Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Theranostics ; 11(20): 10047-10063, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815803

RESUMO

Parkin (PK) is an E3-ligase harboring tumor suppressor properties that has been associated to various cancer types including glioblastoma (GBM). However, PK is also a transcription factor (TF), the contribution of which to GBM etiology remains to be established. Methods: The impact of PK on GBM cells proliferation was analyzed by real-time impedance measurement and flow cytometry. Cyclins A and B proteins, promoter activities and mRNA levels were measured by western blot, luciferase assay and quantitative real-time PCR. Protein-protein and protein-promoter interactions were performed by co-immunoprecipitation and by ChIP approaches. The contribution of endogenous PK to tumor progression in vivo was performed by allografts of GL261 GBM cells in wild-type and PK knockout mice. Results: We show that overexpressed and endogenous PK control GBM cells proliferation by modulating the S and G2/M phases of the cell cycle via the trans-repression of cyclin A and cyclin B genes. We establish that cyclin B is regulated by both E3-ligase and TF PK functions while cyclin A is exclusively regulated by PK TF function. PK invalidation leads to enhanced tumor progression in immunocompetent mice suggesting an impact of PK-dependent tumor environment to tumor development. We show that PK is secreted by neuronal cells and recaptured by tumor cells. Recaptured PK lowered cyclins levels and decreased GBM cells proliferation. Further, PK expression is decreased in human GBM biopsies and its expression is inversely correlated to both cyclins A and B expressions. Conclusion: Our work demonstrates that PK tumor suppressor function contributes to the control of tumor by its cellular environment. It also shows a key role of PK TF function in GBM development via the control of cyclins in vitro and in vivo. It suggests that therapeutic strategies aimed at controlling PK shuttling to the nucleus may prove useful to treat GBM.


Assuntos
Glioblastoma/terapia , Ubiquitina-Proteína Ligases/uso terapêutico , Animais , Neoplasias Encefálicas/patologia , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Ciclinas/genética , Feminino , Citometria de Fluxo/métodos , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Modelos Animais , RNA Mensageiro
2.
Br J Cancer ; 117(8): 1154-1163, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-28873083

RESUMO

BACKGROUND: Overexpression of epidermal growth factor receptor (EGFR) occurs in approximately 90% of head and neck squamous cell carcinoma (HNSCC), and is correlated with poor prognosis. Thus, targeting EGFR is a promising strategy for treatment of HNSCC. Several small molecule EGFR inhibitors have been tested in clinical trials for treatment of HNSCC, but none of them are more effective than the current chemotherapeutic drugs. Thus, it is urgently needed to develop novel EGFR inhibitors for HNSCC treatment. METHODS: By screening an in-house focused library containing approximately 650 000 known kinase inhibitors and kinase inhibitor-like compounds containing common kinase inhibitor core scaffolds, we identified SKLB188 as a lead compound for inhibition of EGFR. The anticancer effects of SKLB188 on HNSCC cells were investigated by in vitro cell growth, cell cycle and apoptosis assays, as well as in vivo FaDu xenograft mouse model. Molecular docking, in vitro kinase profiling and western blotting were performed to characterise EGFR as the molecular target. RESULTS: SKLB188 inhibited HNSCC cell proliferation by inducing G1 cell cycle arrest, which was associated with downregulating the expression of Cdc25A, cyclins D1/A and cyclin-dependent kinases (CDK2/4), and upregulating the expression of cyclin-dependent kinase (CDK) inhibitors (p21Cip1 and p27Kip1), leading to decreased phosphorylation of Rb. SKLB188 also induced caspase-dependent apoptosis of HNSCC cells by downregulating the expression of Mcl-1 and survivin. Molecular docking revealed that SKLB188 could bind to the kinase domain of EGFR through hydrogen bonds and hydrophobic interactions. In vitro kinase assay showed that SKLB188 inhibited the activity of a recombinant human EGFR very potently (IC50=5 nM). Western blot analysis demonstrated that SKLB188 inhibited the phosphorylation of EGFR and its downstream targets, extracellular signal-regulated protein kinases 1 and 2 (Erk1/2) and Akt in the cells. In addition, SKLB188 dose-dependently inhibited FaDu xenograft growth in nude mice, and concurrently inhibited the phosphorylation of Erk1/2 and Akt in the tumours. CONCLUSIONS: SKLB188 potently inhibits the growth of HNSCC cells in vitro and in vivo by targeting EGFR signalling. The results provide a basis for further clinical investigation of SKLB188 as a targeted therapy for HNSCC. Our findings may open a new avenue for development of novel EGFR inhibitors for treatment of HNSCC and other cancers.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Receptores ErbB/antagonistas & inibidores , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/metabolismo , Purinas/farmacologia , Animais , Western Blotting , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina D1/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Regulação para Baixo , Receptores ErbB/metabolismo , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/efeitos dos fármacos , Fosfatases cdc25/metabolismo
3.
Postepy Hig Med Dosw (Online) ; 69: 1259-67, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26671917

RESUMO

BACKGROUND: Arsenic trioxide (ATO) is an effective drug used in acute promyelocytic leukemia (AML). Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line. MATERIALS AND METHODS: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR. RESULTS: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 µM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5µM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 µM ATO, the G2/M fraction was on the increase. DISCUSSION: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.


Assuntos
Apoptose/efeitos dos fármacos , Arsenicais/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclina A/genética , Óxidos/farmacologia , Trióxido de Arsênio , Linhagem Celular , Ciclina A/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Expressão Gênica , Humanos , Citometria por Imagem , Microscopia Eletrônica
4.
Asian J Androl ; 17(6): 996-1005, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26289399

RESUMO

This study was designed to explore the regulatory effects of male germ cell secreting factor NODAL on Sertoli cell fate decisions from obstructive azoospermia (OA) and nonobstructive azoospermia (NOA) patients. Human Sertoli cells and male germ cells were isolated using two-step enzymatic digestion and SATPUT from testes of azoospermia patients. Expression of NODAL and its multiple receptors in human Sertoli cells and male germ cells were characterized by reverse transcription-polymerase chain reaction (RT-PCR) and immunochemistry. Human recombinant NODAL and its receptor inhibitor SB431542 were employed to probe their effect on the proliferation of Sertoli cells using the CCK-8 assay. Quantitative PCR and Western blots were utilized to assess the expression of Sertoli cell functional genes and proteins. NODAL was found to be expressed in male germ cells but not in Sertoli cells, whereas its receptors ALK4, ALK7, and ACTR-IIB were detected in Sertoli cells and germ cells, suggesting that NODAL plays a regulatory role in Sertoli cells and germ cells via a paracrine and autocrine pathway, respectively. Human recombinant NODAL could promote the proliferation of human Sertoli cells. The expression of cell cycle regulators, including CYCLIN A, CYCLIN D1 and CYCLIN E, was not remarkably affected by NODAL signaling. NODAL enhanced the expression of essential growth factors, including GDNF, SCF, and BMP4, whereas SB431542 decreased their levels. There was not homogeneity of genes changes by NODAL treatment in Sertoli cells from OA and Sertoli cell-only syndrome (SCO) patients. Collectively, this study demonstrates that NODAL produced by human male germ cells regulates proliferation and numerous gene expression of Sertoli cells.


Assuntos
Azoospermia/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteína Nodal/farmacologia , Proteínas Recombinantes/farmacologia , Células de Sertoli/efeitos dos fármacos , Espermatozoides/metabolismo , Receptores de Ativinas Tipo I/metabolismo , Receptores de Activinas Tipo II/metabolismo , Adulto , Comunicação Autócrina , Benzamidas/farmacologia , Western Blotting , Proteína Morfogenética Óssea 4/efeitos dos fármacos , Proteína Morfogenética Óssea 4/metabolismo , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina D1/efeitos dos fármacos , Ciclina D1/metabolismo , Ciclina E/efeitos dos fármacos , Ciclina E/metabolismo , Dioxóis/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Proteína Nodal/metabolismo , Comunicação Parácrina , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Células-Tronco/efeitos dos fármacos , Fator de Células-Tronco/metabolismo
5.
Cell Biol Int ; 39(9): 1044-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25857830

RESUMO

The purpose of the study was to examine mechanisms controlling cell cycle progression/arrest and differentiation of mouse C2C12 myoblasts exposed to long-chain saturated fatty acid salt, palmitate. Treatment of proliferating myoblasts with palmitate (0.1 mmol/l) markedly decreased myoblast number. Cyclin A and cyclin D1 levels decreased, whereas total p21 and p21 complexed with cyclin-dependent kinase-4 (cdk4) increased in myoblasts treated with palmitate. In cells induced to differentiation addition of palmitate augmented the level of cyclin D3, the early (myogenin) and late (α-actinin, myosin heavy chain) markers of myogenesis, and caused an increase of myotube diameter. In conclusion, exposure to palmitate inhibits proliferation of myoblasts through a decrease in cyclin A and cyclin D1 levels and an increase of p21-cdk4 complex formation; however, it promotes cell cycle exit, myogenic differentiation and myotube growth.


Assuntos
Mioblastos Esqueléticos/efeitos dos fármacos , Palmitatos/farmacologia , Animais , Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Ciclina A/efeitos dos fármacos , Ciclina D1/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Inibidor de Quinase Dependente de Ciclina p21 , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo , Miogenina/efeitos dos fármacos
6.
Asian Pac J Cancer Prev ; 15(8): 3651-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24870773

RESUMO

Hepatocellular carcinoma (HCC) has a relatively higher incidence in many countries of Asia. Globally, HCC has a high fatality rate and short survival. Epirubicin, a doxorubicin analogue, may be administered alone or in combination with other agents to treat primary liver cancer and metastatic diseases. However, the toxic effects of epirubicin to normal tissues and cells have been one of the major obstacles to successful cancer chemotherapy. Here, we investigated the effects of epirubicin in combination with kappa-selenocarrageenan on mice with H22 implanted tumors and HepG-2 cell proliferation, immune organ index, morphology, cell cycle and related protein expressions in vivo and in vitro with sequential drug exposure. The inhibitory rate of tumor growth in vivo was calculated. Drug sensitivity was measured by MTT assay, and the King's principle was used to evaluate the interaction of drug combination. Morphological changes were observed by fluorescent microscopy. Cell cycle changes were analyzed by flow cytometry. Expression of cyclin A, Cdc25A and Cdk2 were detected by Western blotting. In vivo results demonstrated that the inhibitory rate of EPI combined with KSC was higher than that of KSC or EPI alone, and the Q value indicated an additive effect. In addition, KSC could significantly raise the thymus and spleen indices of mice with H22 implanted tumors. In the drug sensitivity assay in vitro, exposure to KSC and EPI simultaneously was more effective than exposure sequentially in HepG-2 cells, while exposure to KSC prior to EPI was more effective than exposure to EPI prior to KSC. Q values showed an additive effect in the simultaneous group and antagonistic effects in the sequential groups. Morphological analysis showed similar results to the drug sensitivity assay. Cell cycle analysis revealed that exposure to KSC or EPI alone arrested the cells in S phase in HepG-2 cells, exposure to KSC and EPI simultaneously caused accumulation in the S phase, an effect caused by either KSC or EPI. Expression of cyclin A, Cdc25A and Cdk2 protein was down-regulated following exposure to KSC and EPI alone or in combination, exposure to KSC and EPI simultaneously resulting in the lowest values. Taken together, our findings suggest that KSC in combination with EPI might have potential as a new therapeutic regimen against HCC.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Carcinoma Hepatocelular , Carragenina/farmacologia , Epirubicina/farmacologia , Neoplasias Hepáticas , Compostos Organosselênicos/farmacologia , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Esquema de Medicação , Células Hep G2 , Humanos , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto , Fosfatases cdc25/efeitos dos fármacos , Fosfatases cdc25/metabolismo
7.
J Exp Ther Oncol ; 9(3): 175-81, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22070048

RESUMO

Ovarian cancer is the leading cause of death from gynecological cancer. The high mortality rate reflets the lack of early diagnosis and limited treatment alternatives. We have observed a number of properties of zinc cytotoxicity that make it attractive from a therapeutic standpoint. Using SKOV3 and ES2 cells, ovarian cancer cell lines that demonstrate varied degrees of resistance to known therapeutics, we show that zinc killing is time and concentration dependent. Death is preceded by distinct changes in cell shape and size. The effects of zinc are additive with cisplatin or doxorubicin, whose morphological effects are distinct from those of zinc. Cytotoxicity of paclitaxel is minimal, making it difficult to determine additivity with zinc. Paclitaxel results in changes in cell shape and size similar to those of zinc but has different effects on cell cycle progression and cyclin expression. The data indicate that the means by which zinc kills ovarian cancer cells is distinct from currently used chemotherapeutics. Based on the properties reported here, zinc has the potential to be developed as either a primary treatment or as a second line of defense against cancers that have developed resistance to currently used chemotherapeutics.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Ovarianas/tratamento farmacológico , Oligoelementos/farmacologia , Zinco/farmacologia , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cisplatino/farmacologia , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina D/efeitos dos fármacos , Ciclina D/metabolismo , Ciclina E/efeitos dos fármacos , Ciclina E/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Sinergismo Farmacológico , Feminino , Humanos , Paclitaxel/farmacologia , Piridinas/farmacologia , Tionas/farmacologia
8.
Mol Nutr Food Res ; 55(7): 1036-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21538854

RESUMO

SCOPE: We investigated the inhibition of pulmonary tumor formation through treatment with curcumin in transgenic mice. METHODS AND RESULTS: In this study, a strain of transgenic mice carrying human vascular endothelial growth factor A165 (hVEGF-A165) gene to induce pulmonary tumor was used as an in vivo cancer therapy model. We found that curcumin significantly reduced hVEGF-A165 overexpression to normal, specifically in Clara cells of the lungs of transgenic mice, and suppressed the formation of tumors. In addition, we demonstrated a relationship between curcumin treatment and the expression of VEGF, EGFR, ERK2, and Cyclin A at the transcriptional and translational levels. We also noticed a reduction of Cyclin A and Cyclin B after curcumin treatment that had an effect on the cell cycle. Curcumin-induced inhibition of Cyclin A and Cyclin B likely results in decreased progression through S and G2/M phases. These results demonstrated that the expression of proteins involved in the S to M phase transition in transgenic mice is suppressed by curcumin. CONCLUSION: A Data suggest that a blockade of the cell cycle may be a critical mechanism for the observed effects on vasculogenesis and angiogenesis following treatment with curcumin.


Assuntos
Curcumina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Western Blotting , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Ciclina A/efeitos dos fármacos , Ciclina A/genética , Ciclina B/efeitos dos fármacos , Ciclina B/genética , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes erbB-1/efeitos dos fármacos , Marcadores Genéticos/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Transgênicos , RNA Mensageiro , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos
9.
J Cell Physiol ; 223(2): 327-34, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20054826

RESUMO

Cdc20, an activator of the anaphase promoting complex/cyclosome (APC/C) ubiquitin ligase, initiates the destruction of key mitotic regulators to facilitate mitosis, while it is negatively regulated by the spindle assembly checkpoint (SAC) to prevent premature anaphase entry. Activation of the p38 mitogen-activated protein kinase could contribute to mitotic arrest, but the underlying mechanism is unknown. Here we report a novel pathway in which the p38 signaling triggers Cdc20 destruction under SAC elicited by cadmium, a human carcinogen. We found that the cadmium-induced prometaphase arrest was linked to decreased Cdc20 and accumulated cyclin A protein levels in human cells, whereas the activity of cyclin B1-Cdk1 was unaffected. The Cdc20 half-life was markedly shortened along with its ubiquitination and degradation via 26S proteasome in cadmium-treated asynchronous or G(2)-enriched cells. Depletion of APC3 markedly suppressed the cadmium-induced Cdc20 ubiquitination and proteolysis, while depletion of Cdh1, another activator of APC/C, did not. Intriguingly, blockage of p38 activity restored the Cdc20 levels for continuing mitosis under cadmium, while inhibition of JNK activity had no effect. The cadmium-induced Cdc20 proteolysis was also suppressed during transient depletion of p38alpha or stable expression a dominant negative form of p38. Inhibition of p38 abolished the induction of Mad2-Cdc20-APC3 complex by cadmium. Moreover, forced expression of MKK6-p38 signaling could promote Cdc20 degradation in a Cdh1-independent APC/C pathway. In summary, accelerated ubiquitination and proteolysis of Cdc20 is essential for prometaphase arrest that is mediated via the p38 signaling during SAC activation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Genes cdc/fisiologia , Fuso Acromático/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Antígenos CD , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase , Caderinas/metabolismo , Cádmio/farmacologia , Proteínas Cdc20 , Proteínas de Ciclo Celular/efeitos dos fármacos , Proteínas de Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Inibidores Enzimáticos/farmacologia , Genes cdc/efeitos dos fármacos , Humanos , MAP Quinase Quinase 6/efeitos dos fármacos , MAP Quinase Quinase 6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Mitógenos/farmacologia , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Prometáfase/efeitos dos fármacos , Prometáfase/fisiologia , Fuso Acromático/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
J Gastroenterol ; 44(10): 1055-63, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19688288

RESUMO

BACKGROUND: In this study, we investigated the effects of 2-(2-fluorophenyl)-6,7-methylenedioxyquinolin-4-one (CHM-1) on cell viability, cell cycle arrest and apoptosis in CT-26 murine colorectal adenocarcinoma cells. METHODS: For determining cell viability, the MTT assay was used. CHM-1 promoted G2/M arrest by PI staining and flow cytometric analysis. Apoptotic cells were evaluated by DAPI staining. We used CDK1 kinase assay, Western blot analysis and caspase activity assays for examining the CDK1 activity and proteins correlated with apoptosis and cell cycle arrest. The in vivo anti-tumor effects of CHM-1-P were evaluated in BALB/c mice inoculated with CT-26 cells orthotopic model. RESULTS: CHM-1 induced CT-26 cell viability inhibition and morphologic changes in a dose-dependent and time-dependent manner and the approximate IC50 was 742.36 nM. CHM-1 induced significant G2/M arrest and apoptosis in CT-26 cells. CHM-1 inhibited the CDK1 activity and decreased CDK1, Cyclin A, Cyclin B protein levels. CHM-1 induced apoptosis in CT-26 cells and promoted increasing of cytosolic cytochrome c, AIF, Bax, BAD, cleavage of pro-caspase-9, and -3. The significant reduction of caspase-9 and -3 activity and increasing the viable CT-26 cells after pretreated with caspase-9 and -3 inhibitor indicated that CHM-1-induced apoptosis was mainly mediated a mitochondria-dependent pathway. CHM-1-P improved mice survival rate, and enlargement of the spleen and liver metastasis were significantly reduced in groups treated with either 10 mg/kg and 30 mg/kg of CHM-1-P and 5-FU in comparison to these of CT-26/BALB/c mice. CONCLUSIONS: Taken together, CHM-1 acted against colorectal adenocarcinoma cells in vitro via G2/M arrest and apoptosis, and CHM-1-P inhibited tumor growth in vivo.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteína Quinase CDC2/antagonistas & inibidores , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Dioxóis/farmacologia , Quinolonas/farmacologia , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/uso terapêutico , Caspase 3/metabolismo , Caspase 9/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Dioxóis/uso terapêutico , Relação Dose-Resposta a Droga , Citometria de Fluxo , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/secundário , Meiose , Camundongos , Camundongos Endogâmicos BALB C , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Quinolonas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Anticancer Drugs ; 20(4): 230-7, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19288605

RESUMO

A number of polyamine analogs are currently used in various clinical trials as cancer treatment and it is important to investigate their effects not only on cancer cells but also on normal cells. Treatment with polyamine analogs depletes cells of polyamines and inhibits cell proliferation, but the analogs cannot take over the normal function of the natural polyamines in the cell. In this study, the normal-like breast epithelial cell line MCF-10A was treated with the polyamine analog N',N"-diethylnorspermine (DENSPM). The cells were then studied using a bromodeoxyuridine- DNA flow cytometry method as well as western blot. The ability of both normal-like and breast cancer cells to recover from DENSPM treatment was also studied. DENSPM treatment of MCF-10A cells resulted in a prolongation of the S and G2 +M phases, followed by a G1/S block. The p53/p21/RB1 pathway was involved in the G1/S block as shown by increased levels of p53 and p21 detected by western blot. Decreased levels of cyclin E1, cyclin A2, and cyclin B1 in DENSPM-treated cells can explain the prolongation of cell cycle phases that occurred before the G1/S block. We also show that MCF-10A cells rapidly recover from DENSPM-induced growth inhibition in contrast to four human breast cancer cell lines. The goal of cancer treatment is to cause minimal and reversible damage to normal cells, while cancer cells should be eliminated. Altogether, the data show that treatment with polyamine analogs spares normal cells, while negatively affecting the cancer cells.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Espermina/análogos & derivados , Western Blotting , Neoplasias da Mama/patologia , Bromodesoxiuridina , Linhagem Celular , Linhagem Celular Tumoral , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina A2 , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/efeitos dos fármacos , Ciclina E/metabolismo , DNA , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Citometria de Fluxo , Humanos , Proteínas Oncogênicas/efeitos dos fármacos , Proteínas Oncogênicas/metabolismo , Espermina/farmacologia
12.
Chem Biol Interact ; 179(2-3): 304-13, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19159621

RESUMO

Arsenic compounds have been used as anti-cancer agents in traditional Chinese medicine. Ionizing radiation (IR) is one of the most effective tools in the clinical treatment of cancer. The induction of apoptotic cell death is a significant mechanism of tumor cells under the influence of radio-/chemotherapy, and resistance to these treatments has been linked to some cancer cell lines with a low propensity for apoptosis. A combination of different anti-tumoral treatment modalities is advantageous in limiting non-specific toxicity often observed by an exceedingly high dose of single regimen. The present study aimed at investigating the enhanced effects and mechanisms in cell cycle distribution and apoptosis of U937 cells, a human pre-monocytic leukemia cell line lacking functional p53 protein, after combination treatment with irradiation and As(2)O(3). Our results indicated that combined treatment led to activation of cdc-2, which is related to the expression of cyclin B. In addition, combined treatment increased apoptotic cell death in U937 cells, which is correlated with the induction of mitotic arrest, the increase in intracellular reactive oxygen species (ROS) generation, the decrease in B-cell leukemia/lymphoma 2 (Bcl-2) and B-cell leukemia/lymphoma XL (Bcl-XL) levels, the loss of mitochondria membrane potential, and the activation of caspase-3. We found that combining radiation and As(2)O(3) may be an effective strategy against p53-deficient leukemia cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Arsenicais/farmacologia , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Óxidos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Trióxido de Arsênio , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Ciclina A/biossíntese , Ciclina A/efeitos dos fármacos , Ciclina A/efeitos da radiação , Ciclina B/biossíntese , Ciclina B/efeitos dos fármacos , Ciclina B/efeitos da radiação , Citocromos c/efeitos dos fármacos , Citocromos c/metabolismo , Citocromos c/efeitos da radiação , Ensaios de Seleção de Medicamentos Antitumorais , Fase G2/efeitos dos fármacos , Fase G2/efeitos da radiação , Humanos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Membranas Mitocondriais/efeitos da radiação , Radiação Ionizante , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/efeitos dos fármacos , Proteína Supressora de Tumor p53/efeitos da radiação , Células U937
13.
Amino Acids ; 36(2): 273-82, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18368465

RESUMO

Polyamines are important for cell growth and proliferation and they are formed from arginine and ornithine via arginase and ornithine decarboxylase (ODC). Arginine may alternatively be metabolised to NO via NO synthase. Here we study if vascular smooth muscle cell proliferation can be reversed by polyamine synthesis inhibitors and investigate their mechanism of action. Cell proliferation was assessed in cultured vascular smooth muscle A7r5 cells and in endothelium-denuded rat arterial rings by measuring [3H]-thymidine incorporation and by cell counting. Cell cycle phase distribution was determined by flow cytometry and polyamines by HPLC. Protein expression was determined by Western blotting. The ODC inhibitor DFMO (1-10 mM) reduced polyamine concentration and attenuated proliferation in A7r5 cells and rat tail artery. DFMO accumulated cells in S phase of the cell cycle and reduced cyclin A expression. DFMO had no effect on cell viability and apoptosis as assessed by fluorescence microscopy. Polyamine concentration and cellular proliferation were not affected by the arginase inhibitor NOHA (100-200 microM) and the NO synthase inhibitor L-NAME (100 microM). Lack of effect of NOHA was reflected by absence of arginase expression. Polyamine synthesis inhibition attenuates vascular smooth muscle cell proliferation by reducing DNA synthesis and accumulation of cells in S phase, and may be a useful approach to prevent vascular smooth muscle cell proliferation in cardiovascular diseases.


Assuntos
Músculo Liso Vascular/citologia , Poliaminas/antagonistas & inibidores , Fase S , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Inibidores Enzimáticos/farmacologia , Feminino , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Ornitina Descarboxilase/metabolismo , Inibidores da Ornitina Descarboxilase , Poliaminas/metabolismo , Ratos , Ratos Sprague-Dawley , Fase S/efeitos dos fármacos
14.
J Pharm Pharmacol ; 60(11): 1459-63, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18957166

RESUMO

We reported previously that oroxylin A, a natural product isolated from Scutellariae Radix, was a potent apoptosis inducer of human hepatoma HepG2 cells. In this study, cell-cycle arrest of BGC-823 human gastric carcinoma cells caused by oroxylin A has been investigated. Based on our 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) assay and flow cytometric analysis, treatment of BGC-823 cells with growth suppressive concentrations of oroxylin A caused an irreversible arrest in the G2/M phase of the cell cycle. Western blot analysis demonstrated that oroxylin A-induced cell-cycle arrest in BGC-823 cells was associated with a significant decrease in cdc2/p34, cyclin B1 and cyclin A expression. In addition, oroxylin A-treated cells decreased the expression of Cdk7, which was responsible for the low expression of M phase promoting factor (cyclin B1/Cdc2). The results suggested that oroxylin A induced G2/M phase cell-cycle arrest via inhibiting Cdk7-mediated expression of Cdc2/p34 in human gastric carcinoma BGC-823 cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteína Quinase CDC2/efeitos dos fármacos , Flavonoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Western Blotting , Proteína Quinase CDC2/metabolismo , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina B/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Quinases Ciclina-Dependentes/efeitos dos fármacos , Quinases Ciclina-Dependentes/metabolismo , Citometria de Fluxo , Fase G2/efeitos dos fármacos , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/patologia , Sais de Tetrazólio , Tiazóis , Quinase Ativadora de Quinase Dependente de Ciclina
15.
Int J Cancer ; 123(12): 2931-8, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18798266

RESUMO

OSU03012 is a non-COX inhibiting celecoxib derivative with growth inhibiting and apoptotic activity in many cancer cell lines. To investigate mechanisms related to cell cycle proteins in growth inhibition and apoptosis induced by OSU03012, the primary human oral epithelial cell line, TE1177, was transformed with HPV16 E6 (TE/E6), HPV16 E7 (TE/E7) or empty vector (TE/V). TE/E6 cell lines exhibiting low levels of p53 and undetectable levels of p21(WAF1/CIP1) were sensitized to the growth inhibiting and apoptotic effects of OSU03012. The TE/E7 cell lines expressing low levels of Rb and elevated levels of p53 and p21(WAF1/CIP1) were resistant. OSU03012 reduced the number of cells in the S phase of the TE/E7 and TE/V cell lines with intact p53-p21(WAF1/CIP1) checkpoint, but not in the checkpoint defective TE/E6 cell lines. Treatment with OSU03012 also markedly reduced the levels of cyclin A and Cdk2 in TE/E7 and TE/V, but not in TE/E6 cell lines, which had significantly enhanced basal levels of cyclin A and Cdk2. Consistent with the TE/E6 cell line, p21(WAF1/CIP1)-/- mouse embryo fibroblasts were more sensitive to OSU03012-induced apoptosis as evidenced by PARP and caspase 3 cleavages. These data suggest that p21(WAF1/CIP1) is an important factor in the sensitivity of cells to the growth inhibiting and apoptotic effects of OSU03012.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Mucosa Bucal/efeitos dos fármacos , Pirazóis/farmacologia , Sulfonamidas/farmacologia , Animais , Proteínas Reguladoras de Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Western Blotting , Bromodesoxiuridina/metabolismo , Linhagem Celular , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Embrião de Mamíferos , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Fase G1/efeitos dos fármacos , Inativação Gênica , Humanos , Imunoprecipitação , Camundongos , Mucosa Bucal/citologia , Mucosa Bucal/virologia , Proteínas Oncogênicas Virais/efeitos dos fármacos , Proteínas Oncogênicas Virais/metabolismo , Papillomaviridae , Proteínas E7 de Papillomavirus , Infecções por Papillomavirus/metabolismo , Proteínas Proto-Oncogênicas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Repressoras/metabolismo , Infecções Tumorais por Vírus/metabolismo
16.
Int J Oncol ; 33(3): 613-21, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18695893

RESUMO

In mammalian cells, the H2AX histone is rapidly phosphorylated upon the induction of DNA double strand breaks and promotes their repair, which is required for preserving genomic integrity. Etoposide is an inhibitor of DNA topoisomerase II, which causes DNA breaks and induces H2AX phosphorylation. To elucidate whether H2AX may affect cellular sensitivity to etoposide, we studied the response to this agent in immortalized embryonic fibroblasts derived from H2AX knockout mice. Clonogenic assays in cells treated with the drug revealed a greater sensitivity of H2AX null cells compared to wild-type cells, possibly due to the persistence of a higher number of DNA breaks, as detected with the comet assay. In both cell lines, etoposide induced micronuclei formation and nuclear fragmentation; however, in H2AX deficient cells nuclear fragmentation was observed at a lower drug concentration. Flow cytometric analysis showed that etoposide induced a G2/M cell cycle arrest in both cell lines, which occurred at lower drug concentrations in H2AX deficient cells. G2/M arrest was paralleled by an accumulation of cyclin A and cyclin B1, suggesting that treated cells are not able to complete cell cycle correctly and undergo cell death. Taken together, our observations suggest that H2AX takes part to the cellular response to etoposide and confirm its role in the maintenance of genome stability.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/fisiologia , Etoposídeo/farmacologia , Fibroblastos/efeitos dos fármacos , Histonas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Ciclo Celular , Ensaio Cometa , Ciclina A/biossíntese , Ciclina A/efeitos dos fármacos , Ciclina B/biossíntese , Ciclina B/efeitos dos fármacos , Citometria de Fluxo , Histonas/genética , Camundongos , Camundongos Knockout , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/biossíntese , Poli(ADP-Ribose) Polimerases/efeitos dos fármacos , Inibidores da Topoisomerase II
17.
Toxicology ; 250(1): 39-46, 2008 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-18577415

RESUMO

In the present study, we investigated the effects of manganese chloride (MnCl2) on cell cycle progression in A549 cells used as a model of Mn-induced lung toxicity. Cells were treated with various concentrations of MnCl2 (0, 0.01, 0.1, 0.5, 1.0 or 2.0 mM) for 24, 48 or 72 h. Cell proliferation was determined with MTT assay and mitotic index measurement and apoptosis was measured by flow cytometer. The results showed that MnCl2 inhibited A549 cells proliferation in a dose- and time-dependent manner, and induced apoptosis in A549 cells. When G0/G1 cells obtained by serum starvation were incubated with 0.5 mM of MnCl2 in the presence of 10% serum for several time intervals, the disruption of cell cycle progression was observed. The G0/G1 arrest was induced by MnCl2 treatment at 16 h and the arrest maintained for 8 h. Following the G0/G1 arrest, MnCl2 blocked the cells at S phase at 28 h and the S phase arrest maintained for at least 4 h. And moreover, proteasome inhibitor MG132 was able to prolong the duration of G0/G1 arrest induced by MnCl2 treatment. Results of western blotting assay revealed that cellular Cdk4, Cdk2 and phospho-Cdk2 (Thr160) levels decreased in manganese-treated cells at both 20 and 28 h. In addition, the decreasing of Cyclin A level and the increasing of p53 and WAF1/p21 were also induced by MnCl2 treatment at 20 h. The expression of Cyclin D1, Cyclin E and Cdc25A proteins was not altered in manganese-treated cells at both 20 and 28 h. Our results indicate that MnCl2 orderly induces G0/G1 and S phase arrest in A549 cells, the decreasing of Cdk4, Cdk2 and Cyclin A, and the increasing of p53 and Cdks inhibitor WAF1/p21 might be responsible for the G0/G1 arrest, and the decreasing of Cdk4 and Cdk2 levels for the S phase arrest.


Assuntos
Cloretos/toxicidade , Fase G1/efeitos dos fármacos , Neoplasias Pulmonares/metabolismo , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase S/efeitos dos fármacos , Adenocarcinoma/metabolismo , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloretos/administração & dosagem , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Humanos , Compostos de Manganês/administração & dosagem , Índice Mitótico , Fatores de Tempo
18.
Virology ; 367(1): 1-9, 2007 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-17568647

RESUMO

Epidemiological studies have demonstrated that 15 different mucosal human papillomavirus (HPV) types of the genus alpha of the HPV phylogetic tree are classified as high risk for cervical cancer development. Three additional HPV types of the same genus, HPV26, 53 and 66, are classified as probable high-risk types. In this study, we have characterized the biological properties of the E7 oncoproteins from these three HPV types. All of the corresponding E7 proteins were able to associate with retinoblastoma protein (pRb) and up-regulated the expression of several positive cell cycle regulators, i.e. CDK2, cyclin A and cylin E. However, HPV26 E7 appears to be more efficient than HPV53 and 66 E7 in up-regulating the transcription of cyclin A. Unlike E7 from the high-risk type HPV16 protein, HPV26, 53 and 66 did not efficiently promote pRb degradation. In addition, E7 from these viruses was able to promote proliferation of primary human keratinocytes and circumvent G1 arrest imposed by overexpression of p16(INK4a), but with less efficiency than the high-risk HPV16 E7. Together, our data show that in vitro properties of these E7 proteins correlate with the epidemiological classification of HPV26, 53 and 66 as HPV types with an intermediate risk for cervical cancer development.


Assuntos
Alphapapillomavirus/classificação , Alphapapillomavirus/patogenicidade , Transformação Celular Neoplásica , Queratinócitos/virologia , Proteínas E7 de Papillomavirus/metabolismo , Alphapapillomavirus/metabolismo , Linhagem Celular , Linhagem Celular Transformada , Células Cultivadas , Ciclina A/efeitos dos fármacos , Ciclina A/metabolismo , Ciclina E/efeitos dos fármacos , Ciclina E/metabolismo , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/metabolismo , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Fase G1/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/farmacologia , Infecções por Papillomavirus/virologia , Proteína do Retinoblastoma/metabolismo , Fatores de Risco , Regulação para Cima , Neoplasias do Colo do Útero/virologia
19.
Mol Cancer Ther ; 4(7): 1039-46, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16020661

RESUMO

Cyclin A-associated kinases, such as cyclin-dependent kinase 2 (CDK2), participate in regulating cellular progression from G(1) to S to G(2), and CDK2 has also been implicated in the transition to mitosis. The antitumor properties of CDK inhibitors, alone or in combination with taxanes, are currently being examined in clinical trials. Here, we examined whether the activity of kinases associated with cyclin A (such as CDK2) is important in determining cellular sensitivity to paclitaxel, a taxane and mitotic inhibitor used in chemotherapy for breast and ovarian cancer. We used adenoviral suppression or overexpression to manipulate the expression of CDK2 and cyclin A in one breast cancer and three ovarian cancer cell lines with different sensitivities to paclitaxel and assessed protein expression, kinase activity, cell cycle distribution, and sensitivity to paclitaxel. Transfection of a dominant-negative (DN)-CDK2 evoked resistance to paclitaxel by preventing cellular progression to mitosis through loss of CDK1 activity. Reexpression of wild-type CDK2 in DN-CDK2-transfected cancer cells restored CDK2 activity but not paclitaxel sensitivity. However, expression of cyclin A in DN-CDK2-transfected cells restored their sensitivity to paclitaxel. Although CDK2 activity was not directly involved in paclitaxel sensitivity, cyclin A-associated kinases did up-regulate CDK1 via phosphorylation. We conclude that cyclin A-associated kinase activity is required for these cells to enter mitosis and undergo paclitaxel-induced cell death. Combining taxane chemotherapy with any drug targeting cyclin A-associated kinases (e.g., pure CDK2 inhibitors) should be done with caution, if at all, because of the potential for enhancing taxane resistance.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Ciclina A/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Resistencia a Medicamentos Antineoplásicos , Paclitaxel/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proteína Quinase CDC2/efeitos dos fármacos , Proteína Quinase CDC2/metabolismo , Ciclina A/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/efeitos dos fármacos , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/efeitos dos fármacos , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Fosforilação , Treonina/metabolismo , Transfecção , Células Tumorais Cultivadas
20.
J Oral Sci ; 46(1): 37-44, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15141722

RESUMO

It has previously been demonstrated that gingival fibroblasts derived from nifedipine-reactive patients (nifedipine responders) show a greater cell proliferation rate than those from nifedipine non-reactive patients (nifedipine non-responders) in the presence of 1 microM nifedipine. The aim of the present study was to characterize cell cycle differences between nifedipine responder and non-responder fibroblast cells and determine the effect of basic fibroblast growth factor (bFGF) on cell cycle progression. Further, the effect of bFGF on cyclins A, B1, D1, E, and CDKs 1, 2, 4, 6 mRNA expression in responder and non-responder cells was investigated. A population of nifedipine responder cells underwent progression to S and G2/M phases from G0/G1 phase in the presence of 10% fetal calf serum or 10 ng/ml bFGF was greater than nifedipine non-responder cells. mRNA expression of cyclins A, B1, D1, E and CDKs 1, 2, 4, 6 in the presence of 10 ng/ml bFGF was generally greater in nifedipine responder cells than non-responder cells. These results indicate that nifedipine responder cells may be more susceptible to growth factors such as bFGF with a resultant increase in expression of cyclins and CDKs in responder compared with non-responder cells.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Fibroblastos/efeitos dos fármacos , Gengiva/efeitos dos fármacos , Crescimento Excessivo da Gengiva/patologia , Nifedipino/efeitos adversos , Proteínas Proto-Oncogênicas , Proteína Quinase CDC2/efeitos dos fármacos , Quinases relacionadas a CDC2 e CDC28/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Ciclina A/efeitos dos fármacos , Ciclina B/efeitos dos fármacos , Ciclina B1 , Ciclina D1/efeitos dos fármacos , Ciclina E/efeitos dos fármacos , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Quinases Ciclina-Dependentes/efeitos dos fármacos , Fase G1/efeitos dos fármacos , Fase G2/efeitos dos fármacos , Gengiva/citologia , Crescimento Excessivo da Gengiva/fisiopatologia , Humanos , Mitose/efeitos dos fármacos , Fase de Repouso do Ciclo Celular/efeitos dos fármacos , Fase S/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA