Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 776
Filtrar
1.
Toxicol Lett ; 395: 50-59, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552811

RESUMO

A better understanding of cyclosporine A (CsA)-induced nephro- and hepatotoxicity at the molecular level is necessary for safe and effective use. Utilizing a sophisticated study design, this study explored metabolic alterations after long-term CsA treatment in vivo. Rats were exposed to CsA with 4, 10, and 25 mg/kg for 4 weeks and then sacrificed to obtain liver, kidney, urine, and serum for untargeted metabolomics analysis. Differential network analysis was conducted to explore the biological relevance of metabolites significantly altered by toxicity-induced disturbance. Dose-dependent toxicity was observed in all biospecimens. The toxic effects were characterized by alterations of metabolites related to energy metabolism and cellular membrane composition, which could lead to the cholestasis-induced accumulation of bile acids in the tissues. The unfavorable impacts were also demonstrated in the serum and urine. Intriguingly, phenylacetylglycine was increased in the kidney, urine, and serum treated with high doses versus controls. Differential correlation network analysis revealed the strong correlations of deoxycytidine and guanosine with other metabolites in the network, which highlighted the influence of repeated CsA exposure on DNA synthesis. Overall, prolonged CsA administration had system-level dose-dependent effects on the metabolome in treated rats, suggesting the need for careful usage and dose adjustment.


Assuntos
Colestase , Ciclosporina , Ratos , Animais , Ciclosporina/toxicidade , Ciclosporina/metabolismo , Fígado/metabolismo , Rim/metabolismo , Colestase/induzido quimicamente , Metaboloma
2.
Gene Ther ; 31(3-4): 128-143, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37833563

RESUMO

Adeno-associated virus (AAV) vector gene therapy is a promising approach to treat rare genetic diseases; however, an ongoing challenge is how to best modulate host immunity to improve transduction efficiency and therapeutic outcomes. This report presents two studies characterizing multiple prophylactic immunosuppression regimens in male cynomolgus macaques receiving an AAVrh10 gene therapy vector expressing human coagulation factor VIII (hFVIII). In study 1, no immunosuppression was compared with prednisolone, rapamycin (or sirolimus), rapamycin and cyclosporin A in combination, and cyclosporin A and azathioprine in combination. Prednisolone alone demonstrated higher mean peripheral blood hFVIII expression; however, this was not sustained upon taper. Anti-capsid and anti-hFVIII antibody responses were robust, and vector genomes and transgene mRNA levels were similar to no immunosuppression at necropsy. Study 2 compared no immunosuppression with prednisolone alone or in combination with rapamycin or methotrexate. The prednisolone/rapamycin group demonstrated an increase in mean hFVIII expression and a mean delay in anti-capsid IgG development until after rapamycin taper. Additionally, a significant reduction in the plasma cell gene signature was observed with prednisolone/rapamycin, suggesting that rapamycin's tolerogenic effects may include plasma cell differentiation blockade. Immunosuppression with prednisolone and rapamycin in combination could improve therapeutic outcomes in AAV vector gene therapy.


Assuntos
Ciclosporina , Sirolimo , Masculino , Humanos , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Sirolimo/metabolismo , Ciclosporina/metabolismo , Plasmócitos , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Prednisolona/metabolismo , Terapia Genética , Vetores Genéticos/genética , Macaca/genética , Dependovirus
3.
Br J Pharmacol ; 181(5): 640-658, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37702564

RESUMO

BACKGROUND AND PURPOSE: Atherosclerosis induced by cyclosporine A (CsA), an inhibitor of the calcineurin/nuclear factor of activated T cells (NFAT) pathway, is a major concern after organ transplantation. However, the atherosclerotic mechanisms of CsA remain obscure. We previously demonstrated that calcineurin/NFAT signalling inhibition contributes to atherogenesis via suppressing microRNA-204 (miR-204) transcription. We therefore hypothesised that miR-204 is involved in the development of CsA-induced atherosclerosis. EXPERIMENTAL APPROACH: ApoE-/- mice with macrophage-miR-204 overexpression were generated to determine the effects of miR-204 on CsA-induced atherosclerosis. Luciferase reporter assays and chromatin immunoprecipitation sequencing were performed to explore the targets mediating miR-204 effects. KEY RESULTS: CsA alone did not significantly affect atherosclerotic lesions or serum lipid levels. However, it exacerbated high-fat diet-induced atherosclerosis and hyperlipidemia in C57BL/6J and ApoE-/- mice, respectively. miR-204 levels decreased in circulating monocytes and plaque lesions during CsA-induced atherosclerosis. The upregulation of miR-204 in macrophages inhibited CsA-induced atherosclerotic plaque formation but did not affect serum lipid levels. miR-204 limited the CsA-induced foam cell formation by reducing the expression of the scavenger receptors SR-BII and CD36. SR-BII was post-transcriptionally regulated by mature miR-204-5p via 3'-UTR targeting. Additionally, nuclear-localised miR-204-3p prevented the CsA-induced binding of Ago2 to the CD36 promoter, suppressing CD36 transcription. SR-BII or CD36 expression restoration dampened the beneficial effects of miR-204 on CsA-induced atherosclerosis. CONCLUSION AND IMPLICATIONS: Macrophage miR-204 ameliorates CsA-induced atherosclerosis, suggesting that miR-204 may be a potential target for the prevention and treatment of CsA-related atherosclerotic side effects.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Animais , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Calcineurina/metabolismo , Antígenos CD36/metabolismo , Ciclosporina/efeitos adversos , Ciclosporina/metabolismo , Lipídeos , Macrófagos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/metabolismo
4.
Appl Microbiol Biotechnol ; 108(1): 28, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159118

RESUMO

Cyclophilin A (CypA), the first member of cyclophilins, is distributed extensively in eukaryotic and prokaryotic cells, primarily localized in the cytoplasm. In addition to acting as an intracellular receptor for cyclosporin A (CSA), CypA plays a crucial role in diseases such as aging and tumorigenesis. Apoptosis, a form of programmed cell death, is able to balance the rate of cell viability and death. In this review, we focus on the effects of CypA on apoptosis and the relationship between specific mechanisms of CypA promoting or inhibiting apoptosis and diseases, including tumorigenesis, cardiovascular diseases, organ injury, and microbial infections. Notably, the process of CypA promoting or inhibiting apoptosis is closely related to disease development. Finally, future prospects for the association of CypA and apoptosis are discussed, and a comprehensive understanding of the effects of CypA on apoptosis in relation to diseases is expected to provide new insights into the design of CypA as a therapeutic target for diseases. KEY POINTS: • Understand the effect of CypA on apoptosis. • CypA affects apoptosis through specific pathways. • The effect of CypA on apoptosis is associated with a variety of disease processes.


Assuntos
Ciclofilina A , Ciclosporina , Humanos , Ciclofilina A/metabolismo , Ciclosporina/metabolismo , Proteínas de Transporte , Apoptose , Carcinogênese
5.
J Hazard Mater ; 464: 132975, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38044020

RESUMO

Cyclosporine A (CsA) is a model drug that has caused great concern due to its widespread use and abuse in the environment. However, the potential harm of CsA to organisms also remains largely unknown, and this issue is exceptionally important for the health risk assessment of antibiotics. To address this concern, the crosstalk between CsA stress and cellular metabolism at the proteomic level in Escherichia coli was investigated and dissected in this study. The results showed that CsA inhibited E. coli growth in a time-dependent manner. CsA induced reactive oxygen species (ROS) overproduction in a dose- and time-dependent manner, leading to membrane depolarization followed by cell apoptosis. In addition, translation, the citric acid cycle, amino acid biosynthesis, glycolysis and responses to oxidative stress and heat were the central metabolic pathways induced by CsA stress. The upregulated proteins, including PotD, PotF and PotG, controlled cell growth. The downregulated proteins, including SspA, SspB, CstA and DpS, were regulators of self-feedback during the starvation process. And the up- and downregulated proteins, including AtpD, Adk, GroS, GroL and DnaK, controlled energy production. These results provide an important reference for the environmental health risk assessment of CsA.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Imunossupressores/toxicidade , Escherichia coli/metabolismo , Proteômica , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo , Redes e Vias Metabólicas , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo
6.
Mol Med ; 29(1): 169, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093197

RESUMO

BACKGROUND: The aberrant formation of neutrophil extracellular traps (NETs) has been implicated in ulcerative colitis (UC), a chronic recurrent intestinal inflammation. Cyclosporine A (CsA) is now applied as rescue therapy for acute severe UC. In addition, it has been certained that CsA inhibits the formation of NETs in vitro and the mechanism of which was still vague. The study aimed to explore the mechanism CsA inhibits the NETs formation of colitis in vivo and in vitro. METHODS: NETs enrichment in clinical samples was analyzed using databases from Gene Expression Omnibus and verified in our center. Dextran sulfate sodium (DSS)-induced acute colitis mice model was used to investigate the effect of CsA on NETs of colonic tissue expression. To clarify the mechanism, intracellular energy metabolites were examined by Liquid Chromatograph Mass Spectrometer, and reactive oxygen species (ROS) levels were examined by fluorescence intensity in neutrophils treated with CsA after LPS stimulation. The transcriptional level and activity of G6PD of neutrophils were also assessed using qRT-PCR and WST-8. RNA Sequencing was used to detect differentially expressed genes of neutrophils stimulated by LPS with or without CsA. The expression levels of related proteins were detected by western blot. RESULTS: NETs enrichment was especially elevated in moderate-to-severe UC patients compared to HC. NETs expression in the colon from DSS colitis was decreased after CsA treatment. Compared with neutrophils stimulated by LPS, NETs formation and cellular ROS levels were decreased in LPS + CsA group. Cellular ribulose 5-phosphate and NADPH/NADP + related to the pentose phosphate pathway (PPP) were reduced in LPS + CsA group. In addition, CsA could decrease G6PD activity in neutrophils stimulated with LPS, and the results were further verified by inhibiting G6PD activity. At last, P53 protein was highly expressed in LPS + CsA group compared with the LPS group. Intracellular G6PD activity, ROS level and NETs formation, which were downregulated by CsA, could be reversed by a P53 inhibitor. CONCLUSION: Our results indicated CsA could alleviate the severity of colitis by decreasing the formation of NETs in vivo. In vitro, CsA reduced ROS-dependent NETs release via downregulating PPP and cellular ROS levels by decreasing G6PD activity directly by activating the P53 protein.


Assuntos
Colite Ulcerativa , Colite , Armadilhas Extracelulares , Humanos , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Ciclosporina/uso terapêutico , Proteína Supressora de Tumor p53/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Lipopolissacarídeos/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Inflamação/metabolismo , Neutrófilos
7.
Fundam Clin Pharmacol ; 37(4): 739-752, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36797226

RESUMO

Mitochondrial permeability transition pore (mPTP) opening is a critical event leading to cell injury during myocardial ischemia-reperfusion but having a reliable cellular model to study the effect of drugs targeting mPTP is an unmet need. This study evaluated whether the Ca2+ electrogenic ionophore ferutinin is a relevant tool to induce mPTP in cardiomyocytes. mPTP opening was monitored using the calcein/cobalt fluorescence technique in adult cardiomyocytes isolated from wild-type and cyclophylin D (CypD) knock-out mice. Concomitantly, the effect of ferutinin was assessed in isolated myocardial mitochondria. Our results confirmed the Ca2+ ionophoric effect of ferutinin in isolated mitochondria and cardiomyocytes. Ferutinin induced all the hallmarks of mPTP opening in cells (loss of calcein, of mitochondrial potential and cell death), but none of them could be inhibited by CypD deletion or cyclosporine A, indicating that mPTP opening was not the major contributor to the effect of ferutinin. This was confirmed in isolated mitochondria where ferutinin acts by different mechanisms dependent and independent of the mitochondrial membrane potential. At low ferutinin/mitochondria concentration ratio, ferutinin displays protonophoric-like properties, lowering the mitochondrial membrane potential and limiting oxidative phosphorylation without mitochondrial swelling. At high ferutinin/mitochondria ratio, ferutinin induced a sudden Ca2+ independent mitochondrial swelling, which is only partially inhibited by cyclosporine A. Together, these result show that ferutinin is not a suitable tool to investigate CypD-dependent mPTP opening in isolated cardiomyocytes because it possesses other mitochondrial properties such as swelling induction and mitochondrial uncoupling properties which impede its utilization.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Camundongos , Animais , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial/farmacologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Miócitos Cardíacos , Mitocôndrias Cardíacas/metabolismo , Camundongos Knockout , Cálcio/metabolismo
8.
Cells ; 12(3)2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766846

RESUMO

Although elevated TGFß2 levels appear to be a causative factor in glaucoma pathogenesis, little is known about how TGFß2 expression is regulated in the trabecular meshwork (TM). Here, we investigated if activation of the cytokine regulator NFATc1 controlled transcription of TGFß2 in human TM cells by using dexamethasone (DEX) to induce NFATc1 activity. The study used both proliferating and cell cycle arrested quiescent cells. Cell cycle arrest was achieved by either cell-cell contact inhibition or serum starvation. ß-catenin staining and p21 and Ki-67 nuclear labeling were used to verify the formation of cell-cell contacts and activity of the cell cycle. NFATc1 inhibitors cyclosporine A (CsA) or 11R-VIVIT were used to determine the role of NFATc1. mRNA levels were determined by RT-qPCR. DEX increased TGFß2 mRNA expression by 3.5-fold in proliferating cells but not in quiescent cells or serum-starved cells, and both CsA and 11R-VIVIT inhibited this increase. In contrast, the expression of other DEX/NFATc1-induced mRNAs (myocilin and ß3 integrin) occurred regardless of the proliferative state of the cells. These studies show that NAFTc1 regulates TGFß2 transcription in TM cells and reveals a previously unknown connection between the TM cell cycle and modulation of gene expression by NFATc1 and/or DEX in TM cells.


Assuntos
Dexametasona , Malha Trabecular , Humanos , Dexametasona/farmacologia , Células Cultivadas , Malha Trabecular/metabolismo , Fatores de Transcrição/metabolismo , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Ciclo Celular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição NFATC/metabolismo , Fator de Crescimento Transformador beta2/metabolismo
9.
Acta Biomater ; 160: 265-280, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36822483

RESUMO

Myocardial ischemia-reperfusion injury (MI/RI) seriously restricts the therapeutic effect of reperfusion. It is demonstrated that ferroptosis and apoptosis of cardiomyocytes are widely involved in MI/RI. Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Besides, transferrin receptor 1 (TfR1) is highly expressed in ischemic myocardium, and apoferritin (ApoFn) is a ligand of the transferrin receptor. In this study, CsA@ApoFn was prepared by wrapping cyclosporin A (CsA) with ApoFn and actively accumulated in ischemic cardiomyocytes through TfR1 mediated endoctosis in MI/RI mice. After entering cardiomyocytes, ApoFn in CsA@ApoFn inhibited ferroptosis of ischemic cardiomyocytes by increasing the protein expression of GPX4 and reducing the content of labile iron pool and lipid peroxides. At the same time, CsA in CsA@ApoFn attenuated the apoptosis of ischemic cardiomyocytes through recovering mitochondrial membrane potential and reducing the level of reactive oxygen species, which played a synergistic role with ApoFn in the treatment of MI/RI. In conclusion, CsA@ApoFn restored cardiac function of MI/RI mice by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. ApoFn itself not only served as a safe carrier to specifically deliver CsA to ischemic cardiomyocytes but also played a therapeutic role on MI/RI. CsA@ApoFn is proved as an effective drug delivery platform for the treatment of MI/RI. STATEMENT OF SIGNIFICANCE: Recent studies have shown that ferroptosis is an important mechanism of myocardial ischemia-reperfusion injury (MI/RI). Therefore, simultaneous inhibition of ferroptosis and apoptosis of cardiomyocytes can be a promising strategy to treat MI/RI. Apoferritin, as a delivery carrier, can actively target to ischemic myocardium through binding with highly expressed transferrin receptor on ischemic cardiomyocytes. At the same time, apoferritin plays a protective role on ischemic cardiomyocytes by inhibiting ferroptosis. This strategy of killing two birds with one stone significantly improves the therapeutic effect on MI/RI while does not need more pharmaceutical excipients, which has the prospect of clinical transformation.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Ciclosporina/farmacologia , Ciclosporina/química , Ciclosporina/metabolismo , Apoferritinas/farmacologia , Apoferritinas/metabolismo , Apoferritinas/uso terapêutico , Apoptose
10.
ACS Infect Dis ; 9(2): 365-377, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36653744

RESUMO

Cyclosporin (CsA) has antiparasite activity against the human pathogen Toxoplasma gondii. A possible mechanism of action involves CsA binding to T. gondii cyclophilins, although much remains to be understood. Herein, we characterize the functional and structural properties of a conserved (TgCyp23) and a more divergent (TgCyp18.4) cyclophilin isoform from T. gondii. While TgCyp23 is a highly active cis-trans-prolyl isomerase (PPIase) and binds CsA with nanomolar affinity, TgCyp18.4 shows low PPIase activity and is significantly less sensitive to CsA inhibition. The crystal structure of the TgCyp23:CsA complex was solved at the atomic resolution showing the molecular details of CsA recognition by the protein. Computational and structural studies revealed relevant differences at the CsA-binding site between TgCyp18.4 and TgCyp23, suggesting that the two cyclophilins might have distinct functions in the parasite. These studies highlight the extensive diversification of TgCyps and pave the way for antiparasite interventions based on selective targeting of cyclophilins.


Assuntos
Ciclofilinas , Toxoplasma , Sítios de Ligação , Ciclofilinas/química , Ciclofilinas/metabolismo , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Isoformas de Proteínas
11.
Poult Sci ; 102(1): 102225, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36343435

RESUMO

The study aimed to investigate the possible role of efflux transporter proteins in the pharmacokinetics of enrofloxacin (ENR) in broilers in the model of co-administration of activated charcoal (AC) or cyclosporine A (CsA). The concentrations of enrofloxacin and its metabolite ciprofloxacin were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS) and population approach was used for pharmacokinetic analysis. It was found that body weight has a significant effect on the volume of distribution in the central compartment and on the systemic clearance. Oral AC increased the systemic clearance of intravenously administered ENR suggesting some role of enterohepatic recirculation. For orally administered ENR, CsA increased the area under the curve which can be explained by the inhibition of efflux transporters. Metabolism of the antibacterial drug was not affected by cyclosporine. The data suggest a role of efflux transporter proteins in the pharmacokinetics of drugs in chickens and drug-drug interactions have to be considered when substrates and modulators of these transporters are co-administered.


Assuntos
Galinhas , Ciclosporina , Animais , Enrofloxacina , Galinhas/metabolismo , Ciclosporina/metabolismo , Carvão Vegetal , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Ciprofloxacina , Fluoroquinolonas
12.
J Pharm Pharm Sci ; 26: 11927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38304488

RESUMO

Purpose: This study aims to investigate the potential of Oregon grape root extracts to modulate the activity of P-glycoprotein. Methods: We performed 3H-CsA or 3H-digoxin transport experiments in the absence or presence of two sources of Oregon grape root extracts (E1 and E2), berberine or berbamine in Caco-2 and MDCKII-MDR1 cells. In addition, real time quantitative polymerase chain reaction (RT-PCR) was performed in Caco-2 and LS-180 cells to investigate the mechanism of modulating P-glycoprotein. Results: Our results showed that in Caco-2 cells, Oregon grape root extracts (E1 and E2) (0.1-1 mg/mL) inhibited the efflux of CsA and digoxin in a dose-dependent manner. However, 0.05 mg/mL E1 significantly increased the absorption of digoxin. Ten µM berberine and 30 µM berbamine significantly reduced the efflux of CsA, while no measurable effect of berberine was observed with digoxin. In the MDCKII-MDR1 cells, 10 µM berberine and 30 µM berbamine inhibited the efflux of CsA and digoxin. Lastly, in real time RT-PCR study, Oregon grape root extract (0.1 mg/mL) up-regulated mRNA levels of human MDR1 in Caco-2 and LS-180 cells at 24 h. Conclusion: Our study showed that Oregon grape root extracts modulated P-glycoprotein, thereby may affect the bioavailability of drugs that are substrates of P-glycoprotein.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Berberina , Mahonia , Extratos Vegetais , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Berberina/farmacologia , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Digoxina/metabolismo , Mahonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Animais , Cães , Ciclosporina/metabolismo , Células Madin Darby de Rim Canino
13.
Sci Rep ; 12(1): 16952, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36258028

RESUMO

Human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors are indispensable tools for gene engineering in mammalian cells. Conversely, lentiviral vector transduction is severely inhibited in bovine cells. Previous studies demonstrated that this inhibition is caused by the anti-lentiviral host factor tripartite motif containing 5 (TRIM5), which targets incoming HIV-1 virions by interacting with the viral capsid. In this study, we investigated several methods for overcoming the limited applicability of lentiviral vectors in bovine cells. First, we demonstrated that the SPRY domain of bovine TRIM5 is the major determinant of anti-viral activity. Second, we found that mutations that allow the capsid to evade rhesus macaque TRIM5α minimally rescued HIV-1 infectivity in bovine-derived MDBK cells. Third, we found that cyclosporine A, which relieves the inhibition of HIV-1 infection in monkey cells, significantly rescued the impaired HIV-1 infectivity in MDBK cells. Lastly, we successfully generated a bovine cell line lacking intact TRIM5 using the CRISPR/Cas9 technique. This TRIM5 knockout cell line displayed significantly higher susceptibility to an HIV-1-based lentiviral vector. In conclusion, our findings provide a promising gene engineering strategy for bovine cells, thereby contributing to innovations in agriculture and improvements in animal health.


Assuntos
Infecções por HIV , HIV-1 , Bovinos , Animais , Humanos , HIV-1/genética , HIV-1/metabolismo , Macaca mulatta/metabolismo , Ciclosporina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/genética , Linhagem Celular , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Mamíferos/metabolismo
14.
mBio ; 13(5): e0225322, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36169198

RESUMO

Cryptococcus neoformans, an opportunistic yeast pathogen, relies on a complex network of stress response pathways that allow for proliferation in the host. In Saccharomyces cerevisiae, stress responses are regulated by integral membrane proteins containing a transient receptor potential (TRP) domain, including the flavin carrier protein 1 (Flc1), which regulates calcium homeostasis and flavin transport. Here, we report that deletion of C. neoformans FLC1 results in cytosolic calcium elevation and increased nuclear content of calcineurin-dependent transcription factor Crz1, which is associated with an aberrant cell wall chitin overaccumulation observed in the flc1Δ mutant. Absence of Flc1 or inhibition of calcineurin with cyclosporine A prevents vacuolar fusion under conditions of combined osmotic and temperature stress, which is reversed in the flc1Δ mutant by the inhibition of TORC1 kinase with rapamycin. Flc1-deficient yeasts exhibit compromised vacuolar fusion under starvation conditions, including conditions that stimulate formation of carbohydrate capsule. Consequently, the flc1Δ mutant fails to proliferate under low nutrient conditions and displays a defect in capsule formation. Consistent with the previously uncharacterized role of Flc1 in vacuolar biogenesis, we find that Flc1 localizes to the vacuole. The flc1Δ mutant presents a survival defect in J774A.1 macrophage cell-line and profound virulence attenuation in both the Galleria mellonella and mouse pulmonary infection models, demonstrating that Flc1 is essential for pathogenicity. Thus, cryptococcal Flc1 functions in calcium homeostasis and links calcineurin and TOR signaling with vacuolar biogenesis to promote survival under conditions associated with vacuolar fusion required for this pathogen's fitness and virulence. IMPORTANCE Cryptococcosis is a highly lethal infection with limited drug choices, most of which are highly toxic or complicated by emerging antifungal resistance. There is a great need for new drug targets that are unique to the fungus. Here, we identify such a potential target, the Flc1 protein, which we show is crucial for C. neoformans stress response and virulence. Importantly, homologues of Flc1 exist in other fungal pathogens, such as Candida albicans and Aspergillus fumigatus, and are poorly conserved in humans, which could translate into wider spectrum therapy associated with minimal toxicity. Thus, Flc1 could be an "Achille's heel" of C. neoformans to be leveraged therapeutically in cryptococcosis and possibly other fungal infections.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Camundongos , Animais , Virulência , Cálcio/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Ciclosporina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Criptococose/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Quitina/metabolismo , Fatores de Transcrição/metabolismo , Homeostase , Proteínas de Membrana/metabolismo , Flavinas/metabolismo , Proteínas de Transporte/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Sirolimo
15.
Front Cell Infect Microbiol ; 12: 931635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118020

RESUMO

Malaria is one of the most prevalent infectious diseases posing a serious challenge over the years, mainly owing to the emergence of drug-resistant strains, sparking a need to explore and identify novel protein targets. It is a well-known practice to adopt a chemo-genomics approach towards identifying targets for known drugs, which can unravel a novel mechanism of action to aid in better drug targeting proficiency. Immunosuppressive drugs cyclosporin A, FK506 and rapamycin, were demonstrated to inhibit the growth of the malarial parasite, Plasmodium falciparum. Peptidyl prolyl cis/trans isomerases (PPIases), comprising cylcophilins and FK506-binding proteins (FKBPs), the specific target of these drugs, were identified in the Plasmodium parasite and proposed as an antimalarial drug target. We previously attempted to decipher the structure of these proteins and target them with non-immunosuppressive drugs, predominantly on FKBP35. This review summarizes the structural insights on Plasmodium PPIases, their inhibitor complexes and perspectives on drug discovery.


Assuntos
Antimaláricos , Tacrolimo , Antimaláricos/farmacologia , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Imunossupressores/metabolismo , Peptidilprolil Isomerase/metabolismo , Plasmodium falciparum/genética , Sirolimo/farmacologia , Tacrolimo/química , Tacrolimo/metabolismo , Tacrolimo/farmacologia , Proteínas de Ligação a Tacrolimo/química , Proteínas de Ligação a Tacrolimo/metabolismo
16.
Fish Physiol Biochem ; 48(5): 1267-1283, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36006557

RESUMO

The role of the blood-brain barrier ATP-binding cassette protein transporter P-glycoprotein (P-gp) in protecting zebrafish (Danio rerio) from the central nervous system neurotoxicant ivermectin (IVM, 22,23-dihydroavermectin B1a + 22,23-dihydroavermectin B1b) was examined in the absence and presence of the competitive inhibitor cyclosporin A (CsA). Zebrafish injected intraperitoneally with 1, 2, 5, or 10 µmol/kg IVM exhibited mortality 30 min following administration at the highest dose. At sublethal doses > 1 µmol/kg, IVM altered the swimming performance, exploratory behaviour, motor coordination, escape response and olfactory response in exposed fish. When fish were exposed to IVM in the presence of CsA, alterations in swimming and behaviours increased significantly and at the highest IVM/CsA ratio resulted in a complete lack of exploratory and olfactory behaviours. In separate experiments, fish were either fed or fasted, and the effects of IVM and CsA administration were examined. The effects of IVM administration and the exacerbated effects seen with CsA co-administration were not affected by fasting. This study provides evidence that P-gp provides a protective role in the BBB of fish against environmental neurotoxicants. The results also show that P-gp activity is maintained even under conditions of food deprivation, suggesting that this chemical defence system is prioritized over other energy expenditures during diet limitation.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Ivermectina , Animais , Ivermectina/toxicidade , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Peixe-Zebra/metabolismo , Ciclosporina/metabolismo , Jejum , Subfamília B de Transportador de Cassetes de Ligação de ATP , Trifosfato de Adenosina
17.
J Bioenerg Biomembr ; 54(4): 203-213, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35902433

RESUMO

Propionic acid (PA) predominantly accumulates in tissues and biological fluids of patients affected by propionic acidemia that may manifest chronic renal failure along development. High urinary excretion of maleic acid (MA) has also been described. Considering that the underlying mechanisms of renal dysfunction in this disorder are poorly known, the present work investigated the effects of PA and MA (1-5 mM) on mitochondrial functions and cellular viability in rat kidney and cultured human embryonic kidney (HEK-293) cells. Mitochondrial membrane potential (∆ψm), NAD(P)H content, swelling and ATP production were measured in rat kidney mitochondrial preparations supported by glutamate or glutamate plus malate, in the presence or absence of Ca2+. MTT reduction and propidium iodide (PI) incorporation were also determined in intact renal cells pre-incubated with MA or PA for 24 h. MA decreased Δψm and NAD(P)H content and induced swelling in Ca2+-loaded mitochondria either respiring with glutamate or glutamate plus malate. Noteworthy, these alterations were fully prevented by cyclosporin A plus ADP, suggesting the involvement of mitochondrial permeability transition (mPT). MA also markedly inhibited ATP synthesis in kidney mitochondria using the same substrates, implying a strong bioenergetics impairment. In contrast, PA only caused milder changes in these parameters. Finally, MA decreased MTT reduction and increased PI incorporation in intact HEK-293 cells, indicating a possible association between mitochondrial dysfunction and cell death in an intact cell system. It is therefore presumed that the MA-induced disruption of mitochondrial functions involving mPT pore opening may be involved in the chronic renal failure occurring in propionic acidemia.


Assuntos
Falência Renal Crônica , Acidemia Propiônica , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Ácido Glutâmico/farmacologia , Células HEK293 , Humanos , Rim , Falência Renal Crônica/metabolismo , Malatos/metabolismo , Malatos/farmacologia , Maleatos , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , NAD/metabolismo , Permeabilidade , Propídio/metabolismo , Propídio/farmacologia , Acidemia Propiônica/metabolismo , Ratos , Ratos Wistar
18.
Genes Genomics ; 44(12): 1593-1605, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35666459

RESUMO

BACKGROUND: Myocarditis is a myocardial injury that can easily cause adolescent death. Traditional research models of animal invasion with viral components, lipopolysaccharide (LPS) or porcine myocardial myosin, among others, have the shortcomings of potential biological safety hazards and high animal mortality. OBJECTIVE: To explore the construction of a novel myocarditis model with cyclosporine A and the potential genes and pathways associated with it. METHODS: BALB/c mice were used in this study, and cyclosporin A and LPS were injected into the peritoneal cavity of mice. The successful establishment of the model was assessed by detecting serum myocardial injury markers and inflammatory factors levels, HE, IHC staining, and RT-qPCR methods. Key genes were obtained using the GSE35182 dataset from the GEO database and validated with the RT-qPCR method. RESULTS: We found that a large number of inflammatory cells infiltrated the myocardium of mice in each group of Cyclosporin A constructed model, while the expression of inflammatory factor indicators was increased, and this model has the characteristics of high degree of local inflammation in myocardial tissue, low mortality, and safe and non-toxic treatment. Using GSE35182 data, we selected 18 Hub genes and validated Hub genes in myocardial tissue with RT-qPCR and found that multiple signaling pathways such as Toll-likereceptor signaling pathway(TLRs), Rap1 signal pathway(Rap1), and Chemokine signaling pathway may be involved in the development of myocarditis. CONCLUSION: Cyclosporin A can construct a new myocarditis model, and TLRs, Chemokines and Rap1 signaling pathways may be the core pathways of myocarditis.


Assuntos
Miocardite , Camundongos , Suínos , Animais , Miocardite/induzido quimicamente , Miocardite/genética , Miocardite/metabolismo , Ciclosporina/farmacologia , Ciclosporina/metabolismo , Lipopolissacarídeos , Miocárdio/metabolismo , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças
19.
Biochim Biophys Acta Biomembr ; 1864(9): 183972, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35643328

RESUMO

The paper considers the effect of the MPT pore inhibitor cyclosporin A (CsA) and its non-immunosuppressive analogue alisporivir (Ali) on the functioning of rat skeletal muscle mitochondria. We have shown that both agents at a standard in vitro concentration of 1 µM increase the calcium capacity of organelles and have no effect on the parameters of oxidative phosphorylation. However, an increase in their concentration to 5 µM leads to the suppression of oxygen consumption by mitochondria, which is more pronounced in the case of Ali. This effect is accompanied by a decrease in the membrane potential of organelles and, apparently, is based on the inhibition of electron transport along the mitochondrial respiratory chain due to limited mobility of coenzyme Q. We have noted that both agents do not affect the production of hydrogen peroxide by isolated mitochondria. NMR spectroscopy and molecular dynamics simulation did not reveal significant differences in the structure and backbone flexibility of CsA and Ali. Both agents decrease the overall fluidity of the membrane of DPPC liposomes, inducing an increase in laurdan generalized polarization parameter. A similar effect was also found in the case of mitochondrial membranes. We suggested that these effects of CsA and Ali, associated with their lipophilic nature and the ability to accumulate in the lipid phase of membranes, may cause a decrease in the efficiency of electron transport in the respiratory chain of mitochondria and suppression of the bioenergetics of these organelles.


Assuntos
Ciclosporina , Mitocôndrias , Animais , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Metabolismo Energético , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Ratos
20.
Sci Rep ; 12(1): 6153, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35418571

RESUMO

Cyclic peptides are good candidates for orally delivered therapeutics, however, issues remain in their development due to low intestinal permeability. Although some of the biological factors have been reported that regulate intestinal permeation of cyclic peptides, the influence of the mucus barrier, a major hurdle to epithelial drug delivery, on cyclic peptide bioavailability is unclear. In this study, we show that the lipophilic cyclic peptide, cyclosporin A (CsA), interacted with, and likely induced aggregation, of polymeric, gel-forming mucins (MUC2, MUC5AC and MUC5B) which underpin the mucus gel-networks in the gastrointestinal tract. Under similar conditions, two other cyclic peptides (daptomycin and polymyxin B) did not cause mucin aggregation. Using rate-zonal centrifugation, purified MUC2, MUC5AC and MUC5B mucins sedimented faster in the presence of CsA, with a significant increase in mucins in the pellet fraction. In contrast, mucin sedimentation profiles were largely unaltered after treatment with daptomycin or polymyxin B. CsA increased MUC5B sedimentation was concentration-dependent, and sedimentation studies using recombinant mucin protein domains suggests CsA most likely causes aggregation of the relatively non-O-glycosylated N-terminal and C-terminal regions of MUC5B. Furthermore, the aggregation of the N-terminal region, but not the C-terminal region, was affected by pH. CsA has partially N-methylated amide groups, this unique molecular structure, not present in daptomycin and polymyxin B, may potentially be involved in interaction with gel-forming mucin. Taken together, our results indicate that the interaction of gel-forming mucins with the cyclic peptide CsA is mediated at the N- and C-terminal domains of mucin polymers under physiological conditions. Our findings demonstrate that the mucus barrier is an important physiological factor regulating the intestinal permeation of cyclic peptides in vivo.


Assuntos
Ciclosporina , Daptomicina , Ciclosporina/metabolismo , Ciclosporina/farmacologia , Mucina-5AC/metabolismo , Mucina-2/metabolismo , Mucina-5B/metabolismo , Muco/metabolismo , Peptídeos Cíclicos/metabolismo , Polimixina B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA