Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.401
Filtrar
1.
Mol Cell ; 84(10): 1819-1821, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759621

RESUMO

In this issue of Molecular Cell, Yang et al.1 find that arginine-to-cysteine substitutants are enriched in a subset of lung cancer proteomes, potentiated by arginine deprivation, and promote resistance to chemotherapy.


Assuntos
Arginina , Cisteína , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Arginina/metabolismo , Proteoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética
2.
Mol Cell ; 84(10): 1904-1916.e7, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759626

RESUMO

Many types of human cancers suppress the expression of argininosuccinate synthase 1 (ASS1), a rate-limiting enzyme for arginine production. Although dependency on exogenous arginine can be harnessed by arginine-deprivation therapies, the impact of ASS1 suppression on the quality of the tumor proteome is unknown. We therefore interrogated proteomes of cancer patients for arginine codon reassignments (substitutants) and surprisingly identified a strong enrichment for cysteine (R>C) in lung tumors specifically. Most R>C events did not coincide with genetically encoded R>C mutations but were likely products of tRNA misalignments. The expression of R>C substitutants was highly associated with oncogenic kelch-like epichlorohydrin (ECH)-associated protein 1 (KEAP1)-pathway mutations and suppressed by intact-KEAP1 in KEAP1-mutated cancer cells. Finally, functional interrogation indicated a key role for R>C substitutants in cell survival to cisplatin, suggesting that regulatory codon reassignments endow cancer cells with more resilience to stress. Thus, we present a mechanism for enriching lung cancer proteomes with cysteines that may affect therapeutic decisions.


Assuntos
Arginina , Cisteína , Proteína 1 Associada a ECH Semelhante a Kelch , Neoplasias Pulmonares , Proteoma , Humanos , Cisteína/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteoma/metabolismo , Arginina/metabolismo , Mutação , Argininossuccinato Sintase/metabolismo , Argininossuccinato Sintase/genética , Cisplatino/farmacologia , Linhagem Celular Tumoral , Proteômica/métodos , Regulação Neoplásica da Expressão Gênica , Sobrevivência Celular/efeitos dos fármacos , RNA de Transferência/metabolismo , RNA de Transferência/genética
3.
Physiol Plant ; 176(3): e14340, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741259

RESUMO

Malate dehydrogenases (MDHs) catalyze a reversible NAD(P)-dependent-oxidoreductase reaction that plays an important role in central metabolism and redox homeostasis of plant cells. Recent studies suggest a moonlighting function of plastidial NAD-dependent MDH (plNAD-MDH; EC 1.1.1.37) in plastid biogenesis, independent of its enzyme activity. In this study, redox effects on activity and conformation of recombinant plNAD-MDH from Arabidopsis thaliana were investigated. We show that reduced plNAD-MDH is active while it is inhibited upon oxidation. Interestingly, the presence of its cofactors NAD+ and NADH could prevent oxidative inhibition of plNAD-MDH. In addition, a conformational change upon oxidation could be observed via non-reducing SDS-PAGE. Both effects, its inhibition and conformational change, were reversible by re-reduction. Further investigation of single cysteine substitutions and mass spectrometry revealed that oxidation of plNAD-MDH leads to oxidation of all four cysteine residues. However, cysteine oxidation of C129 leads to inhibition of plNAD-MDH activity and oxidation of C147 induces its conformational change. In contrast, oxidation of C190 and C333 does not affect plNAD-MDH activity or structure. Our results demonstrate that plNAD-MDH activity can be reversibly inhibited, but not inactivated, by cysteine oxidation and might be co-regulated by the availability of its cofactors in vivo.


Assuntos
Arabidopsis , Cisteína , Malato Desidrogenase , NAD , Oxirredução , Plastídeos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Cisteína/metabolismo , Malato Desidrogenase/metabolismo , Malato Desidrogenase/genética , Plastídeos/metabolismo , Plastídeos/enzimologia , NAD/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética
4.
J Zhejiang Univ Sci B ; 25(5): 410-421, 2024 Mar 12.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725340

RESUMO

Pheochromocytomas and paragangliomas (PPGLs) cause symptoms by altering the circulation levels of catecholamines and peptide hormones. Currently, the diagnosis of PPGLs relies on diagnostic imaging and the detection of catecholamines. In this study, we used ultra-performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis to identify and measure the perioperative differential metabolites in the plasma of adrenal pheochromocytoma patients. We identified differentially expressed genes by comparing the transcriptomic data of pheochromocytoma with the normal adrenal medulla. Through conducting two steps of metabolomics analysis, we identified 111 differential metabolites between the healthy group and the patient group, among which 53 metabolites were validated. By integrating the information of differential metabolites and differentially expressed genes, we inferred that the cysteine-methionine, pyrimidine, and tyrosine metabolism pathways were the three main metabolic pathways altered by the neoplasm. The analysis of transcription levels revealed that the tyrosine and cysteine-methionine metabolism pathways were downregulated in pheochromocytoma, whereas the pyrimidine pathway showed no significant difference. Finally, we developed an optimized diagnostic model of two metabolites, L-dihydroorotic acid and vanylglycol. Our results for these metabolites suggest that they may serve as potential clinical biomarkers and can be used to supplement and improve the diagnosis of pheochromocytoma.


Assuntos
Neoplasias das Glândulas Suprarrenais , Cisteína , Metionina , Feocromocitoma , Pirimidinas , Tirosina , Feocromocitoma/metabolismo , Feocromocitoma/sangue , Humanos , Neoplasias das Glândulas Suprarrenais/metabolismo , Neoplasias das Glândulas Suprarrenais/sangue , Pirimidinas/metabolismo , Metionina/metabolismo , Tirosina/metabolismo , Tirosina/sangue , Cisteína/metabolismo , Masculino , Metabolômica/métodos , Feminino , Pessoa de Meia-Idade , Adulto , Redes e Vias Metabólicas
5.
Eur J Med Chem ; 271: 116461, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38691891

RESUMO

Owing to the global health crisis of resistant pathogenic infections, researchers are emphasizing the importance of novel prevention and control strategies. Existing antimicrobial drugs predominantly target a few pathways, and their widespread use has pervasively increased drug resistance. Therefore, it is imperative to develop new antimicrobial drugs with novel targets and chemical structures. The de novo cysteine biosynthesis pathway, one of the microbial metabolic pathways, plays a crucial role in pathogenicity and drug resistance. This pathway notably differs from that in humans, thereby representing an unexplored target for developing antimicrobial drugs. Herein, we have presented an overview of cysteine biosynthesis pathways and their roles in the pathogenicity of various microorganisms. Additionally, we have investigated the structure and function of enzymes involved in these pathways as well as have discussed drug design strategies and structure-activity relationships of the enzyme inhibitors. This review provides valuable insights for developing novel antimicrobials and offers new avenues to combat drug resistance.


Assuntos
Cisteína , Descoberta de Drogas , Cisteína/metabolismo , Cisteína/química , Cisteína/biossíntese , Humanos , Relação Estrutura-Atividade , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Estrutura Molecular , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/biossíntese , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo
6.
Amino Acids ; 56(1): 36, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772922

RESUMO

In the initial stages of Alopecia Areata (AA), the predominance of hair breakage or exclamation mark hairs serves as vital indicators of disease activity. These signs are non-invasive and are commonly employed in dermatoscopic examinations. Despite their clinical salience, the underlying etiology precipitating this hair breakage remains largely uncharted territory. Our exhaustive review of the existing literature points to a pivotal role for cysteine-a key amino acid central to hair growth-in these mechanisms. This review will probe and deliberate upon the implications of aberrant cysteine metabolism in the pathogenesis of AA. It will examine the potential intersections of cysteine metabolism with autophagy, ferroptosis, immunity, and psychiatric manifestations associated with AA. Such exploration could illuminate new facets of the disease's pathophysiology, potentially paving the way for innovative therapeutic strategies.


Assuntos
Alopecia em Áreas , Cisteína , Cabelo , Homeostase , Alopecia em Áreas/metabolismo , Alopecia em Áreas/fisiopatologia , Alopecia em Áreas/patologia , Humanos , Cisteína/metabolismo , Cabelo/metabolismo , Autofagia , Ferroptose , Animais
7.
Nat Commun ; 15(1): 4244, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38762605

RESUMO

Cysteine metabolism occurs across cellular compartments to support diverse biological functions and prevent the induction of ferroptosis. Though the disruption of cytosolic cysteine metabolism is implicated in this form of cell death, it is unknown whether the substantial cysteine metabolism resident within the mitochondria is similarly pertinent to ferroptosis. Here, we show that despite the rapid depletion of intracellular cysteine upon loss of extracellular cystine, cysteine-dependent synthesis of Fe-S clusters persists in the mitochondria of lung cancer cells. This promotes a retention of respiratory function and a maintenance of the mitochondrial redox state. Under these limiting conditions, we find that glutathione catabolism by CHAC1 supports the mitochondrial cysteine pool to sustain the function of the Fe-S proteins critical to oxidative metabolism. We find that disrupting Fe-S cluster synthesis under cysteine restriction protects against the induction of ferroptosis, suggesting that the preservation of mitochondrial function is antagonistic to survival under starved conditions. Overall, our findings implicate mitochondrial cysteine metabolism in the induction of ferroptosis and reveal a mechanism of mitochondrial resilience in response to nutrient stress.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Cisteína , Ferroptose , Glutationa , Neoplasias Pulmonares , Mitocôndrias , Humanos , Cisteína/metabolismo , Mitocôndrias/metabolismo , Glutationa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas Ferro-Enxofre/metabolismo , Oxirredução , Camundongos
8.
Nat Commun ; 15(1): 3827, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714735

RESUMO

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Assuntos
Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína , Dissulfetos , Oxirredução , SARS-CoV-2 , Dissulfetos/química , Dissulfetos/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Cisteína/química , Cisteína/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Multimerização Proteica , COVID-19/virologia
9.
Virology ; 595: 110091, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38718446

RESUMO

Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.


Assuntos
Cisteína , Vírus da Hepatite E , Proteínas Virais , Cisteína/química , Cisteína/metabolismo , Vírus da Hepatite E/genética , Vírus da Hepatite E/química , Proteínas Virais/genética , Proteínas Virais/química , Proteínas Virais/metabolismo , Mutagênese Sítio-Dirigida , Dissulfetos/química , Dissulfetos/metabolismo , Animais , Humanos
10.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38622951

RESUMO

We determined apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of crude protein (CP) and amino acids (AA) in fermented soybean meal from five different sources (FSBM 1 to 5) in China when fed to mid and late-gestating sows. Twenty-four parity four sows (12 at 30 d in gestation and 12 at 80 d in gestation) were fitted with a T-cannula in the distal ileum and used in this experiment. Sows were randomly assigned to a replicated 6 × 3 Youden square design including six diets and three periods. Six diets were provided for sows in mid and late gestation, including a nitrogen-free diet and five test diets containing 26% FSBM from different sources. Results showed that there were differences in AID and SID of CP among the different FSBM samples, but no differences between sow physiological stages were observed. Specifically, when mid-gestating sows were fed FSBM 2, the AID of CP was the lowest, whereas FSBM 3 exhibited a greater AID of CP when compared to the other FSBM samples (P < 0.01). Furthermore, during late gestation, FSBM 3 consistently had greater SID of CP when compared to other FSBM samples (P < 0.01). The ileal digestibility of most AA varied with different FSBM samples. In both mid and late gestation, differences (P < 0.05) were observed for AID of lysine, tryptophan, histidine, and arginine across different FSBM samples. Similarly, the AID of dispensable AA (cysteine, glutamine, and serine) also exhibited differences (P < 0.05) across different FSBM samples in both mid and late-gestating sows. For mid-gestating sows, SID differences relating to lysine, phenylalanine, tryptophan, threonine, and arginine were observed among different diets (P < 0.05). In late-gestating sows, SID values for lysine, tryptophan, leucine, and arginine differed across diets (P < 0.05). Furthermore, the ileal digestibility of some dispensable AA was influenced by physiological stage, as evidenced by greater AID and SID values for glycine, glutamine, cysteine, and serine in late-gestating sows when compared to mid-gestating sows (P < 0.01). In summary, our study determined AA ileal digestibility of different FSBM fed to mid and late-gestating sows. We observed that the AA ileal digestibility differed among five FSBM samples, but the physiological stage of sows did not affect the ileal digestibility of CP and most AA. Additionally, when formulating diets for sows, it is crucial to consider the nutritional value differences of FSBM.


Fermented soybean meal (FSBM) is obtained from the microbial fermentation of soybean meal, which reduces anti-nutritional factor levels and enhances other nutrient content. Substituting soybean meal with FSBM in piglet and growing pig diets improves nutrient digestibility. However, its nutritional value for sows remains unclear. Therefore, five sources of FSBM were fed to sows in mid and late gestation to evaluate apparent ileal digestibility (AID) and standardized ileal digestibility (SID) values of amino acids (AA). We found that different FSBM samples impacted the SID value of AA when fed to gestating sows. Additionally, sow physiological stage influenced the SID of some dispensable AA. These findings provide valuable insights into the incorporation of FSBM into sow diets.


Assuntos
Aminoácidos , Alimentos Fermentados , Suínos , Animais , Feminino , Gravidez , Aminoácidos/metabolismo , Digestão/fisiologia , Glutamina/metabolismo , Triptofano/metabolismo , Cisteína/metabolismo , Lisina/metabolismo , Glycine max , Dieta/veterinária , Arginina/metabolismo , Serina , Ração Animal/análise , Íleo/metabolismo , Fenômenos Fisiológicos da Nutrição Animal
11.
Sheng Wu Gong Cheng Xue Bao ; 40(4): 1076-1088, 2024 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-38658150

RESUMO

Flavin-containing monooxygenase (FMO) is the key enzyme in the biosynthesis pathway of CSOs with sulfur oxidation. In order to explore the molecular regulatory mechanism of FMO in the synthesis of onion CSOs, based on transcriptome database and phylogenetic analysis, one AcFMO gene that may be involved in alliin synthesis was obtained, the AcFMO had a cDNA of 1 374 bp and encoded 457 amino acids, which was evolutionarily closest to the AsFMO of garlic. Real-time fluorescence quantitative polymerase chain reaction (qRT-PCR) indicated that AcFMO was the highest in the flowers and the lowest in the leaf sheaths. The results of subcellular localization showed that the AcFMO gene product was widely distributed throughout the cell A yeast expression vector was constructed, and the AcFMO gene was ecotopically overexpressed in yeast to further study the enzyme function in vitro and could catalyze the synthesis of alliin by S-allyl-l-cysteine. In summary, the cloning and functional identification of AcFMO have important reference value for understanding the biosynthesis of CSOs in onions.


Assuntos
Clonagem Molecular , Cisteína/análogos & derivados , Cebolas , Cebolas/genética , Cebolas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cisteína/biossíntese , Cisteína/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Sequência de Aminoácidos , Filogenia , Dissulfetos/metabolismo , Dados de Sequência Molecular , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
12.
Cell Rep ; 43(4): 114070, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38583156

RESUMO

Nucleotide oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome hyperactivation contributes to many human chronic inflammatory diseases, and understanding how NLRP3 inflammasome is regulated can provide strategies to treat inflammatory diseases. Here, we demonstrate that NLRP3 Cys126 is palmitoylated by zinc finger DHHC-type palmitoyl transferase 7 (ZDHHC7), which is critical for NLRP3-mediated inflammasome activation. Perturbing NLRP3 Cys126 palmitoylation by ZDHHC7 knockout, pharmacological inhibition, or modification site mutation diminishes NLRP3 activation in macrophages. Furthermore, Cys126 palmitoylation is vital for inflammasome activation in vivo. Mechanistically, ZDHHC7-mediated NLRP3 Cys126 palmitoylation promotes resting NLRP3 localizing on the trans-Golgi network (TGN) and activated NLRP3 on the dispersed TGN, which is indispensable for recruitment and oligomerization of the adaptor ASC (apoptosis-associated speck-like protein containing a CARD). The activation of NLRP3 by ZDHHC7 is different from the termination effect mediated by ZDHHC12, highlighting versatile regulatory roles of S-palmitoylation. Our study identifies an important regulatory mechanism of NLRP3 activation that suggests targeting ZDHHC7 or the NLRP3 Cys126 residue as a potential therapeutic strategy to treat NLRP3-related human disorders.


Assuntos
Acetiltransferases , Aciltransferases , Cisteína , Inflamassomos , Lipoilação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Aciltransferases/metabolismo , Humanos , Animais , Cisteína/metabolismo , Camundongos , Células HEK293 , Camundongos Endogâmicos C57BL , Rede trans-Golgi/metabolismo , Macrófagos/metabolismo
13.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38674008

RESUMO

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Assuntos
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutationa , Homeostase , Cisteína/metabolismo , Ciprofloxacina/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Homeostase/efeitos dos fármacos , Glutationa/metabolismo , Antibacterianos/farmacologia , Meios de Cultura/química , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/farmacologia , Mutação , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
14.
ACS Chem Biol ; 19(4): 992-998, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562012

RESUMO

Glycosyltransferases play a fundamental role in the biosynthesis of glycoproteins and glycotherapeutics. In this study, we investigated protein glycosyltransferase FlgGT1, belonging to the GT2 family. The GT2 family includes cysteine S-glycosyltransferases involved in antimicrobial peptide biosyntheses, sharing conserved catalytic domains while exhibiting diverse C-terminal domains. Our in vitro studies revealed that FlgGT1 recognizes structural motifs rather than specific amino acid sequences when glycosylating the flagellin protein Hag. Notably, FlgGT1 is selective for serine or threonine O-glycosylation over cysteine S-glycosylation. Molecular dynamics simulations provided insights into the structural basis of FlgGT1's ability to accommodate various sugar nucleotides as donor substrates. Mutagenesis experiments on FlgGT1 demonstrated that truncating the relatively large C-terminal domain resulted in a loss of flagellin glycosylation activity. Our classification based on sequence similarity network analysis and AlphaFold2 structural predictions suggests that the acquisition of the C-terminal domain is a key evolutionary adaptation conferring distinct substrate specificities on glycosyltransferases within the GT2 family.


Assuntos
Flagelina , Glicosiltransferases , Paenibacillus , Sequência de Aminoácidos , Cisteína/metabolismo , Flagelina/metabolismo , Glicosilação , Glicosiltransferases/metabolismo , Paenibacillus/enzimologia , Paenibacillus/metabolismo
15.
Sci Rep ; 14(1): 9364, 2024 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654065

RESUMO

The escalating drug resistance among microorganisms underscores the urgent need for innovative therapeutic strategies and a comprehensive understanding of bacteria's defense mechanisms against oxidative stress and antibiotics. Among the recently discovered barriers, the endogenous production of hydrogen sulfide (H2S) via the reverse transsulfuration pathway, emerges as a noteworthy factor. In this study, we have explored the catalytic capabilities and crystal structure of cystathionine γ-lyase from Pseudomonas aeruginosa (PaCGL), a multidrug-opportunistic pathogen chiefly responsible for nosocomial infections. In addition to a canonical L-cystathionine hydrolysis, PaCGL efficiently catalyzes the production of H2S using L-cysteine and/or L-homocysteine as alternative substrates. Comparative analysis with the human enzyme and counterparts from other pathogens revealed distinct structural features within the primary enzyme cavities. Specifically, a distinctly folded entrance loop could potentially modulate the access of substrates and/or inhibitors to the catalytic site. Our findings offer significant insights into the structural evolution of CGL enzymes across different pathogens and provide novel opportunities for developing specific inhibitors targeting PaCGL.


Assuntos
Domínio Catalítico , Cistationina gama-Liase , Sulfeto de Hidrogênio , Pseudomonas aeruginosa , Pseudomonas aeruginosa/enzimologia , Cistationina gama-Liase/metabolismo , Cistationina gama-Liase/química , Cristalografia por Raios X , Especificidade por Substrato , Sulfeto de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/química , Modelos Moleculares , Cisteína/metabolismo , Cisteína/química , Conformação Proteica , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Humanos , Homocisteína/metabolismo , Homocisteína/química , Catálise
16.
Bioresour Technol ; 400: 130699, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615966

RESUMO

Proposing recovery strategies to recover heavy-metal-inhibited sulfur-driven denitrification, as well as disclosing recovery mechanisms, can provide technical support for the stable operation of bio-systems. This study proposed an effective bio-promoter (mediator-promoter composed of L-cysteine, biotin, cytokinin, and anthraquinone-2,6-disulfonate) to recover Cr(VI) inhibited sulfur-driven denitrification, which effectively reduced the recovery time of NO3--N reduction (18-21 cycles) and NO2--N reduction (27-42 cycles) compared with self-recovery. The mediator-promoter repaired microbial damage by promoting intracellular chromium efflux. Moreover, the mediator-promoter reduced the accumulated reactive oxygen species by stimulating the secretion of antioxidant enzymes, reaching equilibrium in the oxidative-antioxidant system. To improve electron transmission, the mediator-promoter restored S2O32- oxidation to provide adequate electron donors and increased electron transfer rate by increasing cytochrome c levels. Mediator-promoter boosted the abundance of Thiobacillus (sulfur-oxidizing bacterium) and Simplicispira (denitrifying bacterium), which were positively correlated, facilitating the rapid denitrification recovery and the long-term stable operation of recovered systems.


Assuntos
Cromo , Desnitrificação , Enxofre , Cromo/metabolismo , Enxofre/farmacologia , Enxofre/química , Transporte de Elétrons , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Thiobacillus/metabolismo , Antraquinonas/farmacologia , Cisteína/farmacologia , Cisteína/metabolismo
17.
J Agric Food Chem ; 72(17): 9937-9946, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38651303

RESUMO

The engineered human cystathionine-γ-lyase (hCGL) resulting in enhanced activity toward both cysteine and cystine unveils a potential robust antitumor activity. However, the presence of cysteine residues has the potential to induce oligomerization or incorrect disulfide bonding, which may decrease the bioavailability of biopharmaceuticals. Through a meticulous design process targeting the cysteine residues within engineered hCGL, a set of potential beneficial mutants were obtained by virtual screening employing Rosetta and ABACUS. Experimental measurements have revealed that most of the mutants showed increased activity toward both substrates l-Cys and CSSC. Furthermore, mutants C109V and C229D demonstrated Tm value increases of 8.2 and 1.8 °C, respectively. After an 80 min incubation at 60 °C, mutant C229D still maintained high residual activity. Unexpectedly, mutant C109V, displaying activity approximately 2-fold higher than the activity of wild type (WT) for both substrates, showed disappointing instability in plasma, which suggests that computational design still requires further consideration. Analysis of their structure and molecular dynamics (MD) simulation revealed the impact of hydrophobic interaction, hydrogen bonds, and near-attack conformation (NAC) stability on activity and stability. This study acquired information about mutants that exhibit enhanced activity or thermal resistance and serve as valuable guidance for subsequent specific cysteine modifications.


Assuntos
Cistationina gama-Liase , Cisteína , Simulação de Dinâmica Molecular , Engenharia de Proteínas , Cisteína/química , Cisteína/metabolismo , Humanos , Cistationina gama-Liase/genética , Cistationina gama-Liase/química , Cistationina gama-Liase/metabolismo , Estabilidade Enzimática , Cistina/química , Ligação de Hidrogênio , Mutação , Cinética
18.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124248, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38599026

RESUMO

Ferroptosis is a type of lipid peroxidation-induced apoptosis brought on by imbalances in iron metabolism and redox. It involves both the thiol-associated anti-ferroptosis pathway and the excessive buildup of reactive oxygen species (ROS), which stimulates the ferroptosis pathway. Determining the precise control mechanism of ferroptosis requires examining the dynamic connection between reactive sulfur species (RSS) and ROS. Cysteine (Cys) and peroxynitrite (ONOO-) are highly active redox species in organisms and play dynamic roles in the ferroptosis process. In this study, a coumarin dye was conjugated with specific response sites for Cys and ONOO-, enabling the simultaneous detection of Cys and ONOO- through the green and red fluorescence channels, respectively (λem = 498 nm for Cys and λem = 565 nm for ONOO-). Using the probe LXB, we monitored the changes in Cys and ONOO- levels in the ferroptosis pathway induced by erastin. The results demonstrate a significant generation of ONOO- and a noticeable decrease in intracellular Cys levels at the beginning upon erastin treatment and finally maintains a relatively low level. This study presents the first probe to investigate the intracellular redox modulation and control between Cys and ONOO- during ferroptosis, providing valuable insights into the potential mutual correlation between Cys and ONOO- in this process.


Assuntos
Cisteína , Ferroptose , Corantes Fluorescentes , Ácido Peroxinitroso , Ferroptose/efeitos dos fármacos , Corantes Fluorescentes/química , Cisteína/metabolismo , Cisteína/análise , Humanos , Ácido Peroxinitroso/análise , Ácido Peroxinitroso/metabolismo , Espectrometria de Fluorescência , Oxirredução , Piperazinas/farmacologia , Piperazinas/química , Cumarínicos/química , Cumarínicos/farmacologia
19.
Cell Mol Life Sci ; 81(1): 190, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649521

RESUMO

The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.


Assuntos
Tecido Adiposo , Cisteína , Proteínas de Drosophila , Drosophila melanogaster , Metionina , Peroxissomos , Animais , Metionina/metabolismo , Peroxissomos/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Cisteína/metabolismo , Tecido Adiposo/metabolismo , Humanos , Metabolismo dos Lipídeos , Gotículas Lipídicas/metabolismo , Transdução de Sinais , Dieta
20.
Biochemistry ; 63(10): 1307-1321, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688031

RESUMO

In this study, we investigated the trimerization mechanism and structure of heat shock factor 1 (HSF1) using western blotting, tryptophan (Trp) fluorescence spectroscopy, and molecular modeling. First, we examined the DNA-binding domains of human (Homo sapiens), goldfish (Carassius auratus), and walleye pollock (Gadus chalcogrammus) HSF1s by mutating key residues (36 and 103) that are thought to directly affect trimer formation. Human, goldfish, and walleye pollock HSF1s contain cysteine at residue 36 but cysteine (C), tyrosine (Y), and phenylalanine (F), respectively, at residue 103. The optimal trimerization temperatures for the wild-type HSF1s of each species were found to be 42, 37, and 20 °C, respectively. Interestingly, a mutation experiment revealed that trimerization occurred at 42 °C when residue 103 was cysteine, at 37 °C when it was tyrosine, and at 20 °C when it was phenylalanine, regardless of the species. In addition, it was confirmed that when residue 103 of the three species was mutated to alanine, trimerization did not occur. This suggests that in addition to trimerization via disulfide bond formation between the cysteine residues in human HSF1, trimerization can also occur via the formation of a different type of bond between cysteine and aromatic ring residues such as tyrosine and phenylalanine. We also confirmed that at least one cysteine is required for the trimerization of HSF1s, regardless of its position (residue 36 or 103). Additionally, it was shown that the trimer formation temperature is related to growth and survival in fish.


Assuntos
Aminoácidos Aromáticos , Cisteína , Fatores de Transcrição de Choque Térmico , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/química , Fatores de Transcrição de Choque Térmico/genética , Cisteína/química , Cisteína/metabolismo , Humanos , Animais , Aminoácidos Aromáticos/metabolismo , Aminoácidos Aromáticos/química , Multimerização Proteica , Resposta ao Choque Térmico , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Carpa Dourada/metabolismo , Modelos Moleculares , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA