Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.144
Filtrar
1.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38695908

RESUMO

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Assuntos
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidade , Poliestirenos/toxicidade , Poliestirenos/química , Adsorção , Shewanella/efeitos dos fármacos , Microplásticos/toxicidade , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/química
2.
Chemosphere ; 358: 142193, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38697562

RESUMO

Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.


Assuntos
Carvão Vegetal , Ciprofloxacina , Poluentes do Solo , Solo , Carvão Vegetal/química , Solo/química , Ciprofloxacina/química , Ciprofloxacina/análise , Poluentes do Solo/química , Poluentes do Solo/análise , Animais , Esterco/análise , Oryza/química , Antibacterianos/química , Antibacterianos/análise , Suínos
3.
Chemosphere ; 358: 142237, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705406

RESUMO

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Assuntos
Carbono , Ciprofloxacina , Mel , Leite , Nanocompostos , Nanofibras , Óxidos , Nanocompostos/química , Ciprofloxacina/análise , Ciprofloxacina/química , Óxidos/química , Leite/química , Nanofibras/química , Animais , Mel/análise , Carbono/química , Molibdênio/química , Limite de Detecção , Compostos de Cálcio/química , Titânio/química , Teoria da Densidade Funcional , Técnicas Eletroquímicas/métodos , Cério/química , Contaminação de Alimentos/análise , Eletrodos , Magnésio/química , Magnésio/análise
4.
Environ Monit Assess ; 196(6): 562, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769235

RESUMO

Olive leaves were utilized to produce activated biomass for the removal of ciprofloxacin (CIP) from water. The raw biomass (ROLB) was activated with sodium hydroxide, phosphoric acid, and Dead Sea water to create co-precipitated adsorbent (COLB) with improved adsorption performance. The characteristics of the ROLB and COLB were examined using SEM images, BET surface area analyzer, and ATR-FTIR spectroscopy. COLB has a BET surface area of 7.763 m2/g, markedly higher than ROLB's 2.8 m2/g, indicating a substantial increase in adsorption sites. Through investigations on operational parameters, the optimal adsorption efficiency was achieved by COLB is 77.9% within 60 min, obtained at pH 6, and CIP concentration of 2 mg/mL. Isotherm studies indicated that both Langmuir and Freundlich models fit the adsorption data well for CIP onto ROLB and COLB, with R2 values exceeding 0.95, suggesting effective monolayer and heterogeneous surface adsorption. The Langmuir model revealed maximum adsorption capacities of 636 mg/g for ROLB and 1243 mg/g for COLB, highlighting COLB's superior adsorption capability attributed to its enhanced surface characteristics post-modification. Kinetic data fitting the pseudo-second-order model with R2 of 0.99 for ROLB and 1 for COLB, along with a higher calculated qe for COLB, suggest its modified surface provides more effective binding sites for CIP, enhancing adsorption capacity. Thermodynamic analysis revealed that the adsorption process is spontaneous (∆Go < 0), and exothermic (∆Ho < 0), and exhibits a decrease in randomness (∆So < 0) as the process progresses. The ΔH° value of 10.6 kJ/mol for ROLB signifies physisorption, whereas 35.97 kJ/mol for COLB implies that CIP adsorption on COLB occurs through a mixed physicochemical process.


Assuntos
Biomassa , Ciprofloxacina , Olea , Folhas de Planta , Termodinâmica , Poluentes Químicos da Água , Olea/química , Adsorção , Ciprofloxacina/química , Cinética , Poluentes Químicos da Água/química , Folhas de Planta/química , Purificação da Água/métodos
5.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732134

RESUMO

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Assuntos
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Antivirais/farmacologia , Antivirais/química , Antivirais/síntese química , Animais , Relação Estrutura-Atividade
6.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710736

RESUMO

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Assuntos
Antibacterianos , Antineoplásicos , Nanoestruturas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antineoplásicos/farmacologia , Antineoplásicos/química , Nanoestruturas/química , Escherichia coli/efeitos dos fármacos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Linhagem Celular Tumoral , Processos Fotoquímicos , Fotólise
7.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644378

RESUMO

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Assuntos
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólise , Óxido de Zinco , Óxido de Zinco/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas Metálicas/química , Química Verde/métodos , Nanopartículas/química , Cinética , Catálise
8.
Environ Sci Pollut Res Int ; 31(20): 29957-29970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598152

RESUMO

This study explores the utilization of adsorption and advanced oxidation processes for the degradation of ofloxacin (OFL) and ciprofloxacin (CIP) using a green functionalized carbon nanotube (MWCNT-OH/COOH-E) as adsorbent and catalyst material. The stability and catalytic activity of the solid material were proved by FT-IR and TG/DTG, which also helped to elucidate the reaction mechanisms. In adsorption kinetic studies, both antibiotics showed similar behavior, with an equilibrium at 30 min and 60% removal. The adsorption kinetic data of both antibiotics were well described by the pseudo-first-order (PFO) model. Different advanced oxidation processes (AOPs) were used, and the photolytic degradation was not satisfactory, whereas heterogeneous photocatalysis showed high degradation (⁓ 70%), both processes with 30 min of reaction. Nevertheless, ozonation and catalytic ozonation have resulted in the highest efficiencies, 90%, and 70%, respectively, after 30-min reaction. For AOP data modeling, the first-order model better described CIP and OFL in photocatalytic and ozonation process. Intermediates were detected by MS-MS analysis, such as P313, P330, and P277 for ciprofloxacin and P391 and P332 for ofloxacin. The toxicity test demonstrated that a lower acute toxicity was observed for the photocatalysis method samples, with only 3.1 and 1.5 TU for CIP and OFL, respectively, thus being a promising method for its degradation, due to its lower risk of inducing the proliferation of bacterial resistance in an aquatic environment. Ultimately, the analysis of MWCNT reusability showed good performance for 2 cycles and regeneration of MWCNT with ozone confirmed its effectiveness up to 3 cycles.


Assuntos
Ciprofloxacina , Nanotubos de Carbono , Ofloxacino , Oxirredução , Poluentes Químicos da Água , Ciprofloxacina/química , Ofloxacino/química , Nanotubos de Carbono/química , Adsorção , Poluentes Químicos da Água/química , Cinética , Ozônio/química , Antibacterianos/química , Catálise
9.
Biomacromolecules ; 25(5): 2953-2964, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38652682

RESUMO

Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.


Assuntos
Alginatos , Ressecção Endoscópica de Mucosa , Microesferas , Alginatos/química , Animais , Suínos , Ressecção Endoscópica de Mucosa/métodos , Humanos , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Cisteína/química
10.
Chemosphere ; 357: 141894, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615958

RESUMO

Given the presence of emerging pollutants at low concentrations in water bodies, which are inevitably affected by background substances during the removal process. In this study, we synthesized molecularly imprinted catalysts (Cu/Ni-MOFs@MIP) based on bimetallic metal-organic frameworks for the targeted degradation of ciprofloxacin (CIP) in advanced oxidation processes (AOPs). The electrostatic interaction and functional group binding of CIP with specific recognition sites on Cu/Ni-MOFs@MIP produced excellent selective recognition (Qmax was 14.82 mg g-1), which enabled the active radicals to approach and remove the contaminants faster. Electron paramagnetic resonance (EPR) analysis and quenching experiments revealed the coexistence of ∙OH, SO42-, and 1O2, with ∙OH dominating the system. Based on experimental and theoretical calculations, the reaction sites of CIP were predicted and the possible degradation pathways and mechanisms of Cu/Ni-MOFs@MIP/PMS systems were proposed. This study opens up a new platform for the targeted removal of target pollutants in AOPs.


Assuntos
Ciprofloxacina , Estruturas Metalorgânicas , Sulfatos , Poluentes Químicos da Água , Ciprofloxacina/química , Estruturas Metalorgânicas/química , Catálise , Poluentes Químicos da Água/química , Adsorção , Sulfatos/química , Impressão Molecular , Cobre/química , Oxirredução , Purificação da Água/métodos , Níquel/química
11.
Chemosphere ; 357: 142033, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615961

RESUMO

The design and preparation of dual-functional photocatalysts for simultaneously realizing photocatalytic wastewater purification and hydrogen energy generation pose significant challenges. This article presents the engineering of a binary heterostructured photocatalyst by combining TiO2 (nanorods) and MoS2 nanosphere using a straightforward solvothermal method and the assessment of the phase structures, morphologies, and optical properties of the resulting nanocomposites using diverse analytical techniques. The TiO2(Rod)/MoS2 composite exhibits remarkable efficacy in degrading ciprofloxacin, achieving 93% removal rate within 1 h, which is four times higher than that of bare TiO2. Moreover, the optimized TiO2(Rod)/MoS2 presents an outstanding hydrogen production rate of 7415 µmol g-1, which is ∼24 times higher than that of pristine TiO2. Under UV-visible light irradiation, the TiO2(Rod)/MoS2 heterojunction displays an exceptional photocatalytic performance in terms of both photodegradation and hydrogen production, surpassing the performance of TiO2 particle/MoS2. The study findings demonstrate that TiO2(Rod)/MoS2 nanocomposites exhibit considerably improved photocatalytic degradation and hydrogen generation activities. Based on the experimental results, a possible mechanism is proposed for the transfer and separation of charge carriers in Z-scheme heterojunctions.


Assuntos
Antibacterianos , Dissulfetos , Hidrogênio , Molibdênio , Nanosferas , Nanotubos , Titânio , Titânio/química , Molibdênio/química , Catálise , Antibacterianos/química , Nanosferas/química , Hidrogênio/química , Dissulfetos/química , Nanotubos/química , Nanocompostos/química , Fotólise , Poluentes Químicos da Água/química , Águas Residuárias/química , Ciprofloxacina/química
12.
J Biol Inorg Chem ; 29(2): 177-186, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38581541

RESUMO

The anti-proliferative activity of the known metalloantibiotic {[Ag(CIPH)2]NO3∙0.75MeOH∙1.2H2O} (CIPAG) (CIPH = ciprofloxacin) against the human breast adenocarcinoma cancer cells MCF-7 (hormone dependent (HD)) and MDA-MB-231 (hormone independent (HI)) is evaluated. The in vitro toxicity and genotoxicity of the metalloantibiotic were estimated toward fetal lung fibroblast (MRC-5) cells. The molecular mechanism of the CIPAG activity against MCF-7 cells was clarified by the (i) cell morphology, (ii) cell cycle arrest, (iii) mitochondrial membrane permeabilization, and (iv) by the assessment of the possible differential effect of CIPAG on estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) transcriptional activation, applying luciferase reporter gene assay. Moreover, the ex vivo mechanism of CIPAG was clarified by its binding affinity toward calf thymus (CT-DNA).


Assuntos
Antineoplásicos , Neoplasias da Mama , Ciprofloxacina , Humanos , Ciprofloxacina/farmacologia , Ciprofloxacina/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Feminino , Receptor beta de Estrogênio/metabolismo , Receptor beta de Estrogênio/genética , Prata/química , Prata/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , DNA/metabolismo , DNA/química , Ensaios de Seleção de Medicamentos Antitumorais , Animais , Células MCF-7 , Linhagem Celular Tumoral
13.
Chemosphere ; 355: 141763, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522672

RESUMO

The fluoroquinolones ciprofloxacin, danofloxacin, enoxacin, levofloxacin and lomefloxacin, occur in water bodies worldwide and therefore pose a threat to the aquatic environment. Advanced purification procedures, such as electrochemical oxidation, may act as a remedy since they contribute to eliminating contaminants and prevent micropollutants from entering open water bodies. By electrochemical treatment in a micro-flow reactor equipped with a boron-doped diamond (BDD) electrode, the fluoroquinolones were efficiently degraded. A total of 15 new products were identified using high-performance high-resolution chromatography coupled with high-resolution multifragmentation mass spectrometry. The ecotoxicity of the emerging transformation products was estimated through in silico quantitative structure activity relationship analysis. Almost all transformation products were predicted less ecotoxic than the initial compounds. The fluoroquinolone degradation followed three major mechanisms depending on the voltage during the electrochemical oxidation. At approximately 1 V, the reactions started with the elimination of molecular hydrogen from the piperazine moiety. At approx. 1.25 V, methyl and methylene groups were eliminated. At 1.5 V, hydroxyl radicals, generated at the BDD electrode, led to substitution at the piperazine ring. This novel finding of the three reactions depending on voltage contributes to the mechanistic understanding of electrochemical oxidation as potential remedy against fluoroquinolones in the aquatic environment.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Levofloxacino/análise , Enoxacino/análise , Diamante/química , Fluoroquinolonas/análise , Piperazina , Oxirredução , Eletrodos , Água , Poluentes Químicos da Água/análise
14.
J Colloid Interface Sci ; 663: 909-918, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38447405

RESUMO

Peroxymonosulfate (PMS) is widely employed to generate oxygen-containing reactive species for ciprofloxacin (CIP) degradation. Herein, cobalt oxyhydroxide @activated carbon (CoOOH@AC) was synthesized via a wet chemical sedimentation method to activate PMS for degradation of CIP. The result suggested AC can support the vertical growth of CoOOH nanosheets to expose high-activity Co-contained edges, possessing efficient PMS activation and degradation activity and catalytic stability. In the presence of 3.0 mg of optimal CoOOH@AC and 2 mM PMS, 96.8 % of CIP was degraded within 10 min, approximately 11.6 and 9.97 times greater than those of CoOOH/PMS and AC/PMS systems. Notably, it was disclosed that the optimal CoOOH@AC/PMS system still exhibited efficient catalytic performance in a wide pH range, different organics and common co-existing ions. Quenching experiments and electron paramagnetic resonance indicated that both radical and non-radical processes contributed to the degradation of CIP, with 1O2 and direct electron transfer accounting for the non-radical pathway and SO4•- and •OH serving as the main radical active species. Finally, possible CIP degradation pathways were proposed based on high-performance liquid chromatography-mass spectrometry. This study provided an alternate method for wastewater treatment based on PMS catalyzed by cobalt-based hydroxide.


Assuntos
Carvão Vegetal , Ciprofloxacina , Hidróxidos , Óxidos , Ciprofloxacina/química , Peróxidos/química , Cobalto/química , Espécies Reativas de Oxigênio
15.
Environ Sci Pollut Res Int ; 31(16): 23924-23941, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430437

RESUMO

In response to the escalating concerns over antibiotics in aquatic environments, the photo-Fenton reaction has been spotlighted as a promising approach to address this issue. Herein, a novel heterogeneous photo-Fenton catalyst (Fe3O4/WPC) with magnetic recyclability was synthesized through a facile two-step process that included in situ growth and subsequent carbonization treatment. This catalyst was utilized to expedite the photocatalytic decomposition of ciprofloxacin (CIP) assisted by H2O2. Characterization results indicated the successful anchoring of MIL-101(Fe)-derived spindle-like Fe3O4 particles in the multi-channeled wood-converted porous carbon (WPC) scaffold. The as-synthesized hybrid photocatalysts, boasting a substantial specific surface area of 414.90 m2·g-1 and an excellent photocurrent density of 0.79 µA·cm-2, demonstrated superior photo-Fenton activity, accomplishing approximately 100% degradation of CIP within 120 min of ultraviolet-light exposure. This can be attributed to the existence of a heterojunction between Fe3O4 and WPC substrate that promotes the migration and enhances the efficient separation of photogenerated electron-hole pairs. Meanwhile, the Fe(III)/Fe(II) redox circulation and mesoporous wood carbon in the catalyst synergistically enhance the utilization of H2O and accelerate the formation of •OH radicals, leading to heightened degradation efficiency of CIP. Experiments utilizing chemical trapping techniques have demonstrated that •OH radicals are instrumental in the CIP degradation process. Furthermore, the study on reusability indicated that the efficiency in removing CIP remained at 89.5% even through five successive cycles, indicating the structural stability and excellent recyclability of Fe3O4/WPC. This research presented a novel pathway for designing magnetically reusable MOFs/wood-derived composites as photo-Fenton catalysts for actual wastewater treatment.


Assuntos
Carbono , Compostos Férricos , Estruturas Metalorgânicas , Compostos Férricos/química , Ciprofloxacina/química , Peróxido de Hidrogênio/química , Porosidade , Madeira , Catálise
16.
Int J Biol Macromol ; 266(Pt 2): 130977, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38513893

RESUMO

Compared to conventional bandages, which do not meet all wound care requirements, nanofiber wound dressings could provide a potentially excellent environment for healing. In the present research, nanocomposite membrane based on starch (St) - polyvinyl alcohol (PVA) nanofibers containing ciprofloxacin antibiotic drug loaded on graphene oxide­silver nanowire (GO-AgNWs) hybrid nanoparticles is produced by electrospinning process. Morphological studies showed that the length and diameter of silver nanowires are 21 ± 9.17 µm and 82 ± 10.52 nm, respectively. The contact angle of 57.1° due to the hydrophilic nature of nanofibers, also the swelling degree of 679.51 % and, the water vapor permeability of 2627 ± 56 (g/m2.day) can be expressed as a confirmation of the ability of this wound dressing to manage secretions around the wound. In evaluating the antibacterial activity of these nanocomposite membranes against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria, the most potent antibacterial effect is in the case of nanofibers containing a high percentage of starch and nanoparticles carrying ciprofloxacin; with non-growth halos of 47.58 mm and 22.06 mm was recorded. The release of ciprofloxacin drug in vitro was reported to be 61.69 % during 24 h, and the final release rate was 82.17 %. Despite the biocompatibility and cell viability of 97.74 % and the biodegradability rate of 28.51 %, the StP-GOAgNWCip nanocomposite membrane can be introduced as a suitable candidate for wound dressing.


Assuntos
Antibacterianos , Bandagens , Ciprofloxacina , Preparações de Ação Retardada , Grafite , Nanocompostos , Álcool de Polivinil , Prata , Amido , Ciprofloxacina/química , Ciprofloxacina/farmacologia , Ciprofloxacina/administração & dosagem , Nanocompostos/química , Amido/química , Álcool de Polivinil/química , Grafite/química , Prata/química , Antibacterianos/farmacologia , Antibacterianos/química , Liberação Controlada de Fármacos , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Nanofios/química , Cicatrização/efeitos dos fármacos , Nanofibras/química , Humanos , Testes de Sensibilidade Microbiana , Portadores de Fármacos/química
17.
Environ Sci Pollut Res Int ; 31(19): 27770-27788, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514592

RESUMO

The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.


Assuntos
Ciprofloxacina , Grafite , Ibuprofeno , Fotólise , Ibuprofeno/química , Grafite/química , Ciprofloxacina/química , Catálise , Poluentes Químicos da Água/química
18.
Int J Pharm ; 654: 123949, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38417723

RESUMO

The treatment of chronic respiratory infections caused by biofilm formation are extremely challenging owing to poor drug penetration into the complex biofilm structure and high drug resistance. Local delivery of an antibiotic together with a non-antibiotic adjuvant to the lungs could often enhance the therapeutic responses by targeting different bacterial growth pathways and minimizing drug resistance. In this study, we designed new inhalable dry powders containing ciprofloxacin (CIP) and OligoG (Oli, a low-molecular-weight alginate oligosaccharide impairing the mucoid biofilms by interacting with their cationic ions) to combat respiratory bacterial biofilm infections. The resulting powders were characterized with respect to their morphology, solid-state property, surface chemistry, moisture sorption behavior, and dissolution rate. The aerosol performance and storage stability of the dry powders were also evaluated. The results showed that inhalable dry powders composed of CIP and Oli could be readily accomplished via the wet milling and spray drying process. Upon the storage under 20 ± 2 °C/20 ± 2 % relative humidity (RH) for one month, there was no significant change in the in vitro aerosol performances of the dry powders. In contrast, the dry powders became non-inhalable following the storage at 20 ± 2 °C/53 ± 2 % RH for one month due to the hygroscopic nature of Oli, which could be largely prevented by incorporation of leucine. Collectively, this study suggests that the newly developed co-spray-dried powders composed of CIP and Oli might represent a promising and alternative treatment strategy against respiratory bacterial biofilm infections.


Assuntos
Ciprofloxacina , Infecções Respiratórias , Humanos , Ciprofloxacina/química , Administração por Inalação , Pós/química , Aerossóis e Gotículas Respiratórios , Infecções Respiratórias/tratamento farmacológico , Oligossacarídeos , Tamanho da Partícula , Inaladores de Pó Seco/métodos
19.
Chemosphere ; 352: 141396, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38346519

RESUMO

The wide use of the fluoroquinolone antibiotic ciprofloxacin (CIP), combined with its limited removal in wastewater treatment plants, results in a dangerous accumulation in natural water. Here, the complete degradation of CIP by photoelectrocatalysis (PEC), using an FTO/ZnO/TiO2/Ag2Se photoanode that is responsive to blue light, has been investigated. A slow antibiotic concentration decay was found in 0.050 M Na2SO4 under the oxidizing action of holes and OH photogenerated at the anode surface. The degradation was strongly enhanced in 0.070 M NaCl due to mediated oxidation by electrogenerated active chlorine. The latter process became faster at pH 7.0, with total abatement of CIP at concentrations below 2.5 mg L-1 operating at a bias potential of +0.8 V. The performance was enhanced when increasing the anodic potential and decreasing the initial drug content. The use of solar radiation from a simulator was also beneficial, owing to the greater lamp power. In contrast, the electrochemical oxidation in the dark yielded a poor removal, thus confirming the critical role of oxidants formed under light irradiation. The generation of holes and OH was confirmed from tests with specific scavengers like ammonium oxalate and tert-butanol, respectively. The prolonged usage of the photoanode affected its performance due to poisoning of its active centers by degradation by-products, although a good PEC reproducibility was obtained upon surface cleaning.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Antibacterianos/química , Água , Reprodutibilidade dos Testes , Luz , Poluentes Químicos da Água/análise , Eletrodos , Oxirredução
20.
Chemosphere ; 353: 141503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382718

RESUMO

Recently, water contamination caused by the misuse of antibiotics has become a growing concern. In this study, an economical chitin/calcite composite (CCA) was extracted from crab shell waste, and the effects and mechanisms of its removal of ciprofloxacin (CIP) and tetracycline (TC) from aqueous solution were investigated. The functional groups of chitin and the metal phase of calcite gave CCA the ability to remove antibiotics. Experiments on kinetics, isothermal adsorption, thermodynamics, co-removal, and reusability were conducted to systematically explore the adsorption performances of CCA toward antibiotics. The pseudo-second-order (FSO) and Langmuir models suited the data obtained from experiments best and displayed a good fit for the chemisorption and a certain homogeneity of adsorption sites. At 25 °C, the maximum adsorption capacities (Qmax) toward CIP and TC were 228.86 and 150.76 mg g-1, respectively. The adsorption mechanisms of CCA with TC and CIP are pH dependent since pH can affect the surface charge of CCA and the form in which CIP and TC are existing. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) demonstrated that the keto-O and carboxyl groups of CIP and the carbonyl, hydroxyl, and amido groups of TC could be responsible for the binding with the calcite and the functional groups of chitin through surface complexation, cation bridge and hydrogen bonding.


Assuntos
Ciprofloxacina , Poluentes Químicos da Água , Ciprofloxacina/química , Carbonato de Cálcio , Quitina , Antibacterianos/química , Tetraciclina/química , Poluentes Químicos da Água/análise , Adsorção , Cinética , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA