Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.354
Filtrar
1.
Microb Cell Fact ; 23(1): 121, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725068

RESUMO

BACKGROUND: Mycosporine-like amino acids (MAAs) are a class of strongly UV-absorbing compounds produced by cyanobacteria, algae and corals and are promising candidates for natural sunscreen components. Low MAA yields from natural sources, coupled with difficulties in culturing its native producers, have catalyzed synthetic biology-guided approaches to produce MAAs in tractable microbial hosts like Escherichia coli, Saccharomyces cerevisiae and Corynebacterium glutamicum. However, the MAA titres obtained in these hosts are still low, necessitating a thorough understanding of cellular factors regulating MAA production. RESULTS: To delineate factors that regulate MAA production, we constructed a shinorine (mycosporine-glycine-serine) producing yeast strain by expressing the four MAA biosynthetic enzymes from Nostoc punctiforme in Saccharomyces cerevisiae. We show that shinorine is produced from the pentose phosphate pathway intermediate sedoheptulose 7-phosphate (S7P), and not from the shikimate pathway intermediate 3-dehydroquinate (3DHQ) as previously suggested. Deletions of transaldolase (TAL1) and phosphofructokinase (PFK1/PFK2) genes boosted S7P/shinorine production via independent mechanisms. Unexpectedly, the enhanced S7P/shinorine production in the PFK mutants was not entirely due to increased flux towards the pentose phosphate pathway. We provide multiple lines of evidence in support of a reversed pathway between glycolysis and the non-oxidative pentose phosphate pathway (NOPPP) that boosts S7P/shinorine production in the phosphofructokinase mutant cells. CONCLUSION: Reversing the direction of flux between glycolysis and the NOPPP offers a novel metabolic engineering strategy in Saccharomyces cerevisiae.


Assuntos
Aminoácidos , Glicólise , Via de Pentose Fosfato , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Aminoácidos/metabolismo , Engenharia Metabólica/métodos , Nostoc/metabolismo , Nostoc/genética , Fosfatos Açúcares/metabolismo , Glicina/metabolismo , Glicina/análogos & derivados , Cicloexilaminas
2.
J Vis Exp ; (205)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38557602

RESUMO

The interaction of iron and oxygen is an integral part of the development of life on Earth. Nonetheless, this unique chemistry continues to fascinate and puzzle, leading to new biological ventures. In 2012, a Columbia University group recognized this interaction as a central event leading to a new type of regulated cell death named "ferroptosis." The major feature of ferroptosis is the accumulation of lipid hydroperoxides due to (1) dysfunctional antioxidant defense and/or (2) overwhelming oxidative stress, which most frequently coincides with increased content of free labile iron in the cell. This is normally prevented by the canonical anti-ferroptotic axis comprising the cystine transporter xCT, glutathione (GSH), and GSH peroxidase 4 (GPx4). Since ferroptosis is not a programmed type of cell death, it does not involve signaling pathways characteristic of apoptosis. The most common way to prove this type of cell death is by using lipophilic antioxidants (vitamin E, ferrostatin-1, etc.) to prevent it. These molecules can approach and detoxify oxidative damage in the plasma membrane. Another important aspect in revealing the ferroptotic phenotype is detecting the preceding accumulation of lipid hydroperoxides, for which the specific dye BODIPY C11 is used. The present manuscript will show how ferroptosis can be induced in wild-type medulloblastoma cells by using different inducers: erastin, RSL3, and iron-donor. Similarly, the xCT-KO cells that grow in the presence of NAC, and which undergo ferroptosis once NAC is removed, will be used. The characteristic "bubbling" phenotype is visible under the light microscope within 12-16 h from the moment of ferroptosis triggering. Furthermore, BODIPY C11 staining followed by FACS analysis to show the accumulation of lipid hydroperoxides and consequent cell death using the PI staining method will be used. To prove the ferroptotic nature of cell death, ferrostatin-1 will be used as a specific ferroptosis-preventing agent.


Assuntos
Compostos de Boro , Neoplasias Cerebelares , Cicloexilaminas , Meduloblastoma , Fenilenodiaminas , Humanos , Peroxidação de Lipídeos/fisiologia , Antioxidantes/farmacologia , Ferro/metabolismo , Glutationa/metabolismo , Peróxidos Lipídicos , Fenótipo
3.
J Pharmacol Sci ; 155(2): 44-51, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38677785

RESUMO

Subretinal hemorrhages result in poor vision and visual field defects. During hemorrhage, several potentially toxic substances are released from iron-based hemoglobin and hemin, inducing cellular damage, the detailed mechanisms of which remain unknown. We examined the effects of excess intracellular iron on retinal pigment epithelial (RPE) cells. A Fe2+ probe, SiRhoNox-1 was used to investigate Fe2+ accumulation after treatment with hemoglobin or hemin in the human RPE cell line ARPE-19. We also evaluated the production of reactive oxygen species (ROS) and lipid peroxidation. Furthermore, the protective effect of-an iron chelator, 2,2'-bipyridyl (BP), and ferrostatin-1 (Fer-1) on the cell damage, was evaluated. Fe2+ accumulation increased in the hemoglobin- or hemin-treated groups, as well as intracellular ROS production and lipid peroxidation. In contrast, BP treatment suppressed RPE cell death, ROS production, and lipid peroxidation. Pretreatment with Fer-1 ameliorated cell death in a concentration-dependent manner and suppressed ROS production and lipid peroxidation. Taken together, these findings indicate that hemoglobin and hemin, as well as subretinal hemorrhage, may induce RPE cell damage and visual dysfunction via intracellular iron accumulation.


Assuntos
Hemina , Hemoglobinas , Ferro , Epitélio Pigmentado da Retina , Humanos , Morte Celular/efeitos dos fármacos , Linhagem Celular , Cicloexilaminas/farmacologia , Hemina/farmacologia , Hemoglobinas/metabolismo , Ferro/metabolismo , Quelantes de Ferro/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/efeitos dos fármacos , Epitélio Pigmentado da Retina/patologia
4.
Food Chem Toxicol ; 188: 114682, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657941

RESUMO

Butylated hydroxyanisole (BHA) is one of the most commonly used antioxidants and is widely used in food, but whether it causes vascular damage has not been clearly studied. The present study demonstrated for the first time that BHA reduced the viability of human umbilical vein endothelial cells (HUVECs) and mouse brain microvascular endothelial cells (BEND3) in a dose- and time-dependent manner. Moreover, BHA inhibited the migration and proliferation of vascular endothelial cells (ECs). Further analysis revealed that in ECs, the ferroptosis inhibitor ferrostatin-1 (Fer-1) reversed the BHA-induced increase in Fe2+ and malonaldehyde (MDA) levels. Acridine orange staining demonstrated that BHA increased lysosomal permeability. At the protein level, BHA increased the expression of transcription factor EB (TFEB) and decreased the expression of glutathione peroxidase (GPX4), solute carrier family 7 member 11 (SLC7A11, xCT), and ferritin heavy chain 1 (FTH1). Moreover, these effects of BHA could be reversed by knocking down TFEB. In vivo experiments confirmed that BHA caused elevated pulse wave velocity (PWV) and reduced acetylcholine-dependent vascular endothelial diastole. In conclusion, BHA degrades GPX4, xCT, and FTH1 through activation of the TFEB-mediated lysosomal pathway and promotes ferroptosis, ultimately leading to vascular endothelial cell injury.


Assuntos
Hidroxianisol Butilado , Células Endoteliais da Veia Umbilical Humana , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Animais , Humanos , Camundongos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Hidroxianisol Butilado/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Ferroptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Movimento Celular/efeitos dos fármacos , Ferritinas/metabolismo , Ferritinas/genética , Cicloexilaminas , Oxirredutases , Fenilenodiaminas
5.
J Anal Toxicol ; 48(4): 217-225, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38619371

RESUMO

Since the 2000s, an increasing number of new psychoactive substances have appeared on the illicit drug market. ß-Keto-arylcyclohexylamine compounds play important pharmacological roles in anesthesia; however, because these new psychoactive substances have rapidly increasing illicit recreational use, the lack of detailed toxicity data are of particular concern. Therefore, analysis of their metabolites can help forensic personnel provide references and suggestions on whether a suspect has taken an illicit new psychoactive ß-keto-arylcyclohexylamine. The present study investigated the in vitro and in vivo metabolism and metabolites of three ß-keto-arylcyclohexylamines: deschloro-N-ethyl-ketamine, fluoro-N-ethyl-ketamine and bromoketamine. In vitro and in vivo models were established using zebrafish and human liver microsomes for analysis of Phase I and Phase II metabolites by liquid chromatography-high-resolution mass spectrometry. Altogether, 49 metabolites were identified. The results were applied for the subject urine samples of known fluoro-N-ethyl-ketamine consumer screen analysis in forensic cases. Hydroxy-deschloro-N-ethyl-ketamine, hydroxy-fluoro-N-ethyl-ketamine and hydroxy-bromoketamine were recommended as potential biomarkers for documenting intake in clinical and forensic cases.


Assuntos
Drogas Ilícitas , Ketamina , Microssomos Hepáticos , Psicotrópicos , Detecção do Abuso de Substâncias , Peixe-Zebra , Animais , Humanos , Microssomos Hepáticos/metabolismo , Psicotrópicos/metabolismo , Ketamina/análogos & derivados , Ketamina/metabolismo , Drogas Ilícitas/metabolismo , Detecção do Abuso de Substâncias/métodos , Cicloexilaminas , Cromatografia Líquida
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167182, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653359

RESUMO

OBJECTIVE: This work aimed to investigate the role of rhythm gene PER1 in mediating granulosa cell ferroptosis and lipid metabolism of polycystic ovary syndrome (PCOS). METHODS: We injected dehydroepiandrosterone and Ferrostatin-1 (Fer-1) into mice to explore the mechanism of ferroptosis in PCOS. The effect of PER1 on ferroptosis-like changes in granulosa cells was explored by overexpression of PER1 plasmid transfection and Fer-1 treatment. RESULTS: We found that Fer-1 ameliorated the characteristic polycystic ovary morphology, suppressed ferroptosis in the PCOS mice. PER1 and ALOX15 were highly expressed in PCOS, whereas SREBF2 was lowly expressed. Overexpression of PER1 decreased granulosa cell viability and inhibited proliferation. Meanwhile, overexpression of PER1 increased lipid reactive oxygen species, 4-Hydroxynonenal (4-HNE), Malondialdehyde (MDA), total Fe, and Fe2+ levels in granulosa cells and decreased Glutathione (GSH) content. Fer-1, SREBF2 overexpression, or ALOX15 silencing treatment reversed the effects of PER1 overexpression on granulosa cells. PER1 binds to the SREBF2 promoter and represses SREBF2 transcription. SREBF2 binds to the ALOX15 promoter and represses ALOX15 transcription. Correlation analysis of clinical trials showed that PER1 was positively correlated with total cholesterol, low-density lipoprotein cholesterol, luteinizing hormone, testosterone, 4-HNE, MDA, total Fe, Fe2+, and ALOX15. In contrast, PER1 was negatively correlated with SREBF2, high-density lipoprotein cholesterol, follicle-stimulating hormone, progesterone, and GSH. CONCLUSION: This study demonstrates that the rhythm gene PER1 promotes ferroptosis and dysfunctional lipid metabolism in granulosa cells in PCOS by inhibiting SREBF2/ALOX15 signaling.


Assuntos
Ferroptose , Células da Granulosa , Metabolismo dos Lipídeos , Síndrome do Ovário Policístico , Ferroptose/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/patologia , Feminino , Animais , Metabolismo dos Lipídeos/genética , Camundongos , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Humanos , Fenilenodiaminas/farmacologia , Cicloexilaminas/farmacologia , Araquidonato 15-Lipoxigenase/metabolismo , Araquidonato 15-Lipoxigenase/genética , Desidroepiandrosterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Araquidonato 12-Lipoxigenase
7.
Free Radic Biol Med ; 219: 49-63, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38608823

RESUMO

Previous studies have shown that ferroptosis of vascular smooth muscle cells (VSMCs) is involved in the development of aortic dissection (AD) and that histone methylation regulates this process. SP2509 acts as a specific inhibitor of lysine-specific demethylase 1 (LSD1), which governs a variety of biological processes. However, the effect of SP2509 on VSMC ferroptosis and AD remains to be elucidated. This aim of this study was to investigate the role and underlying mechanism of SP2509-mediated histone methylation on VSMC ferroptosis. Here, a mouse model of AD was established, and significantly reduced levels of H3K4me1 and H3K4me2 (target of SP2509) were found in the aortas of AD mice. In VSMCs, SP2509 treatment led to a dose-dependent increase in H3K4me2 levels. Furthermore, we found that SP2509 provided equivalent protection to ferrostatin-1 against VSMC ferroptosis, as evidenced by increased cell viability, decreased cell death and lipid peroxidation. RNA-sequencing analysis and subsequent experiments revealed that SP2509 counteracted cystine deficiency-induced response to inflammation and oxidative stress. More importantly, we demonstrated that SP2509 inhibited the expression of TFR and ferritin to reduce intracellular iron levels, thereby effectively blocking the process of ferroptosis. Therefore, our findings indicate that SP2509 protects VSMCs from multiple stimulus-induced ferroptosis by reducing intracellular iron levels, thereby preventing lipid peroxidation and cell death. These findings suggest that SP2509 may be a promising drug to alleviate AD by reducing iron deposition and VSMC ferroptosis.


Assuntos
Ferroptose , Ferro , Músculo Liso Vascular , Miócitos de Músculo Liso , Ferroptose/efeitos dos fármacos , Animais , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Camundongos , Ferro/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Estresse Oxidativo/efeitos dos fármacos , Humanos , Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Fenilenodiaminas/farmacologia , Masculino , Sobrevivência Celular/efeitos dos fármacos , Histonas/metabolismo , Histonas/genética , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Camundongos Endogâmicos C57BL , Cicloexilaminas
8.
Arch Toxicol ; 98(6): 1781-1794, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38573338

RESUMO

Doxorubicin (DOX) is one of the most frequently used chemotherapeutic drugs belonging to the class of anthracyclines. However, the cardiotoxic effects of anthracyclines limit their clinical use. Recent studies have suggested that ferroptosis is the main underlying pathogenetic mechanism of DOX-induced cardiomyopathy (DIC). BTB-and-CNC homology 1 (Bach1) acts as a key role in the regulation of ferroptosis. However, the mechanistic role of Bach1 in DIC remains unclear. Therefore, this study aimed to investigate the underlying mechanistic role of Bach1 in DOX-induced cardiotoxicity using the DIC mice in vivo (DOX at cumulative dose of 20 mg/kg) and the DOX-treated H9c2 cardiomyocytes in vitro (1 µM). Our results show a marked upregulation in the expression of Bach1 in the cardiac tissues of the DOX-treated mice and the DOX-treated cardiomyocytes. However, Bach1-/- mice exhibited reduced lipid peroxidation and less severe cardiomyopathy after DOX treatment. Bach1 knockdown protected against DOX-induced ferroptosis in both in vivo and in vitro models. Ferrostatin-1 (Fer-1), a potent inhibitor of ferroptosis, significantly alleviated DOX-induced cardiac damage. However, the cardioprotective effects of Bach1 knockdown were reversed by pre-treatment with Zinc Protoporphyrin (ZnPP), a selective inhibitor of heme oxygenase-1(HO-1). Taken together, these findings demonstrated that Bach1 promoted oxidative stress and ferroptosis through suppressing the expression of HO-1. Therefore, Bach1 may present as a promising new therapeutic target for the prevention and early intervention of DOX-induced cardiotoxicity.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica , Cardiomiopatias , Doxorrubicina , Ferroptose , Heme Oxigenase-1 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos , Estresse Oxidativo , Animais , Ferroptose/efeitos dos fármacos , Doxorrubicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Masculino , Camundongos , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , Linhagem Celular , Ratos , Cardiotoxicidade , Antibióticos Antineoplásicos/toxicidade , Peroxidação de Lipídeos/efeitos dos fármacos , Protoporfirinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Cicloexilaminas , Proteínas de Membrana , Fenilenodiaminas
9.
FASEB J ; 38(7): e23592, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38581243

RESUMO

Vascular calcification is an actively regulated biological process resembling bone formation, and osteogenic differentiation of vascular smooth muscle cells (VSMCs) plays a crucial role in this process. 1-Palmitoyl-2-(5'-oxo-valeroyl)-sn-glycero-3-phosphocholine (POVPC), an oxidized phospholipid, is found in atherosclerotic plaques and has been shown to induce oxidative stress. However, the effects of POVPC on osteogenic differentiation and calcification of VSMCs have yet to be studied. In the present study, we investigated the role of POVPC in vascular calcification using in vitro and ex vivo models. POVPC increased mineralization of VSMCs and arterial rings, as shown by alizarin red staining. In addition, POVPC treatment increased expression of osteogenic markers Runx2 and BMP2, indicating that POVPC promotes osteogenic transition of VSMCs. Moreover, POVPC increased oxidative stress and impaired mitochondria function of VSMCs, as shown by increased ROS levels, impairment of mitochondrial membrane potential, and decreased ATP levels. Notably, ferroptosis triggered by POVPC was confirmed by increased levels of intracellular ROS, lipid ROS, and MDA, which were decreased by ferrostatin-1, a ferroptosis inhibitor. Furthermore, ferrostatin-1 attenuated POVPC-induced calcification of VSMCs. Taken together, our study for the first time demonstrates that POVPC promotes vascular calcification via activation of VSMC ferroptosis. Reducing the levels of POVPC or inhibiting ferroptosis might provide a novel strategy to treat vascular calcification.


Assuntos
Cicloexilaminas , Ferroptose , Fenilenodiaminas , Calcificação Vascular , Humanos , Músculo Liso Vascular/metabolismo , Fosfolipídeos/metabolismo , Fosforilcolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Osteogênese , Calcificação Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Células Cultivadas
10.
Exp Cell Res ; 438(1): 114029, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608805

RESUMO

Aberrant expression of airway epithelial E-cadherin is a key feature of asthma, yet the underlying mechanisms are largely unknown. Ferroptosis is a novel form of regulated cell death involved in asthma pathogenesis. This study was aimed to evaluate the role of ferroptosis and to investigate whether ferroptosis mediates E-cadherin disruption in mixed granulocyte asthma (MGA). Two murine models of MGA were established using toluene diisocyanate (TDI) or ovalbumin with Complete Freund's Adjuvant (OVA/CFA). Specific antagonists of ferroptosis, including Liproxstatin-1 (Lip-1) and Ferrostatin-1 (Fer-1) were given to the mice. The allergen-exposed mice displayed markedly shrunk mitochondria in the airway epithelia, with decreased volume and denser staining accompanied by down-regulated GPX4 as well as up-regulated FTH1 and malondialdehyde, which are markers of ferroptosis. Decreased pulmonary expression of E-cadherin was also observed, with profound loss of membrane E-cadherin in the airway epithelia, as well as increased secretion of sE-cadherin. Treatment with Lip-1 not only showed potent protective effects against the allergen-induced airway hyperresponsiveness and inflammatory responses, but also rescued airway epithelial E-cadherin expression and inhibited the release of sE-cadherin. Taken together, our data demonstrated that ferroptosis mediates airway epithelial E-cadherin dysfunction in MGA.


Assuntos
Asma , Caderinas , Modelos Animais de Doenças , Ferroptose , Quinoxalinas , Compostos de Espiro , Animais , Ferroptose/efeitos dos fármacos , Caderinas/metabolismo , Asma/metabolismo , Asma/patologia , Asma/induzido quimicamente , Camundongos , Granulócitos/metabolismo , Granulócitos/patologia , Feminino , Camundongos Endogâmicos BALB C , Ovalbumina , Fenilenodiaminas/farmacologia , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/efeitos dos fármacos , Cicloexilaminas/farmacologia
11.
Sci Rep ; 14(1): 9548, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664508

RESUMO

Ferroptosis is closely associated with inflammatory diseases, including acute pancreatitis (AP); however, the involvement of ferroptosis in hypertriglyceridemic pancreatitis (HTGP) remains unclear. In the present study, we aimed to explore the relationship between lipid metabolism and ferroptosis in HTGP and the alleviating effect of liproxstatin-1 (Lip-1) in vivo. This study represents the first exploration of lipid metabolism and endoplasmic reticulum stress (ERS) in HTGP, targeting ferroptosis as a key factor in HTGP. Hypertriglyceridemia (HTG) was induced under high-fat diet conditions. Cerulein was then injected to establish AP and HTGP models. Lip-1, a specific ferroptosis inhibitor, was administered before the induction of AP and HTGP in rats, respectively. Serum triglyceride, amylase, inflammatory factors, pathological and ultrastructural structures, lipid peroxidation, and iron overload indicators related to ferroptosis were tested. Moreover, the interaction between ferroptosis and ERS was assessed. We found HTG can exacerbate the development of AP, with an increased inflammatory response and intensified ferroptosis process. Lip-1 treatment can attenuate pancreatic injury by inhibiting ferroptosis through lipid metabolism and further resisting activations of ERS-related proteins. Totally, our results proved lipid metabolism can promote ferroptosis in HTGP by regulating ACSL4/LPCAT3 protein levels. Additionally, ERS may participate in ferroptosis via the Bip/p-EIF2α/CHOP pathway, followed by the alleviating effect of Lip-1 in the rat model.


Assuntos
Estresse do Retículo Endoplasmático , Ferroptose , Hipertrigliceridemia , Metabolismo dos Lipídeos , Pancreatite , Quinoxalinas , Compostos de Espiro , Animais , Ferroptose/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Pancreatite/metabolismo , Pancreatite/patologia , Hipertrigliceridemia/tratamento farmacológico , Hipertrigliceridemia/metabolismo , Ratos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Masculino , Metabolismo dos Lipídeos/efeitos dos fármacos , Cicloexilaminas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Peroxidação de Lipídeos/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pâncreas/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo
12.
Bioorg Med Chem ; 105: 117716, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38608329

RESUMO

In this study, a series of new formylpiperazine-derived ferroptosis inhibitors were designed and synthesized based on the structure of a known ferroptosis inhibitor, ferrostatin-1 (Fer-1). The anti-ferroptosis activity of these synthetic compounds in human umbilical vein endothelial cells (HUVECs) induced by Erastin was evaluated. It was found that some of the new compounds, especially compound 26, showed potent anti-ferroptosis activity, as evidenced by its ability to restore cell viability, reduce iron accumulation, scavenge reactive oxygen species, maintain mitochondrial membrane potential, increase GSH levels, decrease LPO and MDA content, and upregulate GPX4 expression. Moreover, compound 26 exhibited superior microsomal stability than Fer-1. The present results suggest that compound 26 is a promising lead compound for the development of new ferroptosis inhibitors for the treatment of vascular diseases.


Assuntos
Sobrevivência Celular , Cicloexilaminas , Desenho de Fármacos , Ferroptose , Células Endoteliais da Veia Umbilical Humana , Piperazinas , Humanos , Ferroptose/efeitos dos fármacos , Piperazinas/farmacologia , Piperazinas/síntese química , Piperazinas/química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Relação Estrutura-Atividade , Cicloexilaminas/farmacologia , Cicloexilaminas/química , Cicloexilaminas/síntese química , Sobrevivência Celular/efeitos dos fármacos , Estrutura Molecular , Fenilenodiaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/síntese química , Relação Dose-Resposta a Droga , Espécies Reativas de Oxigênio/metabolismo , Compostos Ferrosos/farmacologia , Compostos Ferrosos/química , Compostos Ferrosos/síntese química , Potencial da Membrana Mitocondrial/efeitos dos fármacos
13.
J Photochem Photobiol B ; 255: 112908, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38663336

RESUMO

The prevalence of Light-emitting diodes (LEDs) has exposed us to an excessive amount of blue light (BL) which causes various ophthalmic diseases. Previous studies have shown that conjunctiva is vulnerable to BL. In this study, we aimed to investigate the underlying mechanism of BL-induced injury in conjunctiva. We placed C57BL/6 mice and human conjunctival epithelial cell lines (HCECs) under BL (440 nm ± 15 nm, 0.2 mW/cm2) to establish a BL injury model in vivo and in vitro. Immunohistochemistry and MDA assay were used to identify lipid peroxidation (LPO) in vivo. HE staining was applied to detect morphological damage of conjunctival epithelium. DCFH-DA, C11-BODIPY 581/591, Calcein-AM, and FeRhoNox™-1 probes were performed to identify ferroptosis levels in vitro. Real-time qPCR and Western blotting techniques were employed to uncover signaling pathways of blue light-induced ferroptosis. Our findings demonstrated that BL affected tear film instability and induced conjunctival epithelium injury in vivo. Ferrostatin-1 significantly alleviated blue light-induced ferroptosis in vivo and in vitro. BL downregulates the levels of solute carrier family 7 member 11 (SLC7A11), Ferritin heavy chain (FTH1), and glutathione peroxidase (GPX4) by inhibiting the activation and translocation of the Signal transducer and activator of transcription 3 (STAT3) from inducing Fe2+ burst, ROS and LPO accumulation, ultimately resulting in ferroptosis. This study will offer new insight into BL-induced conjunctival injury and LED-induced dry eye.


Assuntos
Túnica Conjuntiva , Ferroptose , Luz , Camundongos Endogâmicos C57BL , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Fator de Transcrição STAT3 , Animais , Túnica Conjuntiva/metabolismo , Túnica Conjuntiva/efeitos da radiação , Túnica Conjuntiva/patologia , Camundongos , Ferroptose/efeitos da radiação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Peroxidação de Lipídeos/efeitos da radiação , Linhagem Celular , Epitélio/efeitos da radiação , Epitélio/metabolismo , Epitélio/patologia , Transdução de Sinais/efeitos da radiação , Células Epiteliais/metabolismo , Células Epiteliais/efeitos da radiação , Células Epiteliais/patologia , Espécies Reativas de Oxigênio/metabolismo , Fenilenodiaminas/farmacologia , Luz Azul , Cicloexilaminas
14.
Sci Rep ; 14(1): 7739, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565869

RESUMO

Mutations in PINK1 and Parkin cause early-onset Parkinson's Disease (PD). PINK1 is a kinase which functions as a mitochondrial damage sensor and initiates mitochondrial quality control by accumulating on the damaged organelle. There, it phosphorylates ubiquitin, which in turn recruits and activates Parkin, an E3 ubiquitin ligase. Ubiquitylation of mitochondrial proteins leads to the autophagic degradation of the damaged organelle. Pharmacological modulation of PINK1 constitutes an appealing avenue to study its physiological function and develop therapeutics. In this study, we used a thermal shift assay with insect PINK1 to identify small molecules that inhibit ATP hydrolysis and ubiquitin phosphorylation. PRT062607, an SYK inhibitor, is the most potent inhibitor in our screen and inhibits both insect and human PINK1, with an IC50 in the 0.5-3 µM range in HeLa cells and dopaminergic neurons. The crystal structures of insect PINK1 bound to PRT062607 or CYC116 reveal how the compounds interact with the ATP-binding pocket. PRT062607 notably engages with the catalytic aspartate and causes a destabilization of insert-2 at the autophosphorylation dimer interface. While PRT062607 is not selective for PINK1, it provides a scaffold for the development of more selective and potent inhibitors of PINK1 that could be used as chemical probes.


Assuntos
Cicloexilaminas , Proteínas Quinases , Pirimidinas , Ubiquitina-Proteína Ligases , Humanos , Proteínas Quinases/metabolismo , Células HeLa , Ubiquitina-Proteína Ligases/metabolismo , Fosforilação , Ubiquitina/metabolismo , Trifosfato de Adenosina/metabolismo
15.
Free Radic Biol Med ; 218: 26-40, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38570172

RESUMO

Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a crucial role in ferroptosis by regulating the cellular antioxidant response and maintaining redox balance. However, compounds that induce ferroptosis through dual antioxidant pathways based on Nrf2 have not been fully explored. In our study, we investigated the impact of Gambogic acid (GA) on MCF-7 cells and HepG2 cells in vitro. The cytotoxicity, colony formation assay and cell cycle assay demonstrated potent tumor-killing ability of GA, while its effect was rescued by ferroptosis inhibitors. Furthermore, RNA sequencing revealed the enrichment of ferroptosis pathway mediated by GA. In terms of ferroptosis indicators detection, evidences for GA were provided including reactive oxygen species (ROS) accumulation, alteration in mitochondrial membrane potential (MMP), disappearance of mitochondrial cristae, lipid peroxidation induction, malondialdehyde (MDA) accumulation promotion, iron ion accumulation as well as glutathione (GSH)/thioredoxin (Trx) depletion. Notably, Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) successfully rescued GA-induced MDA accumulation. In terms of mechanism, Nrf2 was found to play a pivotal role in GA-induced ferroptosis by inducing protein alterations through the iron metabolism pathway and GSH/Trx dual antioxidant pathway. Furthermore, GA exerted good antitumor activity in vivo through GSH/Trx dual antioxidant pathway, and Fer-1 significantly attenuated its efficacy. In conclusion, our findings first provided new evidence for GA as an inducer of ferroptosis, and Nrf2-mediated GSH/Trx dual antioxidant system played an important role in GA-induced ferroptosis.


Assuntos
Antioxidantes , Ferroptose , Glutationa , Fator 2 Relacionado a NF-E2 , Quinoxalinas , Espécies Reativas de Oxigênio , Compostos de Espiro , Xantonas , Ferroptose/efeitos dos fármacos , Xantonas/farmacologia , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Glutationa/metabolismo , Animais , Antioxidantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Células MCF-7 , Células Hep G2 , Ensaios Antitumorais Modelo de Xenoenxerto , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antineoplásicos/farmacologia , Peroxidação de Lipídeos/efeitos dos fármacos , Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Proliferação de Células/efeitos dos fármacos
16.
Angew Chem Int Ed Engl ; 63(21): e202402537, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509827

RESUMO

Research on ferroptosis in myocardial ischemia/reperfusion injury (MIRI) using mitochondrial viscosity as a nexus holds great promise for MIRI therapy. However, high-precision visualisation of mitochondrial viscosity remains a formidable task owing to the debilitating electrostatic interactions caused by damaged mitochondrial membrane potential. Herein, we propose a dual-locking mitochondria-targeting strategy that incorporates electrostatic forces and probe-protein molecular docking. Even in damaged mitochondria, stable and precise visualisation of mitochondrial viscosity in triggered and medicated MIRI was achieved owing to the sustained driving forces (e.g., pi-cation, pi-alkyl interactions, etc.) between the developed probe, CBS, and the mitochondrial membrane protein. Moreover, complemented by a western blot, we confirmed that ferrostatin-1 exerts its therapeutic effect on MIRI by improving the system xc-/GSH/GPX4 antioxidant system, confirming the therapeutic value of ferroptosis in MIRI. This study presents a novel strategy for developing robust mitochondrial probes, thereby advancing MIRI treatment.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Ferroptose/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Simulação de Acoplamento Molecular , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Humanos , Cicloexilaminas/química , Cicloexilaminas/farmacologia , Fenilenodiaminas/química , Fenilenodiaminas/farmacologia
17.
Aging (Albany NY) ; 16(7): 5987-6007, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38536018

RESUMO

Ferroptosis is a specific type of programmed cell death characterized by iron-dependent lipid peroxidation. Understanding the involvement of ferroptosis in calcium oxalate (CaOx) stone formation may reveal potential targets for this condition. The publicly available dataset GSE73680 was used to identify 61 differentially expressed ferroptosis-related genes (DEFERGs) between normal kidney tissues and Randall's plaques (RPs) from patients with nephrolithiasis through employing weighted gene co-expression network analysis (WGCNA). The findings were validated through in vitro and in vivo experiments using CaOx nephrolithiasis rat models induced by 1% ethylene glycol administration and HK-2 cell models treated with 1 mM oxalate. Through WGCNA and the machine learning algorithm, we identified LAMP2 and MDM4 as the hub DEFERGs. Subsequently, nephrolithiasis samples were classified into cluster 1 and cluster 2 based on the expression of the hub DEFERGs. Validation experiments demonstrated decreased expression of LAMP2 and MDM4 in CaOx nephrolithiasis animal models and cells. Treatment with ferrostatin-1 (Fer-1), a ferroptosis inhibitor, partially reversed oxidative stress and lipid peroxidation in CaOx nephrolithiasis models. Moreover, Fer-1 also reversed the expression changes of LAMP2 and MDM4 in CaOx nephrolithiasis models. Our findings suggest that ferroptosis may be involved in the formation of CaOx kidney stones through the regulation of LAMP2 and MDM4.


Assuntos
Biomarcadores , Ferroptose , Nefrolitíase , Ferroptose/efeitos dos fármacos , Animais , Nefrolitíase/metabolismo , Nefrolitíase/genética , Nefrolitíase/patologia , Ratos , Biomarcadores/metabolismo , Humanos , Masculino , Oxalato de Cálcio/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Cálculos Renais/metabolismo , Cálculos Renais/genética , Cálculos Renais/patologia , Cicloexilaminas/farmacologia , Fenilenodiaminas/farmacologia , Modelos Animais de Doenças , Ratos Sprague-Dawley , Linhagem Celular
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 46(1): 11-18, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38433625

RESUMO

Objective To investigate the effect of staphylococcal nuclease and tudor domain containing 1(SND1) on the biological function of osteosarcoma cells and decipher the mechanism of SND1 in regulating ferroptosis in osteosarcoma cells via SLC7A11. Methods Human osteoblasts hFOB1.19 and osteosarcoma cell lines Saos-2,U2OS,HOS,and 143B were cultured,in which the expression level of SND1 was determined.Small interfering RNA was employed to knock down the expression of SND1(si-SND1) in the osteosarcoma cell line HOS and 143B.The CCK8 assay kit,colony formation assay,and Transwell assay were employed to examine the effect of SND1 expression on the biological function of osteosarcoma cells.Furthermore,we altered the expression of SND1 and SLC7A11 in osteosarcoma cells to investigate the effect of SND1 on osteosarcoma ferroptosis via SLC7A11. Results The mRNA and protein levels of SND1 in Saos-2,U2OS,HOS,and 143B cells were higher than those in hFOB1.19 cells(all P<0.01).Compared with the control group,transfection with si-SND1 down-regulated the expression level of SND1 in HOS and 143B cells(all P<0.01),decreased the viability of HOS and 143B cells,reduced the number of colony formation,and inhibited cell invasion and migration(all P<0.001).The ferroptosis inducer Erastin promoted the apoptosis of HOS and 143B cells,while the ferroptosis inhibitor Ferrostatin-1 improved the viability of HOS and 143B cells(all P<0.001).After SND-1 knockdown,Erastin reduced the viability of HOS and 143B cells,while Ferrostatin-1 restored the cell viability(all P<0.001).After treatment with Erastin in the si-SND1 group,the levels of iron and malondialdehyde were elevated,and the level of glutathione was lowered(all P<0.001).The results of in vivo experiments showed that SND1 knockdown inhibited the mass of the transplanted tumor in 143B tumor-bearing nude mice(P<0.001).Knocking down the expression of SND1 resulted in down-regulated SLC7A11 expression(all P<0.001) and increased ferroptosis in HOS and 143B cells(P<0.001,P=0.020). Conclusions SND1 presents up-regulated expression in osteosarcoma cells.It may inhibit ferroptosis by up-regulating the expression of SLC7A11,thereby improving the viability of osteosarcoma cells.


Assuntos
Neoplasias Ósseas , Cicloexilaminas , Eliptocitose Hereditária , Ferroptose , Osteossarcoma , Fenilenodiaminas , Animais , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos , Endonucleases , Camundongos Nus , Nuclease do Micrococo , Domínio Tudor
19.
Toxicology ; 503: 153767, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437911

RESUMO

Ricin is a highly toxic plant toxin that can cause multi-organ failure, especially liver dysfunction, and is a potential bioterrorism agent. Despite the serious public health challenge posed by ricin, effective therapeutic for ricin-induced poisoning is currently unavailable. Therefore, it is important to explore the mechanism of ricin poisoning and develop appropriate treatment protocols accordingly. Previous studies have shown that lipid peroxidation and iron accumulation are associated with ricin poisoning. Ferroptosis is an iron-dependent form of cell death caused by excessive accumulation of lipid peroxide. The role and mechanism of ferroptosis in ricin poisoning are unclear and require further study. We investigated the effect of ferroptosis on ricin-induced liver injury and further elucidated the mechanism. The results showed that ferroptosis occurred in the liver of ricin-intoxicated rats, and Ferrostatin­1 could ameliorate hepatic ferroptosis and thus liver injury. Ricin induced liver injury by decreasing hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, increasing iron, malondialdehyde and reactive oxygen species, and mitochondrial damage, whereas Ferrostatin­1 pretreatment increased hepatic reduced glutathione and the protein level of glutathione peroxidase 4 and Solute Carrier Family 7 Member 11, decreased iron, malondialdehyde, and reactive oxygen species, and ameliorated mitochondrial damage, thereby alleviated liver injury. These results suggested that ferroptosis exacerbated liver injury after ricin poisoning and that inhibition of ferroptosis may be a novel strategy for the treatment of ricin poisoning.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Cicloexilaminas , Ferroptose , Doenças Transmitidas por Alimentos , Fenilenodiaminas , Ricina , Animais , Ratos , Ricina/toxicidade , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio , Ferro , Malondialdeído , Glutationa
20.
Eur J Pharmacol ; 971: 176528, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38556118

RESUMO

Hyperuricemic nephropathy (HN) is characterized by renal fibrosis and tubular necrosis caused by elevated uric acid levels. Ferroptosis, an iron-dependent type of cell death, has been implicated in the pathogenesis of kidney diseases. The objective of this study was to explore the role of ferroptosis in HN and the impact of a ferroptosis inhibitor, ferrostatin-1 (Fer-1). The study combined adenine and potassium oxonate administration to establish a HN model in mice and treated HK-2 cells with uric acid to simulate HN conditions. The effects of Fer-1 on the renal function, fibrosis, and ferroptosis-associated molecules were investigated in HN mice and HK-2 cells treated with uric acid. The HN mice presented with renal dysfunction characterized by elevated tissue iron levels and diminished antioxidant capacity. There was a significant decrease in the mRNA and protein expression levels of SLC7A11, GPX4, FTL-1 and FTH-1 in HN mice. Conversely, treatment with Fer-1 reduced serum uric acid, serum creatinine, and blood urea nitrogen, while increasing uric acid levels in urine. Fer-1 administration also ameliorated renal tubule dilatation and reduced renal collagen deposition. Additionally, Fer-1 also upregulated the expression levels of SLC7A11, GPX4, FTL-1, and FTH-1, decreased malondialdehyde and iron levels, and enhanced glutathione in vivo and in vitro. Furthermore, we first found that Fer-1 exhibited a dose-dependent inhibition of URAT1, with the IC50 value of 7.37 ± 0.66 µM. Collectively, the current study demonstrated that Fer-1 effectively mitigated HN by suppressing ferroptosis, highlighting the potential of targeting ferroptosis as a therapeutic strategy for HN.


Assuntos
Cicloexilaminas , Ferroptose , Hiperuricemia , Nefropatias , Fenilenodiaminas , Camundongos , Animais , Ácido Úrico , Hiperuricemia/tratamento farmacológico , Hiperuricemia/metabolismo , Nefropatias/tratamento farmacológico , Fibrose , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA