results for bark and biochar filters to retain MPs, while highlighting the importance of systematic packing of filters to reduce MP emissions to the environment from polluted stormwater.


Assuntos
Carvão Vegetal , Filtração , Microplásticos , Casca de Planta , Poluentes Químicos da Água , Carvão Vegetal/química , Filtração/métodos , Casca de Planta/química , Poluentes Químicos da Água/análise , Chuva/química , Eliminação de Resíduos Líquidos/métodos
16.
Environ Sci Technol ; 58(21): 9283-9291, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38752583

RESUMO

The concerns about the fate of per- and polyfluoroalkyl substances (PFAS) in the atmosphere are continuously growing. In this study, size-fractionated particles, gas, and rainwater samples were simultaneously collected in Shijiazhuang, China, to investigate the multiphase distribution of PFAS in the atmosphere. Perfluoroalkyl carboxylic acids (PFCAs) dominated the total concentration of PFAS in atmospheric media. A strong positive relationship (0.79 < R2 < 0.99) was observed between the concentration of PFCAs and organic matter fraction (fOM) in different particle size fractions, while no such relationship for perfluoroalkyl sulfonic acids (PFSAs) and fOM, suggesting fOM may be an important factor influencing the size-dependent distribution of PFCAs. Temperature played a key role in the gas-particle partitioning of PFAS, while it did not significantly affect their particle-size-dependent distribution. The associative concentration fluctuation of particle and particle-bound PFAS during precipitation suggested that precipitation scavenging was an important mechanism for the removal of PFAS from the atmosphere. Furthermore, temporary increases in atmospheric PFAS concentrations were observed during the precipitation. Fugacity ratios of PFAS in rainwater and gas phase (log fR/fG ranged between 2.0 and 6.6) indicated a strong trend for PFAS to diffuse from the rainwater to the gas phase during the precipitation, which may explain that the concentration of PFAS in the gas phase continued to increase even at the end of the precipitation.


Assuntos
Atmosfera , Fluorocarbonos , Tamanho da Partícula , Fluorocarbonos/análise , Atmosfera/química , Poluentes Atmosféricos/análise , Chuva/química , China , Monitoramento Ambiental , Gases , Precipitação Química
17.
Environ Pollut ; 355: 124200, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38788991

RESUMO

Lake Erhai is a potentially phosphorus (P)-limited lake and its water quality may have been affected by atmospheric P deposition. However, there have been few studies on atmospheric P deposition in this lake. In this study, we established five wet deposition monitoring sites and two dry deposition monitoring sites around Lake Erhai to quantify the wet and dry deposition of total phosphorus (TP), including dissolved inorganic phosphorus (DIP), dissolved organic phosphorus (DOP) and particulate phosphorus (PP) from July 2022 to June 2023. Wet deposition fluxes of P species were collected by automatic rainfall collection instrument, and dry deposition fluxes were estimated using airborne concentration measurements and inferential models. The results reveal that among the different P components, DOP had the highest contribution (50%) to wet TP deposition (average all sites 12.7 ± 0.7 mg P m2/yr), followed by PP (40%) and DIP (10%). Similarly, DOP (51%) was the major contributor to dry TP deposition (average two sites 2.4 ± 0.9 mg P m2/yr), followed by DIP (35%) and PP (14%). Wet deposition dominated the annual total TP deposition (wet plus dry), accounting for approximately 83%. The key seasons for dry deposition were spring and autumn, which accounted for 64% of the annual total dry TP deposition. In comparison, wet deposition was significantly higher in the summer, accounting for 73% of the annual total wet TP deposition. The results of the potential source contribution function and concentration-weighted trajectories analysis indicate that local source emission and long-range transport from surrounding cities jointly exerted a substantial influence on aerosol P concentrations, particularly in the eastern and northwestern regions of the lake. These findings provide a comprehensive understanding of the different P components in atmospheric deposition, which is beneficial for developing effective strategies to manage the P cycle in Lake Erhai.


Assuntos
Poluentes Atmosféricos , Atmosfera , Monitoramento Ambiental , Lagos , Fósforo , Fósforo/análise , Lagos/química , China , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Atmosfera/química , Poluentes Químicos da Água/análise , Estações do Ano , Chuva/química
18.
Ying Yong Sheng Tai Xue Bao ; 35(3): 648-658, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38646752

RESUMO

Carbon wet deposition and river carbon output in river basins are important components of global carbon cycle. The assessment of both properties is of great significance for regional carbon budget. However, research on these topics in high-latitude permafrost regions in China is still lacking. We conducted dynamic monitoring of carbon wet deposition and carbon output in the river from May 28th to October 30th, 2022, in Laoyeling watershed, a typical forested watershed in the Da Xing'an Mountains permafrost region. We analyzed the variations of carbon component concentrations and fluxes in precipitation and river water, and estimated the contribution of carbon wet deposition to carbon output in the watershed. The results showed that wet deposition fluxes of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and total dissolved carbon (TDC) in the Laoyeling watershed were 1354.86, 684.59, and 2039.45 kg·km-2, respectively. The fluxes of DOC, DIC, TDC, particulate organic carbon (POC), particulate inorganic carbon (PIC), and total carbon (TC) in the river were 601.75, 1977.30, 2579.05, 125.13, 21.99, and 2726.17 kg·km-2, respectively. The contribution of TDC wet deposition to the river TDC output was 9941.89 kg, accounting for 17.6% of total output. The DIC concentration in the river showed significant seasonal differences, with increased runoff resulting from precipitation leading to a decrease in DIC concentration in the river and showing a clear dilution effect, while the concentrations of DOC, POC, and PIC increased, mainly due to erosion effect. In conclusion, carbon wet deposition flux in the Laoyeling watershed was mainly determined by precipitation, and its contribution to river carbon output was relatively small compared to other factor. Runoff was the dominant factor affecting river carbon output. The results would provide important insights into carbon cycling and carbon budget balance in permafrost regions under climate change.


Assuntos
Carbono , Monitoramento Ambiental , Florestas , Pergelissolo , Rios , China , Rios/química , Carbono/análise , Ciclo do Carbono , Chuva/química , Ecossistema
19.
Int J Biol Macromol ; 268(Pt 2): 131660, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636766

RESUMO

The synergistic effects of phosphorylated zein nanoparticles (PZNP) and cellulose nanocrystals (CNC) in enhancing the wetting and barrier properties of chitosan hydrochloride (CHC)-based coating are investigated characterized by Fourier Transform Infrared Spectra (FTIR), X-ray Diffraction (XRD), atomic force microscopy and by investigating the mechanical properties, etc., with the aim of reducing cherry rain cracking. FTIR and XRD showed dual nanoparticles successfully implanted into CHC, CHC-PZNP-CNC combined moderate ductility (elongation at break: 7.8 %), maximum tensile strength (37.5 MPa). The addition of PZNP alone significantly improved wetting performance (Surface Tension, CHC: 55.3 vs. CHC-PZNP: 48.9 mN/m), while the addition of CNC alone led to a notable improvement in the water barrier properties of CHC (water vapor permeability, CHC: 6.75 × 10-10 vs. CHC-CNC: 5.76 × 10-10 gm-1 Pa-1 s-1). The final CHC-PZNP-CNC coating exhibited enhanced wettability (51.2 mN/m) and the strongest water-barrier property (5.32 × 10-10 gm-1 Pa-1 s-1), coupled with heightened surface hydrophobicity (water contact angle: 106.4°). Field testing demonstrated the efficacy of the CHC-PZNP-CNC coating in reducing cherry rain-cracking (Cracking Index, Control, 42.3 % vs. CHC-PZNP-CNC, 19.7 %; Cracking Ratio, Control, 34.6 % vs. CHC-PZNP-CNC, 15.8 %). The CHC-PZNP-CNC coating is a reliable option for preventing rain-induced cherry cracking.


Assuntos
Quitosana , Nanopartículas , Molhabilidade , Quitosana/química , Nanopartículas/química , Celulose/química , Chuva/química , Zeína/química , Resistência à Tração , Água/química , Prunus avium/química , Permeabilidade
20.
Environ Sci Process Impacts ; 26(5): 891-901, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38591146

RESUMO

Microplastic (MP) pollution has garnered global attention in recent years. Although anthropogenic factors have been extensively studied for their impacts on MP pollution, there is still a lack of research on the relationship between non-anthropogenic factors and MP occurrence in inland freshwater. This study investigated MP pollution in Donghu Lake, the largest urban freshwater lake in China, to examine the effects of rainfall and lakeshore soil properties on MP pollution. The MP abundance in the surface water of Donghu Lake was 5.84 ± 2.95 items per L under the equilibrium state. However, during and after rainfall, the MP abundances significantly increased to 8.27 ± 5.65 items per L and 7.60 ± 4.04 items per L, respectively (p < 0.05). This increase could be attributed to an increase in the amount of MPs transported to the lake via atmospheric deposition and rainfall runoff, as well as the re-suspension of MP debris in sediment during stronger hydrodynamics. A statistically significant negative correlation was observed between MP abundance and lakeshore soil particle size. It suggested that a high proportion of large-sized soil particles created large pores that enabled MPs to be deposited in the surface layer of soil to migrate to deeper layers. As a result, the amount of MPs in the surface soil and transported to the lake via surface runoff was low. It is of practical significance to understand the sources and distribution impact factors of MPs in urban lakes. The fate and effects of MPs retained in the inland freshwater environments should receive more attention.


Assuntos
Monitoramento Ambiental , Lagos , Microplásticos , Chuva , Solo , Poluentes Químicos da Água , China , Lagos/química , Chuva/química , Solo/química , Microplásticos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA