Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.159
Filtrar
1.
Luminescence ; 39(5): e4767, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711417

RESUMO

Zinc polycarboxylate cement is one of the few dental materials that demonstrate true adhesion to tooth structure. It is suitable for use in living organisms without causing harm. Its strong adhesion to teeth and low level of irritancy are two important parameters for the dental applications. In this study, the dosimetry properties of zinc polycarboxylate cement using thermoluminescence (TL) method were investigated and determined the effectiveness of its use as a good dosimeter. According to the results of this study, the sample shows a good TL properties with three main peaks found around 140°C, 220°C and 330°C. It has a wide linear dose response between 72 Gy and 2.3 kGy and good reusability of the TL peak found at 330°C. Unfortunately, the TL peak intensity values are rapidly faded within a short waiting time interval. Zinc polycarboxylate cement, which is frequently used in dental crowns, can be used as a retrospective dosimeter for measuring the amount of radiation in space studies and nuclear accidents due to its wide linear dose-response curve in the high dose region.


Assuntos
Cimento de Policarboxilato , Dosimetria Termoluminescente , Zinco , Zinco/química , Cimento de Policarboxilato/química , Cimentos Dentários/química , Estudos Retrospectivos
2.
Int J Prosthodont ; 37(7): 195-202, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38787584

RESUMO

PURPOSE: To evaluate the fracture resistance of permanent resin crowns for primary teeth produced using two different 3D-printing technologies (digital light processing [DLP] and stereolithography [SLA]) and cemented with various luting cements (glass ionomer, resin-modified glass ionomer, and self-adhesive resin cement), whether thermally aged or not. MATERIALS AND METHODS: A typodont primary mandibular second molar tooth was prepared and scanned, and a restoration design was created with web-based artificial intelligence (AI) dental software. A total of 96 crowns were prepared, and 12 experimental groups were generated according to the cement type, 3Dprinting technology (DLP or SLA), and thermal aging. Fracture resistance values and failure types of the specimens were noted. The results were statistically analyzed with three-way ANOVA and Tukey HSD tests (α = .05). RESULTS: The results of the three-way ANOVA showed that there was an interaction among the factors (3D-printing technology, cement type, and thermal aging) (P = .003). Thermal aging significantly decreased the fracture resistance values in all experimental groups. DLP-printed crowns showed higher fracture resistance values than SLA-printed crowns. Cement type also affected the fracture resistance, with glass ionomer cement showing the lowest values after aging. Resin-modified glass ionomer and resin cements were more preferable for 3D-printed crowns. CONCLUSIONS: The type of cement and the 3D-printing technology significantly influenced the fracture resistance of 3D-printed permanent resin crowns for primary teeth, and it was decided that these crowns would be able to withstand masticatory forces in children.


Assuntos
Coroas , Falha de Restauração Dentária , Impressão Tridimensional , Dente Decíduo , Humanos , Cimentos de Resina/química , Planejamento de Prótese Dentária , Análise do Estresse Dentário , Cimentos de Ionômeros de Vidro/química , Cimentos Dentários/química , Teste de Materiais , Dente Molar
3.
BMC Oral Health ; 24(1): 586, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773502

RESUMO

BACKGROUND: Cement spacer is essential for compensating deformation of zirconia restoration after sintering shrinkage, allowing proper seating and better fracture resistance of the restoration. Studies assessing the effect of cement spacer on fit accuracy and fracture strength of zirconia frameworks are missing in the literature. Therefore, the aim of this study was to evaluate the effect of different cement spacer settings on fit accuracy and fracture strength of 3-unit and 4-unit zirconia frameworks. METHODS: Sixty standardized stainless-steel master dies were manufactured with 2 prepared abutments for fabricating 3-unit and 4-unit zirconia frameworks. The frameworks were assigned into 6 groups (n = 10) according to cement spacer setting (30 µm, 50 µm, and 80 µm) as follows: 3-unit frameworks; 3u-30, 3u-50, 3u-80, and 4-unit frameworks; 4u-30, 4u-50, and 4u-80. The frameworks were assessed for fit accuracy with the replica method. The specimens were cemented to their corresponding dies, and the fracture strength was measured in a universal testing machine. The Weibull parameters were calculated for the study groups and fractured specimens were inspected for failure mode. Two-Way ANOVA followed by Tukey test for pairwise comparison between study groups (α = 0.05). RESULTS: The cement spacer had a significant effect on both fit accuracy and fracture strength for 3-unit and 4-unit frameworks. The 50 µm spacer had significantly better fit accuracy followed by 80 µm, and 30 µm spacers. Both 50 µm and 80 µm spacers had similar fracture strength, and both had significantly better strength than 30 µm spacer. CONCLUSIONS: For both 3-unit and 4-unit zirconia frameworks, 50 µm cement spacer can be recommended over 30 µm and 80 µm spacers for significantly better fit accuracy and adequate fracture strength.


Assuntos
Análise do Estresse Dentário , Teste de Materiais , Zircônio , Zircônio/química , Cimentos Dentários/química , Falha de Restauração Dentária , Humanos , Cimentação/métodos
4.
PLoS One ; 19(5): e0304143, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38781281

RESUMO

This study addressed enamel demineralization, a common complication in fixed orthodontic treatment, by evaluating a novel orthodontic adhesive with DMAHDM-PCL composite fibers. These fibers, produced through electrospinning, were incorporated into orthodontic adhesive to create experimental formulations at different concentrations and a control group. The study assessed antimicrobial properties, biosafety, and mechanical characteristics. New orthodontic adhesive exhibited significant bacteriostatic effects, reducing bacterial biofilm activity and concentrations. Incorporating 1% and 3% DMAHDM-PCL did not affect cytocompatibility. Animal tests confirmed no inflammatory irritation. Shear bond strength and adhesive residual index results indicated that antimicrobial fibers didn't impact bonding ability. In conclusion, orthodontic adhesives with 3% DMAHDM-PCL fibers are potential antimicrobial bonding materials, offering a comprehensive solution to enamel demineralization in orthodontic patients.


Assuntos
Cimentos Dentários , Poliésteres , Poliésteres/química , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Animais , Biofilmes/efeitos dos fármacos , Metacrilatos/química , Metacrilatos/farmacologia , Humanos , Teste de Materiais
5.
J Clin Pediatr Dent ; 48(3): 31-36, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38755979

RESUMO

The purpose of this study was to quantitatively evaluate adhesive remnants on the enamel surface following bracket debonding using a freezing element. Thirty-six sound premolars were used in this study. In each case, a bracket was bonded onto each tooth with conventional light-cured composite resin and de-bonded after one week. Freezing of the underlying composite through the bracket was performed immediately before debonding with a portable cryosurgical system (-55 °C). Specimens were divided into three groups according to the duration of freezing: a control group without freezing was used as a reference and two interventional groups with different durations of freezing (15 or 40 s). Brackets were removed by using debonding pliers to squeeze the wings of the bracket in an occluso-gingival manner. Adhesive remnants on the tooth were then quantitatively evaluated by stereo-microscopy. Pearson's Chi-squared test was used to investigate the relationship between the proportion of remaining resin and the group of teeth. In the control group, 100% of the composite remained on the enamel surface of all specimens. Significantly less adhesive remnants were found in the intervention groups (p = 0.001 for the 15 s group and p = 0.043 for the 40 s group). There was no significant difference between the two interventions (p = 0.165) in terms of the proportion of remaining adhesive remnants. Freezing of the bracket and the underlying adhesive resin prior to bracket debonding may favorably alter the behavioral pattern of composite fracture, thus reducing the extent of adhesive remnants on the enamel. Increasing the freezing time from 15 to 40 s did not exert significant effects on adhesive remnants following debonding. Further research now needs to investigate the effect of freezing on the mechanical properties of the adhesive remnants and its in-vivo effect on pulp vitality over both short- and long-terms.


Assuntos
Resinas Compostas , Descolagem Dentária , Congelamento , Braquetes Ortodônticos , Humanos , Descolagem Dentária/métodos , Resinas Compostas/química , Esmalte Dentário , Técnicas In Vitro , Cimentos de Resina/química , Cimentos Dentários/química , Dente Pré-Molar , Teste de Materiais
6.
J Adhes Dent ; 26(1): 125-134, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38770704

RESUMO

PURPOSE: To investigate the effect of adhesive type and long-term aging on the shear bond strength (SBS) between silica-based ceramics and composite cement (CC). MATERIALS AND METHODS: Lithium-silicate (LS), feldspathic (FD) and polymer-infiltrated ceramic (PIC) blocks were sectioned (10 x 12 x 2 mm) and divided into 24 groups considering the factors: "ceramics" (LS, FD, and PIC), "adhesive" (Ctrl: without adhesive; 2SC: 2-step conventional; 3SC: 3-step conventional; 1SU: 1-step universal), and "aging" (non-aged or aged [A]). After the surface treatments, CC cylinders (n = 15, Ø = 2 mm; height = 2 mm) were made and half of the samples were subjected to thermocycling (10,000) and stored in water at 37°C for 18 months. The samples were submitted to SBS testing (100 kgf, 1 mm/min) and failure analysis. Extra samples were prepared for microscopic analysis of the adhesive interface. SBS (MPa) data was analyzed by 3-way ANOVA and Tukey's test (5%). Weibull analysis was performed on the SBS data. RESULTS: All factors and interactions were significant for SBS (p<0.05). Before aging, there was no significant difference between the tested groups and the respective control groups. After aging, the LS_1SU (22.18 ± 7.74) and LS_2SC (17.32 ± 5.86) groups exhibited significantly lower SBS than did the LS_Ctrl (30.30 ± 6.11). Only the LS_1SU group showed a significant decrease in SBS after aging vs without aging. The LS_1SU (12.20) group showed the highest Weibull modulus, which was significantly higher than LS_2SC_A (2.82) and LS_1SU_A (3.15) groups. CONCLUSION: No type of adhesive applied after silane benefitted the long-term adhesion of silica-based ceramics to CC in comparison to the groups without adhesive.


Assuntos
Cerâmica , Colagem Dentária , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Dióxido de Silício , Dióxido de Silício/química , Cerâmica/química , Fatores de Tempo , Cimentos de Resina/química , Desenho Assistido por Computador , Propriedades de Superfície , Análise do Estresse Dentário , Cimentação/métodos , Porcelana Dentária/química , Humanos , Resinas Compostas/química , Cimentos Dentários/química , Compostos de Potássio/química , Silicatos de Alumínio/química , Temperatura
7.
J Adhes Dent ; 26(1): 135-145, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38771025

RESUMO

PURPOSE: To measure zirconia-to-zirconia microtensile bond strength (µTBS) using composite cements with and without primer. MATERIALS AND METHODS: Two Initial Zirconia UHT (GC) sticks (1.8x1.8x5.0 mm) were bonded using four cements with and without their respective manufacturer's primer/adhesive (G-CEM ONE [GOne] and G-Multi Primer, GC; Panavia V5 [Pv5]), and Panavia SA Cement Universal [PSAu], and Clearfil Ceramic Plus, Kuraray Noritake; RelyX Universal (RXu) and Scotchbond Universal Plus [SBUp], 3M Oral Care). Specimens were trimmed to an hour-glass shaped specimen whose isthmus is circular in cross-section. After 1-week water storage, the specimens were either tested immediately (1-week µTBS) or first subjected to 50,000 thermocycles (50kTC-aged µTBS). The fracture mode was categorized as either adhesive interfacial failure, cohesive failure in composite cement, or mixed failure, followed by SEM fracture analysis of selected specimens. Data were analyzed using linear mixed-effects statistics (α = 0.05; variables: composite cement, primer/adhesive application, aging). RESULTS: The statistical analysis revealed no significant differences with aging (p = 0.3662). No significant difference in µTBS with/without primer and aging was recorded for GOne and PSAu. A significantly higher µTBS was recorded for Pv5 and RXu when applied with their respective primer/adhesive. Comparing the four composite cements when they were applied in the manner that resulted in their best performance, a significant difference in 50kTC-aged µTBS was found for PSAu compared to Pv5 and RXu. A significant decrease in µTBS upon 50kTC aging was only recorded for RXu in combination with SBUp. CONCLUSION: Adequate bonding to zirconia requires the functional monomer 10-MDP either contained in the composite cement, in which case a separate 10-MDP primer is no longer needed, or in the separately applied primer/adhesive.


Assuntos
Resinas Compostas , Colagem Dentária , Teste de Materiais , Metacrilatos , Cimentos de Resina , Resistência à Tração , Zircônio , Zircônio/química , Cimentos de Resina/química , Resinas Compostas/química , Metacrilatos/química , Cimentos Dentários/química , Cerâmica/química , Análise do Estresse Dentário , Humanos , Fatores de Tempo , Água/química , Temperatura , Porcelana Dentária/química , Propriedades de Superfície , Materiais Dentários/química , Cimentos de Ionômeros de Vidro
8.
J Dent ; 145: 104985, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574846

RESUMO

OBJECTIVE: Clinical contamination during direct adhesive restorative procedures can affect various adhesive interfaces differently and contribute to bulk failure of the restorations. This review aims to summarise the current knowledge on the influence of a variety of clinical contaminants on the bond strength at various adhesive interfaces during adhesive restorative procedures and identify gaps in the literature for future research. DATA AND SOURCES: An electronic database search was performed in PubMed and EMBASE to identify articles that investigated the influence of contaminants on direct restorative bonding procedures. A data-charting form was developed by two researchers to capture the key characteristics of each eligible study. STUDY SELECTION: The initial search yielded 1,428 articles. Fifty-seven articles published between 1 Jan 2007 and 25 Oct 2023 were included in the final review. Thirty-three of the articles examined the influence of saliva contamination, twelve articles examined the influence of blood contamination, and twenty-five articles examined the influence of other contaminants. CONCLUSION: Saliva contamination exerted less influence on the decrease in bond strength when self-etch systems were used, compared to when etch-and-rinse systems were used. Blood contamination adversely affected the bond strength at the interface between resin composite and dentine, and resin composite and resin-modified glass ionomer cement. Treating contaminated surfaces with water spray for 10-30 s followed by air drying could be effective in recovering bond strength following saliva and blood contamination. CLINICAL SIGNIFICANCE: This scoping review provides a valuable overview of the range of potential clinical contaminants that can influence the bond strength between different interfaces in direct adhesive restorative procedures. Additionally, it identifies potential decontamination protocols that can be followed to restore and enhance bond strength.


Assuntos
Resinas Compostas , Colagem Dentária , Humanos , Resinas Compostas/química , Restauração Dentária Permanente/métodos , Saliva , Cimentos de Ionômeros de Vidro/química , Adesivos Dentinários/química , Teste de Materiais , Dentina , Cimentos Dentários/química , Análise do Estresse Dentário , Propriedades de Superfície , Cimentos de Resina/química
9.
Proc Inst Mech Eng H ; 238(5): 520-528, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627991

RESUMO

Dental implant restorations attached to cement can potentially result in peri-implant mucositis and peri-implantitis if cement residues are present. Effectively predicting and eliminating such dental cement residues is crucial for preventing complications. This study focuses on creating a regression model using the pixel values to predict the Excess Cement Residues (ECR) by employing an octagonal surface imaging approach. A model featuring gingival imitation, ten abutments, and ten crowns was created, and the cemented implants underwent thorough photographic and analytical assessment. The ECR was determined through two distinct approaches: the Computerized Planimetric Method (CPM) and the weighing method. Across ten implants in this in vitro study, ECR varied from 0.3 to 21 mg, with an average of 5.69 mg. The findings reveal a higher amount of ECR on the distal, mesiobuccal, and mesial sides. Utilizing Pearson's correlation, a coefficient value of r = 0.786 signifies a strong correlation between CPM and the weighing method. The regression model further aids in predicting ECR based on pixel values. The octagonal surface imaging approach not only vividly captures information about ECR in the implant cementation region but also emphasizes the feasibility of ImageJ as an effective tool for detecting ECR. The congruence between CPM and the weighing method results supports the application of the regression model for precise ECR prediction.


Assuntos
Cimentos Dentários , Implantes Dentários , Cimentos Dentários/química , Análise de Regressão , Peri-Implantite/diagnóstico por imagem , Peri-Implantite/prevenção & controle , Humanos
10.
Oper Dent ; 49(3): 311-324, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632849

RESUMO

OBJECTIVES: To investigate the influence of filler type/loading on the micro-tensile fracture strength (µTFS) of adhesive resins, as measured 'immediately' upon preparation and after 1-week water storage ('water-stored'). METHODS: The morphology and particle-size distribution of three filler particles, referred to as 'Glass-S' (Esschem Europe), 'BioUnion' (GC), and 'CPC_Mont', were correlatively characterized by SEM, TEM, and particle-size analysis. These filler particles were incorporated into an unfilled adhesive resin ('BZF-29unfilled', GC) in different concentrations to measure the 'immediate' µTFS. After 1-week water storage, the 'water-stored' µTFS of the experimental particle-filled adhesive resins with the most optimum filler loading, specific for each filler type, was measured. In addition, the immediate and water-stored µTFS of the adhesive resins of three experimental two-step universal adhesives based on the same resin matrix but varying for filler type/loading, coded as 'BZF-21' (containing silica and bioglass), 'BZF-29' (containing solely silica), and 'BZF-29_hv' (highly viscous with a higher silica loading than BZF-29), and of the adhesive resins of the gold-standard adhesives OptiBond FL ('Opti-FL', Kerr) and Clearfil SE Bond 2 ('C-SE2', Kuraray Noritake) was measured along with that of BZF-29unfilled (GC) serving as control/reference. Statistics involved one-way and two-way ANOVA followed by post-hoc multiple comparisons (α<0.05). RESULTS: Glass-S, BioUnion, and CPC_Mont represent irregular fillers with an average particle size of 8.5-9.9 µm. Adding filler to BZF-29unfilled decreased µTFS regardless of filler type/loading. One-week water storage reduced µTFS of all adhesive resins except BZF-21, with the largest reduction in µTFS recorded for BZF-29unfilled. Among the three filler types, the µTFS of the 30 wt% Glass-S and 20 wt% BioUnion filled adhesive resin was not significantly different from the µTFS of BZF-29unfilled upon water storage. CONCLUSIONS: Adding filler particles into adhesive resin did not enhance its micro-tensile fracture strength but appeared to render it less sensitive to water storage as compared to the unfilled adhesive resin investigated.


Assuntos
Teste de Materiais , Resistência à Tração , Cimentos de Resina/química , Resinas Compostas/química , Propriedades de Superfície , Tamanho da Partícula , Análise do Estresse Dentário , Cimentos Dentários/química , Humanos , Microscopia Eletrônica de Varredura
11.
Oper Dent ; 49(3): 325-335, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38632867

RESUMO

OBJECTIVES: This study aimed to evaluate the impact of various commercial silane brands with varied chemical compositions with or without the application of an adhesive layer on the microshear bond strength and durability of a resin luting agent to lithium disilicate glass ceramic. METHODS AND MATERIALS: Lithium disilicate glass ceramic discs (EMX, IPS e.max Press, Ivoclar Vivadent) measuring 10 mm in diameter and 3 mm in thickness were fabricated (n=240). Surfaces were etched using 5% hydrofluoric acid and randomly assigned to 10 groups based on the commercial brand of silane used (n=24): [RP] RelyX Ceramic Primer (3M ESPE); [PS] Prosil (FGM); [SA] Silano (Angelus); [SM] Silano (Maquira); [SU] Silane (Ultradent); [GL] GLUMA Ceramic Primer (Kulzer); [CB] Ceramic Bond (VOCO); [MB] Monobond N (Ivoclar Vivadent); [CP] Clearfil Ceramic Primer (Kuraray); and [DE] 2-step silane (Dentsply Sirona). Half of the EMXs (n=12) received a thin adhesive layer (+) after the silane and prior to resin luting agent, while the other half (n=12) did not receive an adhesive layer (-). For the microshear bond strength test (µSBS), four light-cured resin luting agent cylinders (1 mm in diameter) were created on each EMX surface. Half of these specimens were tested after 24 hours, while the other half were stored in deionized water for 6 months. The µSBS test was conducted using a universal testing machine (DL 500, EMIC) at a crosshead speed of 1 mm/min until failure. The obtained data underwent statistical analysis using analysis of variance (ANOVA) and the Tukey test (α=0.05). RESULTS: There was significant influence of the silane commercial brand on bond strength. Notably, "universal primers" yielded lower bond strength results compared to "pure" silane solutions. Water storage had a detrimental effect on microshear bond strength for certain silane commercial brands. Additionally, the application of an adhesive layer negatively impacted bond strength results for all silanes. CONCLUSIONS: This study confirms the importance of both silane commercial brand and chemical composition in relation to bond strength of resin luting agents to lithium disilicate glass ceramic. Furthermore, the application of an adhesive layer may have an adverse effect on bond stability over time.


Assuntos
Cerâmica , Colagem Dentária , Porcelana Dentária , Análise do Estresse Dentário , Teste de Materiais , Cimentos de Resina , Resistência ao Cisalhamento , Silanos , Porcelana Dentária/química , Silanos/química , Cerâmica/química , Colagem Dentária/métodos , Cimentos de Resina/química , Propriedades de Superfície , Cimentos Dentários/química , Condicionamento Ácido do Dente/métodos , Humanos
12.
J Indian Prosthodont Soc ; 24(2): 152-158, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38650340

RESUMO

AIM: In routine dental care, various dental luting cements are utilized to cement the dental prosthesis. Thus, the aim of the current study was to assess the Cytotoxic effect of three different dental luting cements on human gingival mesenchymal stem cell and evaluation of cytokines and growth factors release. SETTINGS AND DESIGN: Cytotoxicity of glass ionomer cement (GIC), resin modified glass ionomer cement (RMGIC) and resin cement (RC) on the human gingival mesenchymal stem cells (HGMSCs) was evaluated. Amongst the cements tested, least cytotoxic cement was further tested for the release of cytokines and growth factors. MATERIALS AND METHODS: MTT test was used to evaluate the cytotoxicity of the dental luting cements at 1 h, 24 h, and 48 h on HGMSCs. Cytokines such as interleukin (IL) 1α & IL 8 and growth factors such as platelet derived growth factor & transforming growth factor beta release from the least cytotoxic RC was evaluated using flow cytometry analysis. STATISTICAL ANALYSIS USED: The mean absorbance values by MTT assay and cell viability at various time intervals between four groups were compared using a one way analysis of variance test and Tukey's post hoc test. The least cytotoxic RC group and the control group's mean levels of cytokines and growth factors were compared using the Mann-Whitney test. RESULT: As exposure time increased, the dental luting cement examined in this study were cytotoxic. RC was the least cytotoxic, RMGIC was moderate and glass ionomer cement showed the highest cytotoxic effect. Concomitantly, a significant positive biological response of gingival mesenchymal stem cells with the release of ILs when exposed to the RC was observed. CONCLUSION: For a fixed dental prosthesis to be clinically successful over the long term, it is imperative that the biocompatibility of the luting cement be taken into account in order to maintain a healthy periodontium surrounding the restoration.


Assuntos
Citocinas , Cimentos Dentários , Gengiva , Peptídeos e Proteínas de Sinalização Intercelular , Células-Tronco Mesenquimais , Humanos , Gengiva/citologia , Gengiva/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Cimentos Dentários/toxicidade , Técnicas In Vitro , Cimentos de Ionômeros de Vidro/farmacologia , Cimentos de Ionômeros de Vidro/toxicidade , Cimentos de Ionômeros de Vidro/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas
13.
J Dent ; 145: 104992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38599563

RESUMO

OBJECTIVES: The objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. METHODS: Arg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. RESULTS: TEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. CONCLUSIONS: The novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. CLINICAL SIGNIFICANCE: The novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.


Assuntos
Antibacterianos , Arginina , Biofilmes , Nanopartículas , Cimentos de Resina , Dióxido de Silício , Streptococcus mutans , Arginina/química , Arginina/farmacologia , Dióxido de Silício/química , Nanopartículas/química , Streptococcus mutans/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Cimentos de Resina/química , Humanos , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Porosidade , Teste de Materiais , Microscopia Eletrônica de Transmissão , Colagem Dentária , Braquetes Ortodônticos , Concentração de Íons de Hidrogênio , Materiais Biocompatíveis/química
14.
Dent Mater ; 40(5): 837-841, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570242

RESUMO

OBJECTIVES: to assess the impact of universal adhesives, cured with single-peak and polywave LEDs, on the metabolic activity and cytokine release of human dental pulp stem cells (hDPSCs). In addition, analyze the degree of conversion (DC) of the adhesives cured with the different LEDs. METHODS: Discs (5 mm diameter, 1 mm thick) were prepared using three universal adhesives: Single Bond Universal (SBU, 3 M ESPE), Optibond Universal (OBU, Kerr), and Zipbond Universal (ZBU, SDI). These discs were cured for 40 s using a single-peak (DeepCure, 3 M ESPE) or a polywave light-emmiting diode (LED) curing unit (Valo Grand, Ultradent). After 24 h, the specimens were placed in 24-well culture plates, each containing 1 mL of culture medium for 24 h. hDPSCs (1.8 ×104) were seeded in 96-well plates and allowed to grow for 24 h. Subsequently, the cells were exposed to the extracts (culture medium containing eluates from the adhesive discs) for an additional 24 h. Cells not exposed to the extracts were used as a control group. The mitochondrial metabolism was assessed using the MTT assay and the cytokine release evaluated through MAGPIX. The degree of conversion of the adhesives was analyzed using FTIR (n = 5). The results were analyzed by ANOVA two-way and Tukey's test. RESULTS: OBU and ZBU eluates caused a statistically significant reduction in mitochondrial metabolism, regardless of the LED used, indicating their cytotoxicity. In contrast, SBU did not significantly affect the MTT results, resembling the control group. A higher release of cytokines IL-1, IL-6, IL-10, and TNF-α were found in association to ZBU. SBU, on the other hand, increased the release of IL-8. OBU did not influenced the cytokine release. SBU presented the higher DC, while OBU and ZBU had similar DC, lower than SBU. SIGNIFICANCE: In conclusion, universal adhesives exhibit toxicity towards hDPSCs, but the extent of toxicity varies depending on the adhesive material. ZBU was associated with increased cytokine release, particularly pro-inflammatory mediators, from hDPSCs. The different LEDs did not influenced the cytotoxicity of the evaluated adhesives.


Assuntos
Lâmpadas de Polimerização Dentária , Citocinas , Cimentos Dentários , Polpa Dentária , Teste de Materiais , Células-Tronco , Humanos , Polpa Dentária/citologia , Citocinas/metabolismo , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Cura Luminosa de Adesivos Dentários , Cimentos de Resina/química , Cimentos de Resina/toxicidade , Células Cultivadas , Bis-Fenol A-Glicidil Metacrilato/toxicidade , Bis-Fenol A-Glicidil Metacrilato/química
15.
Int J Biol Macromol ; 267(Pt 1): 131580, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688788

RESUMO

Despite the clinical success of tricalcium silicate (TCS)-based materials in endodontics, the inferior handling characteristic, poor anti-washout property and slow setting kinetics hindered their wider applications. To solve these problems, an injectable fast-setting TCS/ß-tricalcium phosphate/monocalcium phosphate anhydrous (ß-TCP/MCPA) cement was developed for the first time by incorporation of hydroxypropyl methylcellulose (HPMC) and ß-TCP/MCPA. The physical-chemical characterization (setting time, anti-washout property, injectability, compressive strength, apatite mineralization and sealing property) of TCS/(ß-TCP/MCPA) were conducted. Its hydration mechanism was also investigated. Furthermore, the cytocompatibility and osteogenic/odontogenic differentiation of stem cells isolated from human exfoliated deciduous teeth (SHED) treated with TCS/ß-TCP/MCPA were studied. The results showed that HPMC could provide TCS with good anti-washout ability and injectability but slow hydration process. However, ß-TCP/MCPA effectively enhanced anti-washout characteristics and reduced setting time due to faster hydration kinetics. TCS/(ß-TCP/MCPA) obtained around 90 % of injection rate and high compressive strength whereas excessive additions of ß-TCP/MCPA compromised its injectability and compressive strength. TCS/(ß-TCP/MCPA) can induce apatite deposition and form a tight marginal sealing at the dentin-cement interface. Additionally, TCS/(ß-TCP/MCPA) showed good biocompatibility and promoted osteo/odontogenic differentiation of SHED. In general, our results indicated that TCS/(ß-TCP/MCPA) may be particularly promising as an injectable bioactive cements for endodontic treatment.


Assuntos
Compostos de Cálcio , Fosfatos de Cálcio , Derivados da Hipromelose , Silicatos , Silicatos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Compostos de Cálcio/química , Humanos , Derivados da Hipromelose/química , Osteogênese/efeitos dos fármacos , Teste de Materiais , Diferenciação Celular/efeitos dos fármacos , Força Compressiva , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Cimentos Dentários/química , Cimentos Dentários/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/citologia
16.
Braz Oral Res ; 38: e028, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597547

RESUMO

Acidic pH can modify the properties of repair cements. In this study, volumetric change and solubility of the ready-to-use bioceramic repair cement Bio-C Repair (BCR, Angelus, Londrina, PR, Brazil) were evaluated after immersion in phosphate-buffered saline (PBS) (pH 7.0) or butyric acid (pH 4.5). Solubility was determined by the difference in initial and final mass using polyethylene tubes measuring 4 mm high and 6.70 mm in internal diameter that were filled with BCR and immersed in 7.5 mL of PBS or butyric acid for 7 days. The volumetric change was established by using bovine dentin tubes measuring 4 mm long with an internal diameter of 1.5 mm. The dentin tubes were filled with BCR at 37°C for 24 hours. Scanning was performed with micro-computed tomography (micro-CT; SkyScan 1176, Bruker, Kontich, Belgium) with a voxel size of 8.74 µm. Then, the specimens were immersed in 1.5 mL of PBS or butyric acid at and 37 °C for 7 days. After this period, a new micro-CT scan was performed. Bio-C Repair showed greater mass loss after immersion in butyric acid when compared with immersion in PBS (p<0.05). Bio-C Repair showed volumetric loss after immersion in butyric acid and increase in volume after immersion in PBS (p<0.05). The acidic pH influenced the solubility and dimensional stability of the Bio-C Repair bioceramic cement, promoting a higher percentage of solubility and decrease in volumetric values.


Assuntos
Óxidos , Materiais Restauradores do Canal Radicular , Animais , Bovinos , Solubilidade , Óxidos/química , Compostos de Cálcio/química , Microtomografia por Raio-X , Ácido Butírico , Teste de Materiais , Cimentos Dentários/química , Cimentos de Ionômeros de Vidro , Concentração de Íons de Hidrogênio , Silicatos/química , Materiais Restauradores do Canal Radicular/química
17.
J Adhes Dent ; 26(1): 103-116, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602234

RESUMO

PURPOSE: To investigate the antibacterial effects of Terminalia catappa Linn (TCL) leaf extracts at different concentrations and the effects of these extracts used as primers on the long-term adhesive properties of two universal adhesives. MATERIALS AND METHODS: After extract preparation, the antimicrobial and antibacterial activities of TCL against Streptococcus mutans (UA 159) were assessed in microdilution assays to provide the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Additionally, to provide quantitative data on the ability of TCL extract to reduce cell viability, colony forming units (CFU) were counted. To examine adhesive properties, 288 human molars were randomly assigned to 32 experimental conditions (n = 9) according to the following variables: (1) treatment agent: negative control (untreated surface), and primers at concentrations of 1xMIC, 5xMIC, and 10xMIC; (2) adhesives: Scotchbond Universal (SBU) and Futurabond Universal (FBU); (3) adhesive strategy: etch-and-rinse (ER) or self-etch (SE); and (4) storage time: 24 h or after 2 years. Primers were applied for 60 s, upon which the teeth were incrementally restored and sectioned into adhesive-dentin bonded sticks. These were tested for microtensile bond strength (µTBS) and nanoleakage (NL) after 24-h and 2-year water storage, as well as in-situ degree of conversion (DC) at 24 h. The chemical profile of the hybrid layer was determined via micro-Raman spectroscopy. Biofilm assay data were analyzed using the Kruskal-Wallis test; the pH of culture media and the chemical profile were analyzed by one-way ANOVA. The adhesive properties (µTBS, NL, DC) were evaluated using a four-way ANOVA and Tukey's test. Significance was set at 5%. RESULTS: Similar values of MIC and MBC were observed (2 mg/ml), showing bactericidal potential. CFU analysis demonstrated that concentrations of 5xMIC and 10xMIC significantly inhibited biofilm formation (p < 0.001). The application of the TCL primer at all concentrations significantly increased the immediate µTBS and DC, and decreased the immediate NL values when compared to the control group (p < 0.05), regardless of the adhesive and adhesive strategies. Despite an increase in the NL values for all groups after 2 years (p > 0.05), in groups where the TCL primer was applied, the µTBS remained constant after 2 years for both adhesives, while a decrease in the µTBS was observed in the control groups (p < 0.05). Usually, 10xMIC showed better results than 1xMIC and 5xMIC (p < 0.05). The application of TCL promoted cross-linking; cross-linking rates increased proportionally to the concentration of TCL (p < 0.05). CONCLUSION: Primers containing TCL promoted bactericidal and bacteriostatic action, as well as cross-linking with dentin, while maintaining the adhesive properties of the adhesive-dentin interface after 2 years of water storage.


Assuntos
Colagem Dentária , Terminalia , Humanos , Cimentos Dentários/farmacologia , Cimentos Dentários/química , Adesivos Dentinários/farmacologia , Adesivos Dentinários/química , Resinas Compostas/química , Dentina , Resistência à Tração , Cimentos de Resina/farmacologia , Cimentos de Resina/química , Água/química , Antibacterianos/farmacologia , Teste de Materiais
18.
J Prosthet Dent ; 131(5): 934.e1-934.e7, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431508

RESUMO

STATEMENT OF PROBLEM: Zirconium dioxide (zirconia) cannot be etched in a clinical setting, but zirconia restorations with minimal to no micromechanical bonding are approved and widely used in contemporary dentistry. However, information on the shear bond strength of zirconia and adhesive cement, on the effect of an added proportion of yttria, and on the effect of aging is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the shear bond strength of cement luted to zirconia and the effect of aging. MATERIAL AND METHODS: A total of 131 test specimens were made from 4 zirconia materials with different amounts of yttria added to formulate yttria-partially stabilized zirconia (Y-PSZ); 3Y-PSZ (n=32), 4Y-PSZ (n=34), and 2 5Y-PSZs (n=32 and n=33). A dual-polymerizing cement and 10-methacryloyloxydecyl dihydrogen phosphate-containing primer were used. All specimens were stored in water at 37 °C, half of them for 24 hours and the other half for 6 months. After aging, the specimens were subjected to a shear bond strength test with a notched crosshead according to the International Organization for Standardization (ISO) 29022:2013 standard. The data were analyzed using the independent 2-sample t test, ANOVA, and the Levene test (α=.05). RESULTS: The 3Y-PSZ material had higher mean ±standard deviation shear bond strength (31.83 ±12.80 MPa) compared with 4Y-PSZ (23.34 ±7.66 MPa) after 24 hours of aging in water and higher (28.98 ±14.03 MPa) than 4Y-PSZ (14.35 ±9.62 MPa) and one of the 5Y-PSZ (16.05 ±11.34 MPa) after 6 months. Debonding before loading occurred in all groups except for one of the 5Y-PSZ groups. CONCLUSIONS: Zirconia without macromechanical retention, regardless of an added proportion of yttria, showed high shear bond strength, but the tested materials also had a high coefficient of variance, which, in practice, leads to the risk of the occasional debonding of zirconia restorations.


Assuntos
Colagem Dentária , Análise do Estresse Dentário , Resistência ao Cisalhamento , Ítrio , Zircônio , Zircônio/química , Ítrio/química , Colagem Dentária/métodos , Cimentos Dentários/química , Cimentos de Resina/química , Teste de Materiais , Humanos , Técnicas In Vitro , Materiais Dentários/química
19.
J Prosthet Dent ; 131(5): 916.e1-916.e9, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38443240

RESUMO

STATEMENT OF PROBLEM: Dental implants are particularly susceptible to occlusal overloading because, unlike natural teeth, they lack a periodontal ligament to help absorb occlusal forces. However, studies evaluating the impact of different crown and luting materials on the damping behavior and strain distribution of implant-supported crowns are lacking. PURPOSE: The purpose of this in vitro study was to investigate the damping behavior and strain distribution of peri-implant bone associated with 5 different CAD-CAM implant-supported crowns and 3 luting materials. MATERIAL AND METHODS: A titanium implant was embedded in a plastic tube with epoxy resin and 5 different crown materials (polymethyl methacrylate, resin-infiltrated ceramic, lithium disilicate, titanium, and zirconia) luted to prosthetic abutments with 3 different luting materials (zinc oxide non-eugenol cement, zinc phosphate cement, and adhesive resin cement) and an uncemented condition were tested (n=5). Strain gauges were attached at the crestal and apical levels of the implant model. All specimens were load tested from 0 to 200 N. Slopes of load/time, microstrain/time, and time required to reach the maximum load were examined to represent the damping behavior. Absolute maximum strain (AMS) and its occurrence level were examined to represent the strain distribution. Two-way ANOVA, followed by the Tukey HSD test, were used for statistical analysis (α=.05). RESULTS: All slopes and times to reach the maximum load in each crown material were statistically similar (P>.05), except for the polymethyl methacrylate group, which showed less steepness in all slopes and more time required to reach the maximum load significantly (P<.05). Both the polymethyl methacrylate group (224.5 ±30.2) and the titanium group (224.0 ±24.3) exhibited significantly higher AMS at the crestal level compared with the resin-infiltrated ceramic group (210.6 ±5.0) (P<.05). The lithium disilicate (218.1 ±15.0) and zirconia groups (217.3 ±14.8) demonstrated comparable AMS values with the others (P>.05). The uncemented group demonstrated steeper slopes and less time required to reach the maximum load compared with the adhesive resin group (P<.05), while slopes and times of the zinc phosphate and zinc oxide non-eugenol groups were comparable (P>.05). The uncemented group (242.7 ±25.3) exhibited significantly higher AMS at the crestal level than the other groups (P<.05). CONCLUSIONS: The crown material significantly affected the damping behavior of peri-implant bone, unlike the luting material. Polymethyl methacrylate with a high damping behavior exhibited high strain at the crestal level. In contrast, resin-modified ceramic with a moderate damping behavior exhibited low strain at the crestal level. Strain at the crestal level could be effectively reduced by approximately 13% through cementation.


Assuntos
Desenho Assistido por Computador , Coroas , Cimentos Dentários , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Cimentos Dentários/química , Cimentos Dentários/uso terapêutico , Humanos , Técnicas In Vitro , Polimetil Metacrilato/química , Cimentos de Resina/química , Teste de Materiais , Cimento de Fosfato de Zinco/química , Titânio/química , Zircônio/química , Porcelana Dentária/química , Cerâmica/química
20.
BMC Oral Health ; 24(1): 335, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486235

RESUMO

BACKGROUND: Several efforts have been made to improve mechanical and biological properties of calcium silicate-based cements through changes in chemical composition of the materials. This study aimed to investigate the physical (including setting time and compressive strength) and chemical (including calcium ion release, pH level) properties as well as changes in cytotoxicity of mineral trioxide aggregate (MTA) after the addition of 3 substances including CaCl2, Na2HPO4, and propylene glycol (PG). METHODS: The systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Electronic searches were performed on PubMed, Embase, and Scopus databases, spanning from 1993 to October 2023 in addition to manual searches. Relevant laboratory studies were included. The quality of the included studies was assessed using modified ARRIVE criteria. Meta-analyses were performed by RevMan statistical software. RESULTS: From the total of 267 studies, 24 articles were included in this review. The results of the meta-analysis indicated that addition of PG increased final setting time and Ca2+ ion release. Addition of Na2HPO4 did not change pH and cytotoxicity but reduced the final setting time. Incorporation of 5% CaCl2 reduced the setting time but did not alter the cytotoxicity of the cement. However, addition of 10% CaCl2 reduced cell viability, setting time, and compressive strength. CONCLUSION: Inclusion of 2.5% wt. Na2HPO4 and 5% CaCl2 in MTA can be advisable for enhancing the physical, chemical, and cytotoxic characteristics of the admixture. Conversely, caution is advised against incorporating elevated concentrations of PG due to its retarding effect. TRIAL REGISTRATION: PROSPERO registration number: CRD42021253707.


Assuntos
Compostos de Alumínio , Compostos de Cálcio , Óxidos , Silicatos , Compostos de Alumínio/toxicidade , Compostos de Alumínio/química , Cloreto de Cálcio/farmacologia , Cimentos Dentários/toxicidade , Cimentos Dentários/química , Combinação de Medicamentos , Óxidos/toxicidade , Óxidos/química , Propilenoglicol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA