Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.041
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38696846

RESUMO

Procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (Plod2) is a key collagen lysyl hydroxylase mediating the formation of collagen fiber and stabilized collagen cross-links, and has been identified in several forms of fibrosis. However, the potential role and regulatory mechanism of Plod2 in liver fibrosis remain unclear yet. Mouse liver fibrosis models were induced by injecting carbon tetrachloride (CCl4) intraperitoneally. The morphology and alignment of collagen was observed under transmission and scanning electron microscopy, and extracellular matrix (ECM) stiffness was measured by atomic force microscopy. Large amounts of densely packed fibrillar collagen fibers produced by myofibroblasts (MFs) were deposited in fibrotic liver of mice reaching very large diameters in the cross section, accompanied with ECM stiffening, which was positively correlated with collagen-crosslinking. The expression of Plod2 was dynamically up-regulated in fibrotic liver of mouse and human. In MFs transfection of Plod2 siRNA made collagen fibers more orderly and linear aligned which can be easily degraded and protected from ECM stiffness. Administration of Plod2 siRNA preventatively or therapeutically in CCl4 mice reduced the average size of collagen bundles in transverse section, increased collagen solubility, decreases the levels of crosslinking products hydroxylysylpyridinoline and lysylpyridinoline, prevented ECM stiffening and alleviated liver fibrosis. Altogether, Plod2 mediates the formation of stabilized profibrotic collagen cross-links in MFs, leading to the alteration of collagen solubility and ECM stiffness, and eventually aggravates liver fibrosis, which provide potential target for the treatment of liver disease.


Assuntos
Tetracloreto de Carbono , Colágeno , Matriz Extracelular , Cirrose Hepática , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase , Animais , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/metabolismo , Pró-Colágeno-Lisina 2-Oxoglutarato 5-Dioxigenase/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Camundongos , Matriz Extracelular/metabolismo , Humanos , Colágeno/metabolismo , Tetracloreto de Carbono/toxicidade , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Fígado/metabolismo , Fígado/patologia , Modelos Animais de Doenças
2.
Exp Biol Med (Maywood) ; 249: 10141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711461

RESUMO

Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions. In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses. The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α. In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.


Assuntos
Canabidiol , Tetracloreto de Carbono , Cirrose Hepática , NF-kappa B , PPAR alfa , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , NF-kappa B/metabolismo , PPAR alfa/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Camundongos , Tetracloreto de Carbono/toxicidade , Masculino , Transdução de Sinais/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo
3.
Eur Rev Med Pharmacol Sci ; 28(8): 3112-3119, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708470

RESUMO

OBJECTIVE: Methotrexate (MTX), a widely used chemotherapeutic and immunosuppressive agent, is associated with hepatotoxicity, leading to liver fibrosis and cirrhosis. This study explores the regenerative and reparative effects of fisetin, a flavonoid with known antioxidant and anti-inflammatory properties, on MTX-induced liver fibrosis in a rat model. MATERIALS AND METHODS: Thirty-six male Wistar albino rats were divided into normal, MTX and saline, and MTX and fisetin. Liver injury was induced in the latter two groups using a single intraperitoneal dose of MTX (20 mg/kg). Fisetin (50 mg/kg/day) or saline was administered intraperitoneally for ten days. After sacrifice, liver tissues were subjected to histopathological evaluation and biochemical analyses, including Transforming Growth Factor-ß1 (TGF-beta), sirtuins-1 (SIRT-1), malondialdehyde (MDA), cytokeratin 18, thrombospondin 1, and alanine transaminase (ALT) levels. RESULTS: MTX administration significantly increased liver injury markers, including TGF-beta, MDA, cytokeratin 18, thrombospondin 1, and ALT, while reducing SIRT-1 levels. Fisetin treatment attenuated these effects, demonstrating its potential therapeutic impact. Histopathological analysis confirmed that fisetin mitigated MTX-induced hepatocyte necrosis, fibrosis, and cellular infiltration. CONCLUSIONS: This study proves that fisetin administration can alleviate MTX-induced liver damage in rats. The reduction in oxidative stress, inflammation, and apoptosis, along with the histological improvements, suggests fisetin's potential as a therapeutic agent against MTX-induced hepatotoxicity. Further investigations and clinical studies are warranted to validate these findings and assess fisetin's translational potential in human cases of MTX-induced liver damage.


Assuntos
Flavonóis , Cirrose Hepática , Metotrexato , Ratos Wistar , Sirtuína 1 , Metotrexato/efeitos adversos , Animais , Masculino , Ratos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Flavonóis/farmacologia , Flavonoides/farmacologia , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Antioxidantes/farmacologia
4.
Zhonghua Gan Zang Bing Za Zhi ; 32(3): 201-207, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38584100

RESUMO

Objective: To investigate the effects of reduced nicotinamide adenine dinucleotide phosphooxidase 4 (NOX4) inhibitors GKT137831 and M2-type macrophages on oxidative stress markers NOX4, nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) in the rat hepatic stellate cell line (HSC-T6). Methods: Rat bone marrow macrophages were extracted and induced using interleukin (IL)-4 to differentiate them into M2 phenotype macrophages. HSC-T6 activation was performed with 5 µg/L transforming growth factor ß1 (TGF-ß1). The proliferation condition of HSC-T6 cells stimulated by the NOX4 inhibitor GKT137831 at a concentration gradient of 5 to 80 µmol/L after 48 hours was detected using the Cell Counting Kit-8 (CCK-8) assay. The optimal drug concentration was chosen and divided into an HSC co-culture group (the control group) and five experimental groups: the TGF-ß1 stimulation group, the TGF-ß1 +GKT137831 stimulation group, the M2-type macrophage + HSC co-culture group, the M2-type macrophage +TGF-ß1 stimulation group, and the M2-type + TGF-ß1 + GKT137831 stimulation group. Reactive oxygen species (ROS) production level was detected in each cell using the DCFH-DA probe method. NOX4, α-smooth muscle actin (α-SMA), Nrf2, and HO-1 levels in each group of HSC cells were detected using the qRT-PCR method and the Western blot method. The t-test was used to compare the two groups. The one-way ANOVA method was used to compare multiple groups. Results: Intracellular ROS increased significantly following TGF-ß1 stimulation. ROS relative levels in each cell group were 1.03±0.11, 3.88±0.07, 2.90±0.08, 0.99±0.06, 3.30±0.05, 2.21±0.11, F = 686.1, P = 0.001, respectively. The mRNA and protein expressions of NOX4, α-SMA, Nrf2, and HO-1 were significantly increased (P < 0.05). After the addition of GKT137831, ROS, and NOX4, α-SMA mRNA and protein expression were comparatively decreased in the TGF-ß1 stimulation group (P < 0.05), while mRNA and protein expressions of Nrf2 and HO-1 were increased (P < 0.05). The expression of ROS and NOX4, as well as α-SMA mRNA and protein, produced by HSC were significantly decreased in the co-culture group compared to the single culture group after TGF-ß1 stimulation (P < 0.05). After the addition of GKT137831, ROS, NOX4, α-SMA mRNA, and protein expression were further reduced in the co-culture group compared with the single culture group (P < 0.05), while the mRNA and protein expression of Nrf2 and HO-1 were further increased (P < 0.05). Conclusion: NOX4 inhibitor GKT137831 can reduce RO, NOX4, and α-SMA levels while increasing Nrf2 and HO-1 levels in hepatic stellate cells. After M2-type macrophage co-culture, GKT137831 assists in lowering ROS, NOX4, and α-SMA levels while accelerating Nrf2 and HO-1 levels in hepatic stellate cells, which regulates the balance between oxidative stress and anti-oxidative stress systems, thereby antagonizing the fibrosis process.


Assuntos
Células Estreladas do Fígado , Pirazolonas , Piridonas , Fator de Crescimento Transformador beta1 , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Cirrose Hepática/induzido quimicamente , Estresse Oxidativo , Macrófagos/metabolismo , RNA Mensageiro/metabolismo
5.
Eur J Pharmacol ; 971: 176552, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38580181

RESUMO

AIM OF THE STUDY: Chronic cholestasis leads to liver fibrosis, which lacks effective treatment. In this study, we investigated the role and mechanisms of action of loureirin B (LB) in cholestatic liver fibrosis. MATERIALS AND METHODS: Bile duct ligation (BDL)-induced hepatic fibrosis mice were used as in vivo models. Transforming growth factor-ß1 (TGF-ß1)-pretreated HSC-T6 cells were used to explore the mechanism by which LB attenuates liver fibrosis in vitro. RNA sequencing, quantitative PCR (qPCR), western blotting, immunohistochemistry and immunofluorescence were performed to detect the fibrosis markers and measure autophagy levels. Flow cytometry, cell counting kit-8 (CCK-8) assay, and 5'-ethynyl-2'-deoxyuridine (EdU) assay were conducted to detect cell proliferation and viability. GFP-RFP-LC3 adenovirus, autophagy-related protein 7 (ATG7) siRNA, and bafilomycin A1 (BafA1) were used to verify autophagic flux. RESULTS: Our results showed that LB ameliorates liver injury, inhibits collagen deposition, and decreases the expressions of fibrosis-related markers in BDL-induced mouse livers. In vitro, we found that LB inhibited proliferation and migration, promoted apoptosis, and inhibited the activation of HSC-T6 cells pretreated with TGF-ß1. RNA sequencing analysis of HSC-T6 cells showed that LB treatment predominantly targeted autophagy-related pathways. Further protein analysis indicated that LB downregulated the expression of phosphorylated AKT (p-AKT) and phosphorylated mTOR (p-mTOR), and upregulated LC3-II, p62, and ATG7 both in vivo and in vitro. Intriguingly, ATG7 inactivation reversed the antifibrotic effects of LB on HSC-T6 cells. CONCLUSIONS: LB can improve BDL-induced liver fibrosis by inhibiting the activation and proliferation of HSCs and is expected to be a promising antifibrotic drug.


Assuntos
Colestase , Proteínas Proto-Oncogênicas c-akt , Resinas Vegetais , Camundongos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Células Estreladas do Fígado , Cirrose Hepática/induzido quimicamente , Serina-Treonina Quinases TOR/metabolismo , Fígado/metabolismo , Autofagia , Colestase/patologia
6.
Int J Nanomedicine ; 19: 3475-3495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623080

RESUMO

Purpose: Human umbilical cord mesenchymal stem cell (hucMSC)-derived small extracellular vesicles (sEVs) are natural nanocarriers with promising potential in treating liver fibrosis and have widespread applications in the fields of nanomedicine and regenerative medicine. However, the therapeutic efficacy of natural hucMSC-sEVs is currently limited owing to their non-specific distribution in vivo and partial removal by mononuclear macrophages following systemic delivery. Thus, the therapeutic efficacy can be improved through the development of engineered hucMSC-sEVs capable to overcome these limitations. Patients and Methods: To improve the anti-liver fibrosis efficacy of hucMSC-sEVs, we genetically engineered hucMSC-sEVs to overexpress the anti-fibrotic gene bone morphogenic protein 7 (BMP7) in parental cells. This was achieved using lentiviral transfection, following which BMP7-loaded hucMSC-sEVs were isolated through ultracentrifugation. First, the liver fibrosis was induced in C57BL/6J mice by intraperitoneal injection of 50% carbon tetrachloride (CCL4) twice a week for 8 weeks. These mice were subsequently treated with BMP7+sEVs via tail vein injection, and the anti-liver fibrosis effect of BMP7+sEVs was validated using small animal in vivo imaging, immunohistochemistry (IHC), tissue immunofluorescence, and enzyme-linked immunosorbent assay (ELISA). Finally, cell function studies were performed to confirm the in vivo results. Results: Liver imaging and liver histopathology confirmed that the engineered hucMSC-sEVs could reach the liver of mice and aggregate around activated hepatic stellate cells (aHSCs) with a significantly stronger anti-liver fibrosis effect of BMP7-loaded hucMSC-sEVs compared to those of blank or negative control-transfected hucMSC-sEVs. In vitro, BMP7-loaded hucMSC-sEVs promoted the phenotypic reversal of aHSCs and inhibited their proliferation to enhance the anti-fibrotic effects. Conclusion: These engineered BMP7-loaded hucMSC-sEVs offer a novel and promising strategy for the clinical treatment of liver fibrosis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Células Estreladas do Fígado/patologia , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/terapia , Cirrose Hepática/metabolismo , Fibrose , Vesículas Extracelulares/patologia , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Proteína Morfogenética Óssea 7/genética , Proteína Morfogenética Óssea 7/metabolismo
7.
Ecotoxicol Environ Saf ; 276: 116334, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626607

RESUMO

Thioacetamide (TAA) within the liver generates hepatotoxic metabolites that can be induce hepatic fibrosis, similar to the clinical pathological features of chronic human liver disease. The potential protective effect of Albiflorin (ALB), a monoterpenoid glycoside found in Paeonia lactiflora Pall, against hepatic fibrosis was investigated. The mouse hepatic fibrosis model was induced with an intraperitoneal injection of TAA. Hepatic stellate cells (HSCs) were subjected to treatment with transforming growth factor-beta (TGF-ß), while lipopolysaccharide/adenosine triphosphate (LPS/ATP) was added to stimulate mouse peritoneal macrophages (MPMs), leading to the acquisition of conditioned medium. For TAA-treated mice, ALB reduced ALT, AST, HYP levels in serum or liver. The administration of ALB reduced histopathological abnormalities, and significantly regulated the expressions of nuclear receptor-related 1 protein (NURR1) and the P2X purinoceptor 7 receptor (P2×7r) in liver. ALB could suppress HSCs epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, and pro-inflammatory factor level. ALB also remarkably up-regulated NURR1, inhibited P2×7r signaling pathway, and worked as working as C-DIM12, a NURR1 agonist. Moreover, deficiency of NURR1 in activated HSCs and Kupffer cells weakened the regulatory effect of ALB on P2×7r inhibition. NURR1-mediated inhibition of inflammatory contributed to the regulation of ALB ameliorates TAA-induced hepatic fibrosis, especially based on involving in the crosstalk of HSCs-macrophage. Therefore, ALB plays a significant part in the mitigation of TAA-induced hepatotoxicity this highlights the potential of ALB as a protective intervention for hepatic fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , Transdução de Sinais , Tioacetamida , Animais , Tioacetamida/toxicidade , Células Estreladas do Fígado/efeitos dos fármacos , Camundongos , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Masculino , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Transição Epitelial-Mesenquimal/efeitos dos fármacos
8.
Sci Rep ; 14(1): 9425, 2024 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658618

RESUMO

Liver fibrosis, as a consequence of chronic liver disease, involves the activation of hepatic stellate cell (HSC) caused by various chronic liver injuries. Emerging evidence suggests that activation of HSC during an inflammatory state can lead to abnormal accumulation of extracellular matrix (ECM). Investigating novel strategies to inhibit HSC activation and proliferation holds significant importance for the treatment of liver fibrosis. As a member of the doublecortin domain-containing family, doublecortin domain containing 2 (DCDC2) mutations can lead to neonatal sclerosing cholangitis, but its involvement in liver fibrosis remains unclear. Therefore, this study aims to elucidate the role of DCDC2 in liver fibrosis. Our findings revealed a reduction in DCDC2 expression in both human fibrotic liver tissues and carbon tetrachloride (CCl4)-induced mouse liver fibrotic tissues. Furthermore, exposure to transforming growth factor beta-1(TGF-ß1) stimulation resulted in a dose- and time-dependent decrease in DCDC2 expression. The overexpression of DCDC2 inhibited the expression of α-smooth muscle actin (α-SMA) and type I collagen alpha 1 (Col1α1), and reduced the activation of HSC stimulated with TGF-ß1. Additionally, we provided evidence that the Wnt/ß-catenin signaling pathway was involved in this process, wherein DCDC2 was observed to inhibit ß-catenin activation, thereby preventing its nuclear translocation. Furthermore, our findings demonstrated that DCDC2 could attenuate the proliferation and epithelial-mesenchymal transition (EMT)-like processes of HSC. In vivo, exogenous DCDC2 could ameliorate CCl4-induced liver fibrosis. In summary, DCDC2 was remarkably downregulated in liver fibrotic tissues of both humans and mice, as well as in TGF-ß1-activated HSC. DCDC2 inhibited the activation of HSC induced by TGF-ß1 in vitro and fibrogenic changes in vivo, suggesting that it is a promising therapeutic target for liver fibrosis and warrants further investigation in clinical practice.


Assuntos
Tetracloreto de Carbono , Células Estreladas do Fígado , Cirrose Hepática , Via de Sinalização Wnt , Animais , Humanos , Masculino , Camundongos , beta Catenina/metabolismo , Proliferação de Células , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/efeitos dos fármacos , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Cirrose Hepática/tratamento farmacológico , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta1/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
9.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663190

RESUMO

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Assuntos
Aflatoxina B1 , Vesículas Extracelulares , Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Mitofagia , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Aflatoxina B1/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Mitofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
10.
Mol Immunol ; 170: 60-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626622

RESUMO

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Assuntos
Tetracloreto de Carbono , Cromolina Sódica , Cirrose Hepática , Fígado , Mastócitos , Animais , Mastócitos/metabolismo , Mastócitos/imunologia , Mastócitos/efeitos dos fármacos , Tetracloreto de Carbono/toxicidade , Ratos , Masculino , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/imunologia , Cirrose Hepática/induzido quimicamente , Cromolina Sódica/farmacologia , Fígado/patologia , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Ratos Sprague-Dawley , Cetotifeno/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Estresse Oxidativo/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Biochem Pharmacol ; 224: 116205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615918

RESUMO

Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-ß1 (TGF-ß1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-ß1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.


Assuntos
Antiprotozoários , Nitrocompostos , Tiazóis , Animais , Camundongos , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Masculino , Humanos , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Linhagem Celular , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/antagonistas & inibidores , Proteína Smad3/metabolismo , Cirrose Hepática Experimental/induzido quimicamente , Cirrose Hepática Experimental/patologia , Cirrose Hepática Experimental/tratamento farmacológico , Cirrose Hepática Experimental/metabolismo , Cirrose Hepática Experimental/prevenção & controle , Camundongos Endogâmicos C57BL , Proteína Smad2/metabolismo
12.
Chem Biol Interact ; 395: 111015, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663797

RESUMO

Hepatic fibrosis is a complex chronic liver disease in which both macrophages and hepatic stellate cells (HSCs) play important roles. Many studies have shown that clodronate liposomes (CLD-lipos) effectively deplete macrophages. However, no liposomes have been developed that target both HSCs and macrophages. This study aimed to evaluate the therapeutic efficacy of lipopolysaccharide-coupled clodronate liposomes (LPS-CLD-lipos) and the effects of liposomes size on hepatic fibrosis. Three rat models of hepatic fibrosis were established in vivo; diethylnitrosamine (DEN), bile duct ligation (BDL), and carbon tetrachloride (CCl4). Hematoxylin and eosin staining and serological liver function indices were used to analyze pathological liver damage. Masson's trichrome and Sirius red staining were used to evaluate the effect of liposomes on liver collagen fibers. The hydroxyproline content in liver tissues was determined. In vitro cell counting kit-8 (CCK-8) and immunofluorescence assays were used to further explore the effects of LPS modification and liposomes size on the killing of macrophages and HSCs. Both in vitro and in vivo experiments showed that 200 nm LPS-CLD-lipos significantly inhibited hepatic fibrosis and the abnormal deposition of collagen fibers in the liver and improved the related indicators of liver function. Further results showed that 200 nm LPS-CLD-lipos increased the clearance of macrophages and induced apoptosis of hepatic stellate cells, significantly. The present study demonstrated that 200 nm LPS-CLD-lipos could significantly inhibit hepatic fibrosis and improve liver function-related indices and this study may provide novel ideas and directions for hepatic fibrosis treatment.


Assuntos
Ácido Clodrônico , Células Estreladas do Fígado , Lipopolissacarídeos , Lipossomos , Cirrose Hepática , Macrófagos , Ratos Sprague-Dawley , Animais , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Lipossomos/química , Lipopolissacarídeos/farmacologia , Ácido Clodrônico/farmacologia , Ácido Clodrônico/química , Ácido Clodrônico/uso terapêutico , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/induzido quimicamente , Ratos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Células RAW 264.7 , Camundongos , Tetracloreto de Carbono/toxicidade
13.
Exp Mol Med ; 56(4): 1001-1012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38622198

RESUMO

Sterol regulatory element-binding protein (SREBP)-1c is involved in cellular lipid homeostasis and cholesterol biosynthesis and is highly increased in nonalcoholic steatohepatitis (NASH). However, the molecular mechanism by which SREBP-1c regulates hepatic stellate cells (HSCs) activation in NASH animal models and patients have not been fully elucidated. In this study, we examined the role of SREBP-1c in NASH and the regulation of LCN2 gene expression. Wild-type and SREBP-1c knockout (1cKO) mice were fed a high-fat/high-sucrose diet, treated with carbon tetrachloride (CCl4), and subjected to lipocalin-2 (LCN2) overexpression. The role of LCN2 in NASH progression was assessed using mouse primary hepatocytes, Kupffer cells, and HSCs. LCN2 expression was examined in samples from normal patients and those with NASH. LCN2 gene expression and secretion increased in CCl4-induced liver fibrosis mice model, and SREBP-1c regulated LCN2 gene transcription. Moreover, treatment with holo-LCN2 stimulated intracellular iron accumulation and fibrosis-related gene expression in mouse primary HSCs, but these effects were not observed in 1cKO HSCs, indicating that SREBP-1c-induced LCN2 expression and secretion could stimulate HSCs activation through iron accumulation. Furthermore, LCN2 expression was strongly correlated with inflammation and fibrosis in patients with NASH. Our findings indicate that SREBP-1c regulates Lcn2 gene expression, contributing to diet-induced NASH. Reduced Lcn2 expression in 1cKO mice protects against NASH development. Therefore, the activation of Lcn2 by SREBP-1c establishes a new connection between iron and lipid metabolism, affecting inflammation and HSCs activation. These findings may lead to new therapeutic strategies for NASH.


Assuntos
Ferro , Lipocalina-2 , Cirrose Hepática , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteína de Ligação a Elemento Regulador de Esterol 1 , Animais , Humanos , Masculino , Camundongos , Tetracloreto de Carbono/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Ferro/metabolismo , Lipocalina-2/metabolismo , Lipocalina-2/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Cirrose Hepática/etiologia , Cirrose Hepática/genética , Cirrose Hepática/induzido quimicamente , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
14.
Ecotoxicol Environ Saf ; 275: 116282, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564859

RESUMO

The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.


Assuntos
Arsênio , Hepatopatias , Ratos , Animais , Inflamassomos/metabolismo , Ratos Sprague-Dawley , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Piroptose , Modelos Animais de Doenças , Fibrose , Cirrose Hepática/induzido quimicamente , Sulfonamidas/farmacologia , Citocinas/metabolismo
15.
J Biochem Mol Toxicol ; 38(4): e23694, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504479

RESUMO

Chronic liver injury due to various etiological factors results in excess secretion and accumulation of extracellular matrix proteins, leading to scarring of liver tissue and ultimately to hepatic fibrosis. If left untreated, fibrosis might progress to cirrhosis and even hepatocellular carcinoma. Thymoquinone (TQ), an active compound of Nigella sativa, has been reported to exhibit antioxidant, anti-inflammatory and anticancer activities. Therefore, the effect of TQ against thioacetamide (TAA)-induced liver fibrosis was assessed in rats. Fibrosis was induced with intraperitoneal administration of TAA (250 mg/kg b.w.) twice a week for 5 weeks. TQ (20 mg/kg b.w.) and silymarin (50 mg/kg b.w.) were orally administered daily for 5 weeks separately in TAA administered groups. Liver dysfunction was reported by elevated liver enzymes, increased oxidative stress, inflammation and fibrosis upon TAA administration. Our study demonstrated that TQ inhibited the elevation of liver marker enzymes in serum. TQ administration significantly increased antioxidant markers, such as superoxide dismutase, catalase, glutathione, glutathione peroxidase and glutathione reductase in the liver tissue of rats. Further, TQ significantly attenuated liver fibrosis, as illustrated by the downregulation of TAA-induced interleukin-ß, tumour necrosis factor-α, inducible nitric oxide synthase and fibrosis markers like transforming growth factor-ß (TGF-ß), α-smooth muscle actin, collagen-1, Smad3 and 7. Therefore, these findings suggest that TQ has a promising hepatoprotective property, as indicated by its potential to effectively suppress TAA-induced liver fibrosis in rats by inhibiting oxidative stress and inflammation via TGF-ß/Smad signaling.


Assuntos
Benzoquinonas , Neoplasias Hepáticas , Fator de Crescimento Transformador beta1 , Ratos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Tioacetamida/toxicidade , Antioxidantes/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Fator de Crescimento Transformador beta/metabolismo , Inflamação/metabolismo , Estresse Oxidativo , Neoplasias Hepáticas/metabolismo
16.
Biochem Pharmacol ; 222: 116121, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461906

RESUMO

Liver fibrosis is a chronic liver disease characterized by a progressive wound healing response caused by chronic liver injury. Currently, there are no approved clinical treatments for liver fibrosis. Sevelamer is used clinically to treat hyperphosphatemia and has shown potential therapeutic effects on liver diseases. However, there have been few studies evaluating the therapeutic effects of sevelamer on liver fibrosis, and the specific mechanisms are still unclear. In this study, we investigated the antifibrotic effects of sevelamer-induced low inorganic phosphate (Pi) stress in vitro and in vivo and analyzed the detailed mechanisms. We found that low Pi stress could inhibit the proliferation of activated hepatic stellate cells (HSCs) by promoting apoptosis, effectively suppressing the migration and epithelial-mesenchymal transition (EMT) of hepatic stellate cells. Additionally, low Pi stress significantly increased the antioxidant stress response. It is worth noting that low Pi stress indirectly inhibited the activation and migration of HSCs by suppressing transforming growth factor ß (TGF-ß) expression in macrophages. In a rat model of liver fibrosis, oral administration of sevelamer significantly decreased blood phosphorus levels, improved liver function, reduced liver inflammation, and increased the antioxidant stress response in the liver. Our study revealed that the key mechanism by which sevelamer inhibited liver fibrosis involved binding to gastrointestinal phosphate, resulting in a decrease in blood phosphorus levels, the downregulation of TGF-ß expression in macrophages, and the inhibition of HSC migration and fibrosis-related protein expression. Therefore, our results suggest that sevelamer-induced low Pi stress can attenuate hepatic stellate cell activation and inhibit the progression of liver fibrosis, making it a potential option for the treatment of liver fibrosis and other refractory chronic liver diseases.


Assuntos
Células Estreladas do Fígado , Hepatopatias , Ratos , Animais , Sevelamer/efeitos adversos , Antioxidantes/farmacologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fósforo/metabolismo , Fósforo/farmacologia , Fósforo/uso terapêutico , Fator de Crescimento Transformador beta1/metabolismo
17.
Exp Cell Res ; 437(1): 113992, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492634

RESUMO

BACKGROUND: Hepatic fibrosis, a common pathological process that occurs in end-stage liver diseases, is a serious public health problem and lacks effective therapy. Notoginsenoside R1 (NR1) is a small molecule derived from the traditional Chinese medicine Sanqi, exhibiting great potential in treating diverse metabolie disorders. Here we aimed to enquired the role of NR1 in liver fibrosis and its underlying mechanism in hepatoprotective effects. METHODS: We investigated the anti-fibrosis effect of NR1 using CCl4-induced mouse mode of liver fibrosis as well as TGF-ß1-activated JS-1, LX-2 cells and primary hepatic stellate cell. Cell samples treated by NR1 were collected for transcriptomic profiling analysis. PPAR-γ mediated TGF-ß1/Smads signaling was examined using PPAR-γ selective inhibitors and agonists intervention, immunofluorescence staining and western blot analysis. Additionally, we designed and studied the binding of NR1 to PPAR-γ using molecular docking. RESULTS: NR1 obviously attenuated liver histological damage, reduced serum ALT, AST levels, and decreased liver fibrogenesis markers in mouse mode. Mechanistically, NR1 elevated PPAR-γ and decreased TGF-ß1, p-Smad2/3 expression. The TGF-ß1/Smads signaling pathway and fibrotic phenotype were altered in JS-1 cells after using PPAR-γ selective inhibitors and agonists respectively, confirming PPAR-γ played a pivotal protection role inNR1 treating liver fibrosis. Further molecular docking indicated NR1 had a strong binding tendency to PPAR-γ with minimum free energy. CONCLUSIONS: NR1 attenuates hepatic stellate cell activation and hepatic fibrosis by elevating PPAR-γ to inhibit TGF-ß1/Smads signalling. NR1 may be a potential candidate compound for reliving liver fibrosis.


Assuntos
Ginsenosídeos , Células Estreladas do Fígado , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Fibrose , Células Estreladas do Fígado/metabolismo , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/genética , Simulação de Acoplamento Molecular , PPAR gama/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
18.
Ecotoxicol Environ Saf ; 274: 116124, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38503108

RESUMO

OBJECTIVE: The primary objective of this study was to investigate the toxicological impact of Dibutyl phthalate (DBP) on the process of liver fibrosis transitioning into cirrhosis and the subsequent development of portal hypertension (PHT) through the mechanism of epithelial-mesenchymal transition (EMT) mediated by the ROS/TGF-ß/Snail-1 signaling pathway. METHOD: Carbon tetrachloride (CCl4) (1 mg/kg) was introduced in adult rats by oral feeding in CCl4 and CCl4+DBP groups twice a week for 8 weeks, and twice for another 8 week in CCl4 group. DBP was introduced by oral feeding in the CCl4+DBP group twice over the following 8 weeks. We subsequently analyzed hemodynamics measurements and liver cirrhosis degree, hepatic inflammation and liver function in the different groups. EMT related genes expression in rats in the groups of Control, DBP, CCl4 and CCl4+DBP were measured by immunohistochemistry (IHC). Enzyme-linked immunosorbent Assay (ELISA), qRT-PCR, western blot were used to detect the EMT related proteins and mRNA gene expression levels in rats and primary hepatocytes (PHCs). Reactive oxygen species (ROS) were examined with a ROS detection kit. RESULTS: The results showed that the CCl4+DBP group had higher portal pressure (PP) and lower mean arterial pressure (MAP) than the other groups. Elevated collagen deposition, profibrotic factor, inflammation, EMT levels were detected in DBP and CCl4+DBP groups. ROS, TGF-ß1 and Snail-1 were highly expressed after DBP exposure in vitro. TGF-ß1 had the potential to regulate Snail-1, and both of them were subject to regulation by ROS. CONCLUSION: DBP could influence the progression of EMT through its toxicological effect by ROS/TGF-ß1/Snail-1 signalling pathway, causing cirrhosis and PHT in final. The findings of this research might contribute to a novel comprehension of the underlying toxicological mechanisms and animal model involved in the progression of cirrhosis and PHT, and potentially offered a promising therapeutic target for the treatment of the disease.


Assuntos
Dibutilftalato , Transição Epitelial-Mesenquimal , Hipertensão Portal , Fator de Crescimento Transformador beta1 , Animais , Ratos , Dibutilftalato/toxicidade , Fibrose , Hipertensão Portal/induzido quimicamente , Inflamação , Cirrose Hepática/induzido quimicamente , Espécies Reativas de Oxigênio , Transdução de Sinais , Fatores de Transcrição da Família Snail/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
J Ethnopharmacol ; 327: 117975, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38432576

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Liver fibrosis (LF) is a common reversible consequence of chronic liver damage with limited therapeutic options. Yinchen Gongying decoction (YGD) composed of two homologous plants: (Artemisia capillaris Thunb, Taraxacum monochlamydeum Hand.-Mazz.), has a traditionally application as a medicinal diet for acute icteric hepatitis. However, its impact on LF and underlying mechanisms remain unclear. AIM OF THE STUDY: This study aims to assess the impact of YGD on a carbon tetrachloride (CCl4) induced liver fibrosis and elucidate its possible mechanisms. The study seeks to establish an experimental foundation for YGD as a candidate drug for hepatic fibrosis. MATERIALS AND METHODS: LC-MS/MS identified 11 blood-entry components in YGD, and network pharmacology predicted their involvement in the FoxO signaling pathway, insulin resistance, and PI3K-AKT signaling pathway. Using a CCl4-induced LF mouse model, YGD's protective effects were evaluated in comparison to a positive control and a normal group. The underlying mechanisms were explored through the assessments of hepatic stellate cells (HSCs) activation, fibrotic signaling, and inflammation. RESULTS: YGD treatment significantly improved liver function, enhanced liver morphology, and reduced liver collagen deposition in CCl4-induced LF mice. Mechanistically, YGD inhibited HSC activation, elevated MMPs/TIMP1 ratios, suppressed the FoxO1/TGF-ß1/Smad2/3 and YAP pathways, and exhibited anti-inflammatory and antioxidant effects. Notably, YGD improved the insulin signaling pathway. CONCLUSION: YGD mitigates LF in mice by modulating fibrotic and inflammatory pathways, enhancing antioxidant responses, and specifically inhibiting FoxO1/TGF-ß1/Smad2/3 and YAP signal pathways.


Assuntos
Artemisia , Medicamentos de Ervas Chinesas , Fosfatidilinositol 3-Quinases , Fator de Crescimento Transformador beta1 , Camundongos , Animais , Fator de Crescimento Transformador beta1/metabolismo , Cromatografia Líquida , Fosfatidilinositol 3-Quinases/metabolismo , Células Estreladas do Fígado , Espectrometria de Massas em Tandem , Fígado , Transdução de Sinais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Tetracloreto de Carbono/farmacologia
20.
Environ Health ; 23(1): 30, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38504260

RESUMO

BACKGROUND AND AIMS: Chlordecone is a persistent organochlorinated insecticide, extensively used in the French West Indies and has been contaminating the population for more than thirty years. Its potentiation effect on hepatotoxic agents has been demonstrated in animal models. We investigated the relationship between environmental exposure to chlordecone and the progression of liver fibrosis. METHODS: This study included 182 consecutive patients with chronic alcoholic hepatitis whose liver fibrosis was assessed using non-invasive methods. Measured plasma chlordecone concentrations at inclusion were used as surrogate of long-term exposure under steady-state conditions. As the pharmacokinetic processing of chlordecone is largely determined by the liver, we used a human physiologically based pharmacokinetic model to predict plausible changes in the steady-state blood chlordecone concentrations induced by liver fibrosis. RESULTS: With a median follow-up of 27.1 years after the onset of alcohol consumption, we found a significant decrease in the risk of advanced liver fibrosis with increasing plasma chlordecone concentration (adjusted hazard ratio = 0.56; 95% confidence interval: 0.34-0.95 for the highest vs. lowest tertile, p = 0.04). Changes induced by liver fibrosis influenced the pharmacokinetic processing of chlordecone, resulting in substantial modifications in its steady-state blood concentrations. CONCLUSION: According to this human model of coexposure to alcohol, reverse causality is the most plausible explanation of this inverse association between plasma chlordecone concentrations and progression of liver fibrosis. This study underlines the importance of considering the pharmacokinetic of environmental contaminants in epidemiological studies when biomarkers of exposure are used to investigate their own impact on the liver. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03373396.


Assuntos
Clordecona , Inseticidas , Animais , Humanos , Clordecona/análise , Clordecona/toxicidade , Inseticidas/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA