Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Huan Jing Ke Xue ; 44(4): 2315-2324, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040980

RESUMO

By analyzing the effects of acid rain and nitrogen deposition on the structure and diversity of soil bacterial communities, the response mechanism of Masson pine forests to environmental stress was investigated, providing a theoretical reference basis for resource management and conservation in Tianmu Mountain National Nature Reserve. Four treatments of the simulated acid rain and nitrogen deposition were set up in 2017 to 2021 in Tianmu Mountain National Nature Reserve (pH value of 5.5 and 0 kg·(hm2·a)-1, CK; pH value of 4.5 and 30 kg·(hm2·a)-1, T1; pH value of 3.5 and 60 kg·(hm2·a)-1, T2; pH value of 2.5 and 120 kg·(hm2·a)-1, T3). The differences in soil bacterial community composition and structure among treatments and their influencing factors were analyzed by collecting soils from four treatments, using the Illumina MiSeq PE300 second-generation high-throughput sequencing platform. The results showed that acid rain and nitrogen deposition significantly reduced soil bacterial α-diversity (P<0.05) in a Masson pine forest. The Masson pine forest soils consisted of 36 phylum groups of mycota, with Acidobacteria, Proteobacteria, Actinobacteria, and Chloroflexi as the main bacterial phyla (relative abundance>1%) in the Masson pine forest soils. Flavobacterium, Nitrospira, Haliangium, Candidatus_Koribacter, Bryobacter, Occallatibacter, Acidipla, Singulisphaera, Pajaroellobacter, and Acidothermus, which showed significant changes in relative abundance under the four treatments, could be used as indicator species for changes in soil bacterial communities under acid rain and nitrogen deposition stress. Soil pH and total nitrogen were influential factors in the diversity of soil bacterial communities. As a result, acid rain and nitrogen deposition increased the potential ecological risk, and the loss of microbial diversity will change the ecosystem function as well as reduce the stability of the ecosystem.


Assuntos
Chuva Ácida , Nitrogênio , Pinus , Microbiologia do Solo , Solo , Estresse Fisiológico , Chuva Ácida/efeitos adversos , Acidobacteria , Bactérias/isolamento & purificação , Ecossistema , Florestas , Nitrogênio/efeitos adversos , Nitrogênio/análise , Solo/química , Pinus/fisiologia , Estresse Fisiológico/fisiologia , Microbiota/fisiologia
2.
J Exp Zool A Ecol Integr Physiol ; 339(6): 578-589, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37039079

RESUMO

Long-term environment acidifications due to decrease pH of the rainwaters affect both soils and water bodies. The organisms most likely to be affected by acid rain are the ones that possess vital organs made of calcium carbonate; among them are tardigrades, presenting aragonite piercing stylets in feeding apparatuses. A positive relationship between acidic rainfall and loss of tardigrades diversity has been already shown, but there is lack of knowledge of its lethal and sublethal effects. This study quantifies the effects of the acute exposure of three eutardigrade, Acutuncus antarcticus, Hypsibius exemplaris, and Macrobiotus cf. hufelandi, to synthetic acid rains and to organic and inorganic acids (hydrochloric, acetic, sulfuric, and nitric acids) naturally occurring in the environment. The cumulative proportion of dead animals in respect of exposition time was fitted to cumulative Weibull Distribution using a Bayesian framework. At the end of the experiments, animals were observed to investigate damages to their piercing stylets. Besides, stylets were finely morphologically described with Scanning Electron Microscopy. This study shows that acid rains and the other tested acids negatively affect tardigrades accordingly with pH, time of exposure, and tardigrade species. Freshwater species show a better resistance to acidity than the moss dwelling species, which can better acclimate over the time to low pH. The stylets resulted unaltered in almost all of the alive specimens. The results suggest that the tested tardigrades taxa have the ability to buffer the environmental proton change and the negative effect on their populations could be counteracted.


Assuntos
Chuva Ácida , Tardígrados , Animais , Tardígrados/química , Tardígrados/fisiologia , Chuva Ácida/efeitos adversos , Teorema de Bayes
3.
Sci Total Environ ; 873: 162388, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36842576

RESUMO

Acid rain (AR) causes numerous environmental problems and complex negative effects on plants globally. Many studies have previously reported on direct effects of AR or its depositional substances on plant injury and performance. However, few studies have addressed the indirect effects of AR on plants as mediated by soil microorganisms and the abiotic environment of the soil rhizosphere. The indirect effects (e.g., AR â†’ soil microorganisms→plants) need greater attention, because acidic deposition not only affects the distribution, composition, abundance, function, and activity of plant-associated microorganisms, but also influences the dynamics of some substances in the soil in a way that may be harmful to plants. Therefore, this review not only focused on the direct effects of AR on plant performance, growth, and biomass allocations from a whole-plant perspective, but also addressed the pathway of AR-soil chemical characteristics-plants, which explains how soil solute leaching and acidification by AR will reduce the availability of essential nutrients and increase the availability of heavy metals for plants, affecting carbon and nitrogen cycles. Mainly, we evaluated the AR-soil microorganisms-plants pathway by: 1) synthesizing the potential roles of soil microbes in alleviating soil acidic stress on plants and the adverse effects of AR on plant-associated soil microorganisms; 2) exploring how plant mycorrhizal types affect the detection of AR effect on plants. The meta-analysis showed that the effects of AR-induced pH on leaf chlorophyll content, plant height, and plant root biomass were dependent on plant mycorrhizal types. Some possible reasons for different synergy between mycorrhizal symbiotic types and plants were discussed. Future research relating to the effects of AR on plants should focus on the combined direct and indirect effects to evaluate how AR affects plant performance comprehensively.


Assuntos
Chuva Ácida , Metais Pesados , Micorrizas , Solo/química , Chuva Ácida/efeitos adversos , Plantas/metabolismo , Metais Pesados/metabolismo , Micorrizas/metabolismo , Microbiologia do Solo
4.
Tree Physiol ; 42(7): 1432-1449, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35137231

RESUMO

To understand the regulation of roots plasma membrane H+-ATPase in Masson pine responding to acid deposition, the changes in biomass, plant morphology, intracellular H+, enzyme activity and H+-ATPase genes expression in Masson pine seedlings exposed to simulated acid rain (SAR, pH 5.6 and 4.6) with and without vanadate were studied. Simulated acid rain exposure for 60 days increased the intracellular H+ in pine roots whether added with 0.1 mM Na3VO4 or not. The growth of seedlings treated with SAR was maintained well, even the primary lateral root length, root dry weight and number of root tips in seedlings exposed to SAR at pH 4.6 were higher than that of the control (pH 6.6). However, the addition of vanadate resulted in severe growth inhibition and obvious decline in morphological parameters. Similarly, ATP hydrolytic activity and H+ transport activity of roots plasma membrane H+-ATPase, both were stimulated by SAR whereas they were inhibited by vanadate, and the highest activity stimulation was observed in pine roots subjected to SAR at pH 4.6. In addition, SAR also induced the expression of the investigated H+-ATPase subunits (atpB, atpE, atpF, atpH and atpI). Therefore, the roots plasma membrane H+-ATPase is instrumental in the growth of Masson pine seedlings adapting to acid rain by a manner of pumping more protons across the membrane through enhancing its activity, and which involves the upregulated gene expression of roots H+-ATPase subunits at transcriptional level.


Assuntos
Chuva Ácida , Pinus , Chuva Ácida/efeitos adversos , Membrana Celular/metabolismo , Raízes de Plantas/fisiologia , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Plântula/metabolismo , Vanadatos/metabolismo , Vanadatos/farmacologia
5.
Planta ; 254(2): 41, 2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34327596

RESUMO

MAIN CONCLUSION: Exogenous calcium enhances rice tolerance to acid rain stress by regulating isozymes composition and transcriptional expression of ascorbate peroxidase and glutathione reductase. Calcium (Ca) participates in signal transduction in plants under abiotic stress, and addition of Ca2+ is beneficial to alleviate damage of plants caused by acid rain. To clarify the effect of exogenous Ca2+ on tolerance of plants to acid rain stress, we investigated regulation of Ca2+ (5 mM) on activities, isozymes composition and transcriptional expression of ascorbate peroxidase (APX) and glutathione reductase (GR), redox state, and H2O2 concentration and growth in rice leaves and roots under simulated acid rain (SAR) stress. SAR (pH 3.5/2.5) decreased the total activities of APX and GR in rice by decreasing the concentration of APX isoforms (APXII in leaves and APXIII in roots) as well as activation degree of GR isozymes and transcription level of GR1, indicating that SAR (pH 3.5/2.5) destroyed the redox state in rice cells and induced H2O2 excessive accumulation, and inhibited growth of rice. Exogenous Ca2+ alleviated SAR-induced inhibition on activities of APX and GR by regulating the concentration, activation, and transcription of their isozymes, and then maintained the redox level of cells and protected cells from oxidative damage, being beneficial to the growth of rice. Therefore, the promotion of exogenous Ca2+ on activities of APX and GR can be important to enhance rice tolerance to acid rain by maintaining redox state and avoiding oxidative damage.


Assuntos
Chuva Ácida , Oryza , Chuva Ácida/efeitos adversos , Antioxidantes , Ascorbato Peroxidases/metabolismo , Cálcio , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo , Plântula/metabolismo
6.
Plant Sci ; 306: 110876, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33775371

RESUMO

Acid rain, as a typical abiotic stress, damages plant growth and production. Calcium (Ca) mediates plant growth and links the signal transduction in plants for adapting to abiotic stresses. To understand the effect of Ca2+ on plant adaptable response to acid rain, we investigated changes in activities and gene expression of antioxidative enzymes and fatty acid composition of membrane lipid in rice seedlings treated with exogenous Ca2+ (5 mM) or/and simulated acid rain (SAR, pH 3.5 / 2.5). Exogenous Ca2+ enhanced activities of superoxide dismutase, catalase and peroxidase isozymes in rice leaves under SAR stress by promoting activation of existing isoforms and up-regulation of Cu/Zn-SOD1, Cu/Zn-SOD2, Cu/Zn-SOD3, CAT1, CAT2 and POD1. Compared to SAR treatment alone, exogenous Ca2+ alleviated SAR-induced oxidative damage to cell membrane by enhancing antioxidative capacity, as shown by the decrease in concentrations of H2O2, O2- and malondialdehyde in rice leaves. Meanwhile, Ca2+ alleviated SAR-induced decrease in unsaturation of membrane lipid for maintaining membrane fluidity. Finally, exogenous Ca2+ alleviated SAR-induced inhibition on relative growth rate of rice. Therefore, Ca2+ could play a role in regulating activities of antioxidative enzymes as well as maintaining unsaturation of membrane lipid for enhancing tolerance in rice seedlings to acid rain stress.


Assuntos
Chuva Ácida/efeitos adversos , Adaptação Fisiológica , Antioxidantes/metabolismo , Cálcio/metabolismo , Isoenzimas/metabolismo , Oryza/enzimologia , Oryza/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia , Produtos Agrícolas/enzimologia , Produtos Agrícolas/crescimento & desenvolvimento
7.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562098

RESUMO

Air pollution has been a long-term problem, especially in urban areas, that eventually accelerates the formation of acid rain (AR), but recently it has emerged as a serious environmental issue worldwide owing to industrial and economic growth, and it is also considered a major abiotic stress to agriculture. Evidence showed that AR exerts harmful effects in plants, especially on growth, photosynthetic activities, antioxidant activities and molecular changes. Effectiveness of several bio-regulators has been tested so far to arbitrate various physiological, biochemical and molecular processes in plants under different diverse sorts of environmental stresses. In the current review, we showed that silicon (tetravalent metalloid and semi-conductor), glutathione (free thiol tripeptide) and melatonin (an indoleamine low molecular weight molecule) act as influential growth regulators, bio-stimulators and antioxidants, which improve plant growth potential, photosynthesis spontaneity, redox-balance and the antioxidant defense system through quenching of reactive oxygen species (ROS) directly and/or indirectly under AR stress conditions. However, earlier research findings, together with current progresses, would facilitate the future research advancements as well as the adoption of new approaches in attenuating the consequence of AR stress on crops, and might have prospective repercussions in escalating crop farming where AR is a restraining factor.


Assuntos
Chuva Ácida/efeitos adversos , Glutationa/farmacologia , Melatonina/farmacologia , Plantas/efeitos dos fármacos , Silício/farmacologia , Estresse Fisiológico/efeitos dos fármacos
8.
Ambio ; 50(2): 273-277, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33294955

RESUMO

Acid rain and acidification research are indeed a multidisciplinary field. This field evolved from the first attempts to mitigate acid freshwater in the 1920s, then linking acid rain to the acidification in late 1950s, to the broad project-concepts on cause and effect from the late 1960s. Three papers from 1974, 1976 and 1988 demonstrate a broad approach and comprise scientific areas from analytical chemistry, biochemistry, limnology, ecology, physiology and genetics. Few, if any, environmental problems have led to a public awareness, political decisions and binding limitations as the story of acid rain. Acid precipitation and acidification problems still exist, but at a lower pressure, and liming has been reduced accordingly. However, the biological responses in the process of recovery are slow and delayed. The need for basic science, multidisciplinary studies, long time series of high-quality data, is a legacy from the acid rain era, and must form the platform for all future environmental projects.


Assuntos
Chuva Ácida , Chuva Ácida/efeitos adversos , Chuva Ácida/análise , Aniversários e Eventos Especiais , Ecossistema , Monitoramento Ambiental , Água Doce , Concentração de Íons de Hidrogênio
9.
Philos Trans A Math Phys Eng Sci ; 378(2183): 20190324, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32981443

RESUMO

Atmospheric reactive nitrogen (Nr) has been a cause of serious environmental pollution in China. Historically, China used too little Nr in its agriculture to feed its population. However, with the rapid increase in N fertilizer use for food production and fossil fuel consumption for energy supply over the last four decades, increasing gaseous Nr species (e.g. NH3 and NOx) have been emitted to the atmosphere and then deposited as wet and dry deposition, with adverse impacts on air, water and soil quality as well as plant biodiversity and human health. This paper reviews the issues associated with this in a holistic way. The emissions, deposition, impacts, actions and regulations for the mitigation of atmospheric Nr are discussed systematically. Both NH3 and NOx make major contributions to environmental pollution but especially to the formation of secondary fine particulate matter (PM2.5), which impacts human health and light scattering (haze). In addition, atmospheric deposition of NH3 and NOx causes adverse impacts on terrestrial and aquatic ecosystems due to acidification and eutrophication. Regulations and practices introduced by China that meet the urgent need to reduce Nr emissions are explained and resulting effects on emissions are discussed. Recommendations for improving future N management for achieving 'win-win' outcomes for Chinese agricultural production and food supply, and human and environmental health, are described. This article is part of a discussion meeting issue 'Air quality, past present and future'.


Assuntos
Poluição do Ar/efeitos adversos , Poluição Ambiental/efeitos adversos , Nitrogênio/efeitos adversos , Chuva Ácida/efeitos adversos , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Biodiversidade , China , Ecossistema , Meio Ambiente , Poluição Ambiental/análise , Poluição Ambiental/prevenção & controle , Eutrofização , Política de Saúde , Humanos , Ozônio/efeitos adversos , Plantas/efeitos dos fármacos , Espécies Reativas de Nitrogênio/efeitos adversos , Solo/química
10.
Ecotoxicol Environ Saf ; 200: 110720, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32470680

RESUMO

Acid rain is a widespread environmental issue intensely affecting normal plant growth of crops. Melatonin is well known pleiotropic molecule which improves abiotic and biotic stress tolerance of plants through physiological and molecular mediation. However, the impact of exogenous melatonin on molecular activities under acid rain conditions in plants has never been studied. The objective of the study is to expose the possible role of exogenous melatonin on physiological and molecular changes against acid rain stress in tomato. Transcriptome profile through RNA-sequence analysis identified 1228, 1120 and 1537 differentially expressed genes (DEGs) in control plant (Ctr) vs simulated acid rain stressed plant (P25) comparison, control plant vs melatonin treatment in simulated acid rain stressed plant (P25M) comparison and P25 vs P25M comparison, respectively. Among them, 152 differentially expressed genes (DEGs) were commonly expressed and the expression of secondary metabolites related gene was noticeably observed in all comparison. Moreover, transcript families such as ERF, WRKY, MYB and bZIP related gene accounted more in all treatment comparison. The RNA-sequence and qPCR results indicated that exogenous melatonin is closely associated with acid rain stress moderator and might be involved in alteration of differentially expressed genes (DEGs), biosynthesis of plant secondary metabolites and transcriptional factor encoding genes expression which might have potential application against environmental hazardous conditions.


Assuntos
Chuva Ácida/efeitos adversos , Melatonina/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Metabolismo Secundário/genética , Análise de Sequência de RNA , Estresse Fisiológico , Fatores de Transcrição/genética , Transcriptoma/efeitos dos fármacos
11.
BMC Plant Biol ; 20(1): 204, 2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393175

RESUMO

BACKGROUND: Frequent freeze-thaw phenomena, together with widely used deicing salt and intense acid precipitation, often occur in northeastern China, causing damage to various aspects of plants, such as the permeability of biological membranes, osmotic adjustment, and photosystems. Aiming to explore the resistance of alfalfa to freezing-thawing (F), acid precipitation (A) and deicing salt (D), this study used Medicago sativa cv. Dongmu-70 as the experimental material, and the contents of malondialdehyde (MDA), soluble protein, soluble sugars, proline and chlorophyll were evaluated. RESULTS: As the temperature decreased, the MDA content in the seedlings of the group under combined stress (A-D-F) increased and was significantly higher than that of group F (by 69.48 ~ 136.40%). Compared with those in the control (CK) group, osmotic substances such as soluble sugars and proline in the treatment groups were higher, while the soluble protein content was lower. The chlorophyll contents in the seedlings of the treatment groups were lower than those of the CK group; however, the chlorophyll content displayed a non-significant change during the free-thaw cycle. CONCLUSION: Injury to the permeability of the biological membranes and photosystems of alfalfa results from stress. Moreover, alfalfa maintains osmotic balance by adaptively increasing the potential of osmotic substances such as soluble sugars and proline. Furthermore, the influence of stress from freezing-thawing and deicing salt is highly substantial, but the combined stresses of acid precipitation with the two factors mentioned above had little effect on the plants.


Assuntos
Medicago sativa/fisiologia , Plântula/fisiologia , Estresse Fisiológico , Chuva Ácida/efeitos adversos , Clorofila/metabolismo , Congelamento , Malondialdeído/metabolismo , Proteínas de Plantas/metabolismo , Prolina/metabolismo , Açúcares/metabolismo
12.
Ecotoxicol Environ Saf ; 196: 110535, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32224368

RESUMO

Acid rain containing SO42- and NO3- in China has been a public concern for decades. However, a decrease of SO2 has been recorded since the government enacted a series of policies to control its emission. To comprehensively evaluate the consequence of realistic and future acid deposition scenarios, this study explored the effects of mixed acid rain with different molar ratios of SO42- and NO3- (0:1, 1:0, 2:1, 1:1, and 1:2) on stream leaf breakdown through a microcosm experiment. A significant inhibition of leaf breakdown rate was observed when the ratio was 1:2 with reduced microcosm pH, fungal biomass, enzyme activities as well as the frequencies of hub general in the fungal community. In conclusion, the ratio of SO42- and NO3- in acid rain was an important factor that could have a profound impact on leaf breakdown, even on ecosystem structure and functioning of streams.


Assuntos
Chuva Ácida/efeitos adversos , Água Doce/química , Nitratos/toxicidade , Folhas de Planta/metabolismo , Sulfatos/toxicidade , Chuva Ácida/análise , Biodegradação Ambiental/efeitos dos fármacos , Biomassa , China , Ecossistema , Água Doce/microbiologia , Micobioma/efeitos dos fármacos , Nitratos/análise , Sulfatos/análise
13.
Ecotoxicol Environ Saf ; 175: 118-127, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-30897410

RESUMO

Combined effects of cadmium (Cd) and acid rain on physiological characteristics in Eleocarpus glabripetalus seedlings were investigated under controlled conditions. The single Cd treatment and the combined Cd and acid rain treatment increased growth at low Cd concentrations, while decreased growth and photosynthesis at high Cd2+ concentrations. A low Cd2+ concentration (50 mg kg-1) combined with different acid rain treatments increased the seedling biomass. A high Cd2+ concentration (100 mg kg-1) under different acid rain treatments significantly decreased the biomass, the Fe content, chlorophyll fluorescence and photosynthetic parameters. Relative electric conductivity, malondialdehyde (MDA) content and peroxidase (POD) activity were increased while the reduced glutathione (GSH) content and catalase (CAT) activity were significantly lower at high Cd2+ concentration under acid rain. The results indicated that the combination of a high concentration of Cd2+ and acid rain aggravated the toxic effect of Cd2+ or acid rain alone on the growth and physiological parameters of E. glabripetalus due to serious damage to the chloroplast structure. These results provide novel insights into the combined effects of Cd2+and acid rain on woody plants and might also serve as a guide to evaluate forest restoration and biological safety in areas with Cd2+and acid rain pollution.


Assuntos
Chuva Ácida/efeitos adversos , Cádmio/efeitos adversos , Elaeocarpaceae/fisiologia , Poluição Ambiental/efeitos adversos , Plântula/efeitos dos fármacos , Clorofila/metabolismo , Cloroplastos/efeitos dos fármacos , Florestas , Glutationa/metabolismo , Malondialdeído/metabolismo , Oxirredução , Fotossíntese/efeitos dos fármacos , Plântula/fisiologia
14.
Chemosphere ; 221: 1-10, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30634143

RESUMO

Lead and acid rain are important abiotic stress factors that limit the growth, development, metabolic activity and yield of the crops. Melatonin (MT; an indoleamine molecule), glutathione (GSH; free thiol tripeptide) and thiourea (TU; non physiological thiol based ROS scavenger) have been known to mediate several physiological, biochemical and molecular processes in plants under different kinds of environmental threats. However, the roles of MT, GSH and TU in stress tolerance against combined effect of lead and simulated acid rain (SAR) remains inexpressible. In this study, we investigated the response of Trigonella foenum graecum L. (Fenugreek) to combined application of lead (1200 ppm) and SAR (pH 3.5), and the potential roles of MT (50 µM), GSH (1 mM) and TU (3 mM) in enhancing lead and SAR stress tolerance of Fenugreek. The results showed that co-application of each MT, GSH and TU along with lead and SAR improved the growth and development of seedlings. Moreover, MT, GSH and TU treatments stabilized the cell membrane integrity, reduced ROS accumulation [superoxide radical (O2-) and hydrogen peroxide (H2O2)], malondialdehyde (MDA) content, lipoxygenase (LOX) activity and, enhanced protein accumulation and up-regulated the gene expressions of catalase (CAT) and superoxide dismutase (SOD) significantly. Furthermore, the present work provides strong evidence regarding protective roles of MT, GSH and TU against oxidative stress resulted from lead and SAR stress in Fenugreek. Considering these observations, MT, GSH and TU can be utilized as efficient ROS scavengers, for improving growth and increasing antioxidant capacity in lead and SAR stressed seedlings.


Assuntos
Chuva Ácida/efeitos adversos , Antioxidantes/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Glutationa/farmacologia , Melatonina/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Tioureia/farmacologia , Trigonella/metabolismo , Produtos Agrícolas/metabolismo , Glutationa/metabolismo , Chumbo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio , Tioureia/metabolismo
15.
Environ Microbiol ; 21(1): 299-313, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30370620

RESUMO

Acid rain can cause severe effects on soil biota and nutrient biogeochemical cycles in the forest ecosystem, but how plant-symbiotic ectomycorrhizal fungi will modulate the effects remains unknown. Here, we conducted a full factorial field experiment in a Masson pine forest by simultaneously controlling the acidity of the simulated rain (pH 5.6 vs. pH 3.5) and the ectomycorrhizal fungi Pisolithus tinctorius inoculation (non-inoculation vs. inoculation), to investigate the effects on ammonia oxidizers and denitrifiers. After 10 months, compared with the control (rain pH 5.6, and non-inoculation), simulated acid rain (pH 3.5) reduced soil nutrient content, decreased archaeal amoA gene abundance and inhibited denitrification enzyme activity. Also, simulated acid rain altered the community compositions of all the examined functional genes (archaeal amoA, bacterial amoA, nirK, nirS and nosZ). However, inoculation with ectomycorrhizal fungi under acid rain stress recovered soil nutrient content, archaeal amoA gene abundance and denitrification enzyme activity to levels comparable to the control, suggesting that ectomycorrhizal fungi inoculation ameliorates simulated acid rain effects. Taken together, ectomycorrhizal fungi inoculation - potentially through improving soil substrate availability - could alleviate the deleterious effects of acid rain on nitrogen cycling microbes in forest soils.


Assuntos
Chuva Ácida/efeitos adversos , Basidiomycota/metabolismo , Biodegradação Ambiental , Micorrizas/metabolismo , Pinus/microbiologia , Amônia/metabolismo , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Biota/genética , Desnitrificação/fisiologia , Ecossistema , Florestas , Genes Arqueais , Micorrizas/genética , Ciclo do Nitrogênio/genética , Oxirredução , Solo/química , Microbiologia do Solo
16.
ACS Sens ; 3(7): 1424-1430, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29968464

RESUMO

Acid rain poses significant threats to crops and causes a decline in food production, but current monitoring and response to acid rain damage is either slow or expensive. The direct damage observation on plants can take several hours to days when the damage is irreversible. This study presents a real time bioelectrochemical monitoring approach that can detect acid rain damage within minutes. The rhizospheric bioelectrochemical sensor (RBS) takes advantage of the fast chain responses from leaves to roots, and then to the microbial electrochemical reactions in the rhizosphere. Immediate and repeatable current fluctuations were observed within 2 min after acid rain, and such changes were found to correspond well to the changes in rhizospheric organic concentration and electrochemical responses. Such correlation not only can be observed during acid rain events that can be remedied via rinsing, but it was also validated when such damage is irreversible, resulted in zero current, photosynthetic efficiency, and electrochemical signals. The alanine, aspartate, and glutamate metabolism and galactose metabolism in leaves and roots were inhibited by the acid rain, which resulted in the decrease of rhizodeposits such as fumaric acid, d-galactose, and d-glucose. These changes resulted in reduced electroactivity of anodic microorganisms, which was confirmed by a reduced redox current, a narrower spectrum in differential pulse voltammetry, and the loss of peak in the Bode plot. These findings indicate that the RBS process can be a simple, swift, and low-cost monitoring tool for acid rain that allows swift remediation measures, and its potential may be broadened to other environmental monitoring applications.


Assuntos
Chuva Ácida , Oryza/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Chuva Ácida/efeitos adversos , Chuva Ácida/análise , Alanina/metabolismo , Ácido Aspártico/metabolismo , Técnicas Eletroquímicas , Monitoramento Ambiental , Galactose/metabolismo , Glucose/metabolismo , Ácido Glutâmico/metabolismo , Fotossíntese , Rizosfera
17.
Planta ; 248(3): 647-659, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29855701

RESUMO

MAIN CONCLUSION: Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 µM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 µM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.


Assuntos
Ácido Abscísico/farmacologia , Chuva Ácida/efeitos adversos , Oryza/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/efeitos dos fármacos , Ácido Abscísico/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oryza/anatomia & histologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Zeatina/metabolismo
18.
Plant Physiol Biochem ; 127: 238-247, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29621720

RESUMO

Acid rain (AR) can induce great damages to plants and could be classified into different types according to the different SO42-/NO3- ratio. However, the mechanism of plants' responding to different types of AR has not been elucidated clearly. Here, we found that nitric-rich simulated AR (N-SiAR) induced less leaves injury as lower necrosis percentage, better physiological parameters and reduced oxidative damage in the leaves of N-SiAR treated Arabidopsis thaliana compared with sulfate and nitrate mixed (SN-SiAR) or sulfuric-rich (S-SiAR) simulated AR treated ones. Of these three types of SiAR, N-SiAR treated Arabidopsis maintained the highest of nitrogen (N) content, nitrate reductase (NR) and nitrite reductase (NiR) activity as well as N metabolism related genes expression level. Nitric oxide (NO) content showed that N-SiAR treated seedlings had a higher NO level compared to SN-SiAR or S-SiAR treated ones. A series of NO production and elimination related reagents and three NO production-related mutants were used to further confirm the role of NO in regulating acid rain resistance in N-SiAR treated Arabidopsis seedlings. Taken together, we concluded that an elevated N metabolism and enhanced NO production are involved in the tolerance to different types of AR in Arabidopsis.


Assuntos
Chuva Ácida/efeitos adversos , Arabidopsis/metabolismo , Óxido Nítrico/biossíntese , Nitrogênio/metabolismo , Estresse Oxidativo
19.
Chemosphere ; 194: 441-449, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29227892

RESUMO

Combined rare earth and acid rain pollution has become a new environmental problem, seriously affecting plant survival. The effects of these two kinds of pollutants on plant photosynthesis have been reported, but the micro mechanisms are not very clear. In this research, we studied the effects of lanthanum [La(III), 0.08, 1.20 and 2.40 mM] and acid rain (pH value = 2.5, 3.5 and 4.5) on the ATPase activity and gene transcription level and the functional element contents in rice leaf chloroplasts. The results showed that the combined 0.08 mM La(III) and pH 4.5 acid rain increased the ATPase activity and gene transcription level as well as contents of some functional elements. But other combined treatments of acid rain and La(III) reduced the ATPase activity and gene transcription level as well as functional element contents. The change magnitude of the above indexes at rice booting stage was greater than that in seedling stage or grain filling stage. These results reveal that effects of La(III) and acid rain on ATPase activity and functional element contents in rice leaf chloroplasts are related to the combination of La(III) dose and acid rain intensity and the plant growth stage. In addition, the changes in the ATPase activity were related to ATPase gene transcription level. This study would provide a reference for understanding the microcosmic mechanism of rare earth and acid rain pollution on plant photosynthesis and contribute to evaluate the possible environmental risks associated with combined La(III) and acid rain pollution. ONE SENTENCE SUMMARY: The effects of La(III) and acid rain on activity and gene transcription level of rice chloroplast ATPase and contents of functional elements were different at different growth stages.


Assuntos
Chuva Ácida/efeitos adversos , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Metais Terras Raras/toxicidade , Oryza/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Poluentes do Solo/toxicidade , ATPases de Cloroplastos Translocadoras de Prótons/genética , Cloroplastos/efeitos dos fármacos , Cloroplastos/enzimologia , Concentração de Íons de Hidrogênio , Oryza/enzimologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Plântula/efeitos dos fármacos , Plântula/enzimologia , Transcrição Gênica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA