Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 870
Filtrar
1.
J Biomed Mater Res B Appl Biomater ; 112(9): e35479, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39225415

RESUMO

Doping of brushite cements with metal ions can entail many positive effects on biological and physicochemical properties. Cu2+ ions are known to exhibit antibacterial properties and can additionally have different positive effects on cells as trace elements, whereas high Cu2+ concentrations are cytotoxic. For therapeutical applications of bone cement, a combination of good biocompatibility and sufficient mechanical properties is required. Therefore, the aim of this study was to investigate different physicochemical and biological aspects, relevant for application, of a brushite cement with Cu2+-doped ß-tricalcium phosphate, monocalcium phosphate monohydrate and phytic acid as setting retarder. Additionally, the ion release was compared with a cement with citric acid as setting retarder. The investigated cements showed good injectability coefficients, as well as compressive strength values sufficient for application. Furthermore, no antibacterial effects were detected irrespective of the Cu2+ concentration or the bacterial strain. The cell experiments with eluate samples showed that the viability of MC3T3-E1 cells tended to decrease with increasing Cu2+ concentration in the cement. It is suggested that these biological responses are caused by the difference in the Cu2+ release from the hardened cement depending on the solvent medium. Furthermore, the cements showed a steady release of Cu2+ ions to a lesser extent in comparison with a cement with citric acid as setting retarder, where a burst release of Cu2+ was observed. In conclusion, despite the anticipated antibacterial effect of Cu2+-doped cements was lacking and mammalian cell viability was slightly affected, Cu2+-concentrations maintained the physicochemical properties as well as the compressive strength of cements and the slow ion release from cements produced with phytic acid is considered advantageous compared to citric acid-based formulations.


Assuntos
Cimentos Ósseos , Fosfatos de Cálcio , Cobre , Teste de Materiais , Camundongos , Animais , Cobre/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Força Compressiva , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular , Células 3T3 , Ácido Cítrico/química
2.
Sci Rep ; 14(1): 20848, 2024 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-39242756

RESUMO

The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.


Assuntos
Regeneração Óssea , Impressão Tridimensional , Crânio , Alicerces Teciduais , Animais , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Ratos , Crânio/efeitos dos fármacos , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Masculino , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Fosfatos/química , Osteogênese/efeitos dos fármacos , Microtomografia por Raio-X , Compostos de Magnésio
3.
Colloids Surf B Biointerfaces ; 244: 114175, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39216442

RESUMO

Decellularized extracellular matrix (dECM) hydrogels are engineered constructs that are widely-used in the field of regenerative medicine. However, the development of ECM-based hydrogels for bone tissue engineering requires enhancement in its osteogenic properties. For this purpose, we initially employed bone-derived dECM hydrogel (dECM-Hy) in combination with calcium phosphate cement (CPC) paste to improve the biological and structural properties of the dECM hydrogel. A decellularization protocol for bovine bone was developed to prepare dECM-Hy, and the mechanically-tuned dECM/CPC-Hy was built based on both rheological and mechanical characteristics. The dECM/CPC-Hy displayed a double swelling ratio and compressive strength. An interconnected structure with distinct hydroxyapatite crystals was evident in dECM/CPC-Hy. The expression levels of Alp, Runx2 and Ocn genes were upregulated in dECM/CPC-Hy compared to the dECM-Hy. A 14-day follow-up of the rats receiving subcutaneous implanted dECM-Hy, dECM/CPC-Hy and mesenchymal stem cells (MSCs)-embedded (dECM/CPC/MSCs-Hy) showed no toxicity, inflammatory factor expression or pathological changes. Radiography and computed tomography (CT) of the calvarial defects revealed new bone formation and elevated number of osteoblasts-osteocytes and osteons in dECM/CPC-Hy and dECM/CPC/MSCs-Hy compared to the control groups. These findings indicate that the dECM/CPC-Hy has substantial potential for bone tissue engineering.


Assuntos
Cimentos Ósseos , Regeneração Óssea , Fosfatos de Cálcio , Células-Tronco Mesenquimais , Animais , Fosfatos de Cálcio/química , Regeneração Óssea/efeitos dos fármacos , Bovinos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Ratos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Engenharia Tecidual , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Matriz Extracelular/química , Matriz Extracelular/metabolismo
4.
J Mater Chem B ; 12(34): 8321-8334, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39099557

RESUMO

Bone adhesives, as alternatives to traditional bone fracture treatment methods, have great benefits in achieving effective fixation and healing of fractured bones. However, current available bone adhesives have limitations in terms of weak mechanical properties, low adhesion strength, and inappropriate degradability, hindering their clinical applications. The development of bone adhesives with strong mechanical properties, adhesion strength, and appropriate degradability remains a great challenge. In this study, polyacrylic acid was incorporated with tetracalcium phosphate and O-phospho-L-serine to form a new bone adhesive via coordination and ionic interactions to achieve exceptional mechanical properties, adhesion strength, and degradability. The bone adhesive could achieve an initial adhesion strength of approximately 3.26 MPa and 0.86 MPa on titanium alloys and bones after 15 min of curing, respectively, and it increased to 5.59 MPa and 2.73 MPa, after 24 h of incubation in water or simulated body fluid (SBF). The compressive strength of the adhesive increased from 10.06 MPa to 72.64 MPa over two weeks, which provided sufficient support for the fractured bone. Importantly, the adhesive started to degrade after 6 to 8 weeks of incubation in SBF, which is beneficial to cell ingrowth and the bone healing process. In addition, the bone adhesives exhibited favorable mineralization capability, biocompatibility, and osteogenic activity. In vivo experiments showed that it has a better bone-healing effect compared with the traditional polymethyl methacrylate bone cement. These results demonstrate that the bone adhesive has great potential in the treatment of bone fractures.


Assuntos
Resinas Acrílicas , Cimentos Ósseos , Resinas Acrílicas/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Teste de Materiais , Camundongos , Propriedades de Superfície , Titânio/química
5.
J Mater Sci Mater Med ; 35(1): 49, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136848

RESUMO

It's imperative to create a more ideal biological scaffold for bone defect repair. Calcium phosphate bone cements (CPC) could be used as a scaffold. Some ingredients and osteogenic factors could be added to improve its poor mechanical properties and biological activity. As a macromolecule extracted from traditional Chinese medicine, Hedysarum polysaccharides (HPS) would significantly promote the osteogenic activity of bone biomaterials. Zirconium oxide and starch were added to the solid phase and citric acid was added to the liquid phase to optimize CPC. HPS was loaded onto the scaffold as an osteogenic factor, and the prepared CPS + HPS was characterized. Further, the cytocompatibility of CPS + HPS was assessed according to activity, differentiation, and calcification in neonatal rat calvarial osteoblasts, and the biosafety of CPS + HPS was evaluated according to acute toxicity, pyrogen, sensitization, and hemolysis. The success of CPS + HPS in repairing bone defects was evaluated by using a rabbit femur implantation experiment. After optimization, CPS-20-CA-5 containing 10% starch and 5% citric acid displayed the highest mechanical strength of 28.96 ± 0.03 MPa. HPS-50 was demonstrated to exert the best osteogenic effect. The combination of CPS + HPS achieved HPS-loaded CPC. Material characterization, cytocompatibility, biosafety, and femoral implantation experiments indicated that CPS + HPS possessed better pressure resistance and improved osteogenic ability in bone defect repair.CPS + HPS demonstrated effective pressure resistance and superior osteogenic ability, which may be of great significance for bone defects and bone tissue engineering to promote bone regeneration and repair.


Assuntos
Cimentos Ósseos , Regeneração Óssea , Fosfatos de Cálcio , Osteogênese , Polissacarídeos , Alicerces Teciduais , Animais , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Coelhos , Polissacarídeos/química , Ratos , Alicerces Teciduais/química , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Osteoblastos/efeitos dos fármacos , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Ratos Sprague-Dawley , Masculino , Zircônio/química , Engenharia Tecidual/métodos , Fêmur/patologia
6.
PLoS One ; 19(8): e0305315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39159167

RESUMO

The morphological dynamics of microbial cell proliferation on an antimicrobial surface at an early growth stage was studied with Escherichia coli on the surface of a gel supplied with AgNbO3 antimicrobial particles. We demonstrated an inhibitory surface concentration, analogous to minimum inhibitory concentration, beyond which the growth of colonies and formation of biofilm are inhibited. In contrast, at lower concentrations of particles, after a lag time the cells circumvent the antimicrobial activity of the particles and grow with a rate similar to the case in the absence of particles. The lag time depends on the surface concentration of the particles and amounts to 2 h at a concentration of ½ minimum inhibitory concentration. The applicability of these findings, in terms of estimating inhibitory surface concentration, was tested in the case of antimicrobial polymethyl methacrylate (PMMA) bone cement.


Assuntos
Escherichia coli , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Polimetil Metacrilato/química , Anti-Infecciosos/farmacologia , Propriedades de Superfície , Antibacterianos/farmacologia , Nióbio/farmacologia , Nióbio/química , Cimentos Ósseos/farmacologia
7.
Biomed Mater ; 19(5)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38955344

RESUMO

Artificial bone substitutes for bone repair and reconstruction still face enormous challenges. Previous studies have shown that calcium magnesium phosphate cements (CMPCs) possess an excellent bioactive surface, but its clinical application is restricted due to short setting time. This study aimed to develop new CMPC/carboxymethyl chitosan (CMCS) comg of mixed powders of active MgO, calcined MgO and calcium dihydrogen phosphate monohydrate. With this novel strategy, it can adjust the setting time and improve the compressive strength. The results confirmed that CMPC/CMCS composite bone cements were successfully developed with a controllable setting time (18-70 min) and high compressive strength (87 MPa). In addition, the composite bone cements could gradually degrade in PBS with weight loss up to 32% at 28 d. They also promoted the proliferation of pre-osteoblasts, and induced osteogenic differentiation. The findings indicate that CMPC/CMCS composite bone cements hold great promise as a new type of bone repair material in further and in-depth studies.


Assuntos
Materiais Biocompatíveis , Cimentos Ósseos , Fosfatos de Cálcio , Diferenciação Celular , Proliferação de Células , Quitosana , Força Compressiva , Compostos de Magnésio , Teste de Materiais , Osteoblastos , Osteogênese , Quitosana/química , Quitosana/análogos & derivados , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Osteogênese/efeitos dos fármacos , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Animais , Proliferação de Células/efeitos dos fármacos , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Substitutos Ósseos/química , Substitutos Ósseos/farmacologia , Fosfatos
9.
Biomed Mater ; 19(5)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39025111

RESUMO

Many kinds of human tumors, including breast carcinomas, frequently metastasize to the bone, making it prone to pathologic fractures. Surgical management of bone metastases ranges from the resection of metastases to bone repair. Current surgical methods for the repair of bone defects include the use of polymethyl methacrylate (PMMA)-based bone cements. A promising alternative material are bioactive glass (BG) particles that in addition to providing physical stability can also induce bone regeneration. Moreover, BGs doped with Fe2O3may also have a negative impact on tumor cells. Here, we tested the hypothesis that BGs can affect metastatic human breast cancer cells. To this end, we assessed the effects of different BG compositions with and without Fe2O3on metastatic human MDA-MB-231 breast cancer cellsin vitro. We found that all BGs tested impaired the viability and proliferation of breast cancer cells in a concentration-dependent manner. The anti-proliferative effects inversely correlated with BG particle size, and were in general less pronounced in mesenchymal stromal cells (MSCs) that served as a control. Moreover, Fe2O3-doped BGs were more potent inhibitors of tumor cell proliferation and metabolic activity than Fe2O3-free BG. Our data therefore indicate that BGs can affect human breast cancer cells more strongly than MSCs, and suggest that the presence of Fe2O3can potentiate anti-proliferative and anti-metabolic effects of BGs. Fe2O3-doped BGs thus have the potential to be used for the surgical management of metastatic bone lesions, and may in addition to their regenerative properties also allow the local control of bone metastases.


Assuntos
Neoplasias Ósseas , Neoplasias da Mama , Proliferação de Células , Sobrevivência Celular , Cerâmica , Vidro , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Proliferação de Células/efeitos dos fármacos , Vidro/química , Feminino , Linhagem Celular Tumoral , Cerâmica/química , Cerâmica/farmacologia , Neoplasias Ósseas/secundário , Neoplasias Ósseas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Teste de Materiais , Ferro/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Células-Tronco Mesenquimais , Compostos Férricos/química , Polimetil Metacrilato/química , Tamanho da Partícula , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia
10.
J Nanobiotechnology ; 22(1): 368, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918787

RESUMO

Active artificial bone substitutes are crucial in bone repair and reconstruction. Calcium phosphate bone cement (CPC) is known for its biocompatibility, degradability, and ability to fill various shaped bone defects. However, its low osteoinductive capacity limits bone regeneration applications. Effectively integrating osteoinductive magnesium ions with CPC remains a challenge. Herein, we developed magnesium malate-modified CPC (MCPC). Incorporating 5% magnesium malate significantly enhances the compressive strength of CPC to (6.18 ± 0.49) MPa, reduces setting time and improves disintegration resistance. In vitro, MCPC steadily releases magnesium ions, promoting the proliferation of MC3T3-E1 cells without causing significant apoptosis, proving its biocompatibility. Molecularly, magnesium malate prompts macrophages to release prostaglandin E2 (PGE2) and synergistically stimulates dorsal root ganglion (DRG) neurons to synthesize and release calcitonin gene-related peptide (CGRP). The CGRP released by DRG neurons enhances the expression of the key osteogenic transcription factor Runt-related transcription factor-2 (RUNX2) in MC3T3-E1 cells, promoting osteogenesis. In vivo experiments using minipig vertebral bone defect model showed MCPC significantly increases the bone volume fraction, bone density, new bone formation, and proportion of mature bone in the defect area compared to CPC. Additionally, MCPC group exhibited significantly higher levels of osteogenesis and angiogenesis markers compared to CPC group, with no inflammation or necrosis observed in the hearts, livers, or kidneys, indicating its good biocompatibility. In conclusion, MCPC participates in the repair of bone defects in the complex post-fracture microenvironment through interactions among macrophages, DRG neurons, and osteoblasts. This demonstrates its significant potential for clinical application in bone defect repair.


Assuntos
Cimentos Ósseos , Peptídeo Relacionado com Gene de Calcitonina , Fosfatos de Cálcio , Osteogênese , Porco Miniatura , Animais , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Cimentos Ósseos/farmacologia , Cimentos Ósseos/química , Camundongos , Suínos , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Osteogênese/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Coluna Vertebral/cirurgia , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Linhagem Celular , Magnésio/farmacologia , Magnésio/química
11.
ACS Appl Bio Mater ; 7(6): 4039-4050, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38830835

RESUMO

We investigated the possibility of loading PMMA bone cement with antimicrobial nanostructured AgNbO3 particles to counter biofilm formation at the cement-tissue interface. We found that a formulation containing (1-4)% AgNbO3 showed high antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa while not showing any toxicity against THP1 human cell lines. In addition, loading the particles did not impact the mechanical properties of the cement. The results thus obtained illustrate the potential of the approach to replace the current technique of mixing cement with conventional antibiotics, which is associated with shortcomings such as efficacy loss from antibiotic depletion.


Assuntos
Antibacterianos , Cimentos Ósseos , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polimetil Metacrilato , Pseudomonas aeruginosa , Staphylococcus aureus , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Polimetil Metacrilato/química , Polimetil Metacrilato/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Staphylococcus aureus/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Biofilmes/efeitos dos fármacos , Nanopartículas/química
13.
Int J Pharm ; 660: 124331, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-38866083

RESUMO

The present work reports the adsorption, release, antibacterial properties, and in vitro cytotoxicity of sodium fusidate (SF) associated with a carbonated calcium phosphate bone cement. The adsorption study of SF on cement powder compared to stoichiometric hydroxyapatite and nanocrystalline carbonated apatite was investigated to understand the interaction between this antibiotic and the calcium phosphate phases involved in the cement formulation and setting reaction. The adsorption data revealed a fast kinetic process. However, the evolution of the amount of adsorbed SF was well described by a Freundlich-type isotherm characterized by a low adsorption capacity of the materials toward the SF molecule. The in vitro release results indicated a prolonged and controlled SF release for up to 34 days. The SF amounts eluted daily were at a therapeutic level (0.5-2 mg/L) and close to the antibiotic minimum inhibitory concentration (0.1-0.9 mg/L). Furthermore, the release data fitting and modeling suggested that the drug release occurred mainly by a diffusion mechanism. The antibacterial activity showed the effectiveness of SF released from the formulated cements against Staphylococcus aureus. Furthermore, the biological in vitro study demonstrated that the tested cements didn't show any cytotoxicity towards human peripheral blood mononuclear cells and did not significantly induce inflammation markers like IL-8.


Assuntos
Antibacterianos , Cimentos Ósseos , Fosfatos de Cálcio , Liberação Controlada de Fármacos , Ácido Fusídico , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/administração & dosagem , Antibacterianos/toxicidade , Humanos , Staphylococcus aureus/efeitos dos fármacos , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Adsorção , Ácido Fusídico/farmacologia , Ácido Fusídico/química , Ácido Fusídico/administração & dosagem , Sobrevivência Celular/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Leucócitos Mononucleares/efeitos dos fármacos , Cinética
14.
Acta Biomater ; 182: 111-125, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763407

RESUMO

Bone cement is widely used in clinical with optimistic filling and mechanical properties. However, the setting time of bone cement is difficult to accurately control, and the existing bone cements exhibit limited therapeutic functionalities. In response to these challenges, we designed and synthesized Nd-doped whitlockite (Nd-WH), endowing bone cement with photothermal-responsive and fluorescence imaging capabilities. The doping amount and photothermal properties of Nd-doped whitlockite were studied, and the composite bone cement was prepared. The results showed that the setting time of bone cement could be regulated by near infrared irradiation, and the multiple functions of promoting osteogenic differentiation, antibacterial and anti-tumor could be realized by adjusting the power and irradiation time of near infrared. By incorporating Nd-doped whitlockite and bone cement, we developed an all-in-one strategy to achieve setting time control, enhanced osteogenic ability, tumor cell clearance, bacterial clearance, and bone tissue regeneration. The optimized physical and mechanical properties of composite bone cement ensure adaptability and plasticity. In vitro and in vivo experiments validated the effectiveness of this bone cement platform for bone repair, tumor cell clearance and bacterial clearance. The universal methods to regulate the setting time and function of bone cement by photothermal effect has potential in orthopedic surgery and is expected to be a breakthrough in the field of bone defect repair. Further research and clinical validation are needed to ensure its safety, efficacy and sustainability. STATEMENT OF SIGNIFICANCE: Bone cement is a valuable clinical material. However, the setting time of bone cement is difficult to control, and the therapeutic function of existing bone cement is limited. Various studies have shown that the bone repair capacity of bone cements can be enhanced by synergistic stimulatory effects in vivo and ex vivo. Unfortunately, most of the existing photothermal conversion materials are non-degradable and poorly biocompatible. This study provides a bone-like photothermal conversion material with photothermal response and fluorescence imaging properties, and constructed a platform for integrated regulation of the setting time of bone cement and diversification of its functions. Therefore, it helps to design multi-functional bone repair materials that are more convenient and effective in clinical operation.


Assuntos
Cimentos Ósseos , Raios Infravermelhos , Compostos de Magnésio , Fosfatos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Fosfatos/química , Fosfatos/farmacologia , Compostos de Magnésio/química , Compostos de Magnésio/farmacologia , Regeneração Óssea/efeitos dos fármacos , Camundongos , Osteogênese/efeitos dos fármacos , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
15.
Biomater Sci ; 12(12): 3193-3201, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38747322

RESUMO

Considering the shortcomings of known medical hemostatic materials such as bone wax for bleeding bone management, it is essential to develop alternative bone materials capable of efficient hemostasis and bone regeneration and adaptable to clinical surgical needs. Thus, in the current work, a calcium sulfate hemihydrate and starch-based composite paste was developed and optimized. Firstly, it was found that the use of hydroxypropyl distarch phosphate (HDP) coupled with pregelatinization could generate an injectable, malleable and self-hardening paste with impressive anti-collapse ability in a dynamic aqueous environment, suggesting its potential applicability in both open and minimally invasive clinical practice. The as-hardened matrix exhibited a compressive strength of up to 61.68 ± 5.13 MPa compared to calcium sulfate cement with a compressive strength of 15.16 ± 2.42 MPa, making it a promising candidate for the temporary mechanical stabilization of bone defects. Secondly, the as-prepared paste revealed superior hemostasis and bone regenerative capabilities compared to calcium sulfate cement and bone wax, with greatly enhanced bleeding management and bone healing outcomes when subjected to testing in in vitro and in vivo models. In summary, our results confirmed that calcium sulfate bone cement reinforced with the selected starch can act as a reliable platform for bleeding bone treatment, overcoming the limitations of traditional bone hemostatic agents.


Assuntos
Cimentos Ósseos , Sulfato de Cálcio , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Sulfato de Cálcio/química , Sulfato de Cálcio/farmacologia , Animais , Regeneração Óssea/efeitos dos fármacos , Hemorragia/tratamento farmacológico , Amido/química , Amido/análogos & derivados , Amido/farmacologia , Camundongos , Hemostáticos/farmacologia , Hemostáticos/química , Hemostáticos/administração & dosagem , Força Compressiva , Fosfatos/química , Masculino , Gelatina/química , Ratos , Coelhos
16.
Adv Healthc Mater ; 13(19): e2304349, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593272

RESUMO

Median sternotomy surgery stands as one of the prevailing strategies in cardiac surgery. In this study, the cutting-edge bone adhesive is designed, inspired by the impressive adhesive properties found in mussels and sandcastle worms. This work has created an osteogenic nanocomposite coacervate adhesive by integrating a cellulose-polyphosphodopamide interpenetrating network, quaternized chitosan, and zinc, gallium-doped hydroxyapatite nanoparticles. This adhesive is characterized by robust catechol-metal coordination which effectively adheres to both hard and soft tissues with a maximum adhesive strength of 900 ± 38 kPa on the sheep sternum bone, surpassing that of commercial bone adhesives. The release of zinc and gallium cations from nanocomposite adhesives and quaternized chitosan matrix imparts remarkable antibacterial properties and promotes rapid blood coagulation, in vitro and ex vivo. It is also proved that this nanocomposite adhesive exhibits significant in vitro bioactivity, stable degradability, biocompatibility, and osteogenic ability. Furthermore, the capacity of nanocomposite coacervate to adhere to bone tissue and support osteogenesis contributes to the successful healing of a sternum bone defect in a rabbit model in vivo. In summary, these nanocomposite coacervate adhesives with promising characteristics are expected to provide solutions to clinical issues faced during median sternotomy surgery.


Assuntos
Nanocompostos , Osteogênese , Esternotomia , Animais , Nanocompostos/química , Esternotomia/efeitos adversos , Coelhos , Osteogênese/efeitos dos fármacos , Ovinos , Quitosana/química , Quitosana/farmacologia , Hemorragia/prevenção & controle , Antibacterianos/química , Antibacterianos/farmacologia , Adesivos Teciduais/química , Adesivos Teciduais/farmacologia , Durapatita/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Adesivos/química , Adesivos/farmacologia
17.
J Biomed Mater Res A ; 112(10): 1803-1816, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38644548

RESUMO

Degenerative spinal pathology is a widespread medical issue, and spine fusion surgeries are frequently performed. In this study, we fabricated an injectable bioactive click chemistry polymer cement for use in spinal fusion and bone regrowth. Taking advantages of the bioorthogonal click reaction, this cement can be crosslinked by itself eliminating the addition of a toxic initiator or catalyst, nor any external energy sources like UV light or heat. Furthermore, nano-hydroxyapatite (nHA) and microspheres carrying recombinant human bone morphogenetic protein-2 (rhBMP-2) and recombinant human vascular endothelial growth factor (rhVEGF) were used to make the cement bioactive for vascular induction and osteointegration. After implantation into a rabbit posterolateral spinal fusion (PLF) model, the cement showed excellent induction of new bone formation and bridging bone, achieving results comparable to autograft control. This is largely due to the osteogenic properties of nano-hydroxyapatite (nHA) and the released rhBMP-2 and rhVEGF growth factors. Since the availability of autograft sources is limited in clinical settings, this injectable bioactive click chemistry cement may be a promising alternative for spine fusion applications in addressing various spinal conditions.


Assuntos
Cimentos Ósseos , Proteína Morfogenética Óssea 2 , Química Click , Fumaratos , Poliésteres , Polipropilenos , Fusão Vertebral , Fator A de Crescimento do Endotélio Vascular , Animais , Coelhos , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/administração & dosagem , Polipropilenos/química , Poliésteres/química , Humanos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fumaratos/química , Durapatita/química , Durapatita/farmacologia , Proteínas Recombinantes/farmacologia , Injeções , Materiais Biocompatíveis/química , Fator de Crescimento Transformador beta
18.
Biomater Adv ; 160: 213864, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38642519

RESUMO

Although calcium phosphate has been extensively utilized in orthopedic applications such as spine, limbs, dentistry, and maxillofacial surgery, the lack of osteoinductive properties often hinders its effectiveness in treating bone defects resulting from pathological micro-environment such as tumor surgery, osteoporosis, osteomyelitis, and diabetic. Therefore, a novel bone cement based on magnesium-doped bioactive glass was developed in this study. The moderate release of magnesium ions improved the mechanical properties by controlling the crystal size of hydroxyapatite. Through detailed discussion of element content and heat treatment temperature, it was found that 2Mg-BG-800 was suitable for the construction of bone cement. 2Mg-BG-BC exhibited favorable initial (15 min) and final (30 min) setting time, compressive strength (29.45 MPa), compressive modulus (1851.49 MPa), injectability, and shape-adaptability. Furthermore, Mg-BG-BC demonstrated the ability to enhance the osteogenic differentiation of BMSCs, and induce macrophage polarization towards the M2 phenotype, suggesting its potential for osteoporotic fracture regeneration.


Assuntos
Cimentos Ósseos , Vidro , Magnésio , Osteogênese , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Magnésio/química , Magnésio/farmacologia , Osteogênese/efeitos dos fármacos , Animais , Vidro/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Diferenciação Celular/efeitos dos fármacos , Camundongos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Teste de Materiais , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Força Compressiva
19.
Colloids Surf B Biointerfaces ; 238: 113925, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38657556

RESUMO

Antibiotic-loaded calcium phosphate cement (CPC) has emerged as a promising biomaterial for drug delivery in orthopedics. However, there are problems such as the burst release of antibiotics, low cumulative release ratio, inappropriate release cycle, inferior mechanical strength, and poor anti-collapse properties. In this research, montmorillonite-gentamicin (MMT-GS) was fabricated by solution intercalation method and served as the drug release pathways in CPC to avoid burst release of GS, achieving promoted cumulative release ratios and a release cycle matched the time of inflammatory response. The results indicated that the highest cumulative release ratio and release concentration of GS in CPC/MMT-GS was 94.1 ± 2.8 % and 1183.05 µg/mL, and the release cycle was up to 504 h. In addition, the hierarchical GS delivery system was divided into three stages, and the kinetics followed the Korsmeyer-Peppas model, the zero-order model, and the diffusion-dissolution model, respectively. Meanwhile, the compressive strength of CPC/MMT-GS was up to 51.33 ± 3.62 MPa. Antibacterial results demonstrated that CPC/MMT-GS exhibited excellent in vitro long-lasting antibacterial properties to E. coli and S. aureus. Furthermore, CPC/MMT-GS promoted osteoblast proliferation and exhibited excellent in vivo histocompatibility. Therefore, CPC/MMT-GS has favorable application prospects in the treatment of bone defects with bacterial infections and inflammatory reactions.


Assuntos
Antibacterianos , Bentonita , Cimentos Ósseos , Fosfatos de Cálcio , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Escherichia coli , Gentamicinas , Staphylococcus aureus , Bentonita/química , Antibacterianos/farmacologia , Antibacterianos/química , Gentamicinas/farmacologia , Gentamicinas/química , Gentamicinas/administração & dosagem , Gentamicinas/farmacocinética , Fosfatos de Cálcio/química , Cimentos Ósseos/química , Cimentos Ósseos/farmacologia , Animais , Escherichia coli/efeitos dos fármacos , Camundongos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tamanho da Partícula
20.
ACS Biomater Sci Eng ; 10(4): 2062-2067, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38466032

RESUMO

Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.


Assuntos
Cimentos Ósseos , Polietilenoglicóis , Polietilenoglicóis/farmacologia , Estudos Prospectivos , Cimentos Ósseos/farmacologia , Fosfatos de Cálcio/farmacologia , Polímeros , Ácidos Dicarboxílicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA