Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Am Chem Soc ; 144(9): 3761-3765, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35224970

RESUMO

The Covid-19 pandemic highlights the urgent need for cost-effective processes to rapidly manufacture antiviral drugs at scale. Here we report a concise biocatalytic process for Molnupiravir, a nucleoside analogue recently approved as an orally available treatment for SARS-CoV-2. Key to the success of this process was the development of an efficient biocatalyst for the production of N-hydroxy-cytidine through evolutionary adaption of the hydrolytic enzyme cytidine deaminase. This engineered biocatalyst performs >85 000 turnovers in less than 3 h, operates at 180 g/L substrate loading, and benefits from in situ crystallization of the N-hydroxy-cytidine product (85% yield), which can be converted to Molnupiravir by a selective 5'-acylation using Novozym 435.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Citidina Desaminase/metabolismo , Citidina/análogos & derivados , SARS-CoV-2 , Biocatálise , Citidina/biossíntese , Citidina/metabolismo , Citidina Desaminase/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Hidroxilaminas , Engenharia Metabólica , Engenharia de Proteínas , Uridina/metabolismo
2.
J Am Chem Soc ; 139(45): 16178-16187, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29045133

RESUMO

Microcin C is a heptapeptide-adenylate antibiotic produced by some strains of Escherichia coli. Its peptide part is responsible for facilitated transport inside sensitive cells where it is proteolyzed with release of a toxic warhead-a nonhydrolyzable aspartamidyl-adenylate, which inhibits aspartyl-tRNA synthetase. Recently, a microcin C homologue from Bacillus amyloliquefaciens containing a longer peptide part modified with carboxymethyl-cytosine instead of adenosine was described, but no biological activity of this compound was revealed. Here, we characterize modified peptide-cytidylate from Yersinia pseudotuberculosis. As reported for B. amyloliquefaciens homologue, the initially synthesized compound contains a long peptide that is biologically inactive. This compound is subjected to endoproteolytic processing inside producing cells by the evolutionary conserved TldD/E protease. As a result, an 11-amino acid long peptide with C-terminal modified cytosine residue is produced. This compound is exported outside the producing cell and is bioactive, inhibiting sensitive cells in the same way as E. coli microcin C. Proteolytic processing inside producing cells is a novel strategy of peptide-nucleotide antibiotics biosynthesis that may help control production levels and avoid toxicity to the producer.


Assuntos
Antibacterianos/biossíntese , Proteínas de Bactérias/metabolismo , Óperon/genética , Peptídeo Hidrolases/metabolismo , Yersinia pseudotuberculosis/metabolismo , Antibacterianos/química , Citidina/biossíntese , Citidina/química , Citidina/genética , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Yersinia pseudotuberculosis/citologia , Yersinia pseudotuberculosis/genética
3.
Nat Chem Biol ; 12(7): 546-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27214402

RESUMO

In human mitochondria, the AUA codon encodes methionine via a mitochondrial transfer RNA for methionine (mt-tRNA(Met)) that contains 5-formylcytidine (f(5)C) at the first position of the anticodon (position 34). f(5)C34 is required for deciphering the AUA codon during protein synthesis. Until now, the biogenesis and physiological role of f(5)C34 were unknown. We demonstrate that biogenesis of f(5)C34 is initiated by S-adenosylmethionine (AdoMet)-dependent methylation catalyzed by NSUN3, a putative methyltransferase in mitochondria. NSUN3-knockout cells showed strong reduction in mitochondrial protein synthesis and reduced oxygen consumption, leading to deficient mitochondrial activity. We reconstituted formation of 5-methylcytidine (m(5)C) at position 34 (m(5)C34) on mt-tRNA(Met) with recombinant NSUN3 in the presence of AdoMet, demonstrating that NSUN3-mediated m(5)C34 formation initiates f(5)C34 biogenesis. We also found two disease-associated point mutations in mt-tRNA(Met) that impaired m(5)C34 formation by NSUN3, indicating that a lack of f(5)C34 has pathological consequences.


Assuntos
Citidina/análogos & derivados , Metiltransferases/metabolismo , RNA de Transferência de Metionina/metabolismo , RNA/metabolismo , Citidina/biossíntese , Humanos , RNA/química , RNA Mitocondrial , RNA de Transferência de Metionina/química
4.
Microb Cell Fact ; 14: 54, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25890046

RESUMO

BACKGROUND: Cytidine and uridine are produced commercially by Bacillus subtilis. The production strains of cytidine and uridine were both derivatives from mutagenesis. However, the exact metabolic and genetic factors affecting the productivity remain unknown. Genetic engineering may be a promising approach to identify and confirm these factors. RESULTS: With the deletion of the cdd and hom genes, and the deregulation of the pyr operon in Bacillus subtilis168, the engineered strain produced 200.9 mg/L cytidine, 14.9 mg/L uridine and 960.1 mg/L uracil. Then, the overexpressed prs gene led to a dramatic increase of uridine by 25.9 times along with a modest increase of cytidine. Furthermore, the overexpressed pyrG gene improved the production of cytidine, uridine and uracil by 259.5%, 11.2% and 68.8%, respectively. Moreover, the overexpression of the pyrH gene increasesd the yield of cytidine by 40%, along with a modest augments of uridine and uracil. Lastly, the deletion of the nupC-pdp gene resulted in a doubled production of uridine up to 1684.6 mg/L, a 14.4% increase of cytidine to 1423 mg/L, and a 99% decrease of uracil to only 14.2 mg/L. CONCLUSIONS: The deregulation of the pyr operon and the overexpression of the prs, pyrG and pyrH genes all contribute to the accumulation of pyrimidine nucleoside compounds in the medium. Among these factors, the overexpression of the pyrG and pyrH genes can particularly facilitate the production of cytidine. Meanwhile, the deletion of the nupC-pdp gene can obviously reduce the production of uracil and simultaneously improve the production of uridine.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Citidina/biossíntese , Uridina/biossíntese , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biomassa , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Fermentação , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homosserina Desidrogenase/genética , Homosserina Desidrogenase/metabolismo , Engenharia Metabólica/métodos , Mutagênese , Óperon/genética , Pentosiltransferases/genética , Pentosiltransferases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Trends Microbiol ; 23(2): 110-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25468791

RESUMO

The alarming rise in antibiotic-resistant pathogens has coincided with a decline in the supply of new antibiotics. It is therefore of great importance to find and create new antibiotics. Nucleoside antibiotics are a large family of natural products with diverse biological functions. Their biosynthesis is a complex process through multistep enzymatic reactions and is subject to hierarchical regulation. Genetic and biochemical studies of the biosynthetic machinery have provided the basis for pathway engineering and combinatorial biosynthesis to create new or hybrid nucleoside antibiotics. Dissection of regulatory mechanisms is leading to strategies to increase the titer of bioactive nucleoside antibiotics.


Assuntos
Antibacterianos/biossíntese , Antifúngicos/metabolismo , Antivirais/metabolismo , Biotecnologia , Nucleosídeos/biossíntese , Aminoglicosídeos/biossíntese , Aminoglicosídeos/química , Antibacterianos/química , Antifúngicos/química , Antivirais/química , Citidina/análogos & derivados , Citidina/biossíntese , Citosina/análogos & derivados , Citosina/biossíntese , Citosina/química , Engenharia Genética , Nucleosídeos/química , Nucleosídeos/metabolismo , Nucleosídeos de Pirimidina/biossíntese , Nucleosídeos de Pirimidina/química
6.
Can J Microbiol ; 59(6): 374-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23750951

RESUMO

A major problem when pyrimidine de novo biosynthesis is used for cytidine production is the existence of many negative regulatory factors. Cytidine biosynthesis in Bacillus amyloliquefaciens proceeds via a pathway that is controlled by uridine monophosphate (UMP) through feedback inhibition of carbamoyl phosphate synthetase (CPS), the enzyme that converts CO2, NH3, and glutamine to carbamoyl phosphate. In this study, the gene carB encoding the large subunit of CPS from B. amyloliquefaciens CYT1 was site directed, and the UMP binding sites of feedback inhibition in Bam-CPS are described. The residues Thr-941, Thr-970, and Lys-986 in CPS from B. amyloliquefaciens were subjected to site-directed mutagenesis to alter UMP's feedback inhibition of CPS. To find feedback-resistant B. amyloliquefaciens, the influence of the T941F, T970A, K986I, T941F/K986I, and T941F/T970A/K986I mutations on CPS enzymatic properties was studied. The recombinant B. amyloliquefaciens with mutated T941F/K986I and T941F/T970A/K986I CPS showed a 3.7- and 5.7-fold increase, respectively, in cytidine production in comparison with the control expressing wild-type CPS, which was more suitable for further application of the cytidine synthesis. To a certain extent, the 5 mutations were found to release the enzyme from UMP inhibition and to improve B. amyloliquefaciens cytidine-producing strains.


Assuntos
Bacillus/enzimologia , Bacillus/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/metabolismo , Citidina/biossíntese , Uridina Monofosfato/metabolismo , Sequência de Aminoácidos , Bacillus/metabolismo , Sítios de Ligação/genética , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/química , Carbamoil Fosfato Sintase (Glutamina-Hidrolizante)/isolamento & purificação , Carbamoil-Fosfato/metabolismo , Retroalimentação Fisiológica , Glutamina/metabolismo , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
7.
Biotechnol Lett ; 35(2): 245-51, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23070626

RESUMO

Cytidine is a precursor of several antiviral drugs. The pentose phosphate pathway (PPP) is primarily responsible for NADPH and 5-phospho-α-D-ribose 1-diphosphate as an important precursor of cytidine biosynthesis in Escherichia coli. To enhance cytidine production, we obtained the recombinant E. coli CYT15-gnd-prs-zwf that co-expressed the prs, zwf, and gnd genes encoding phosphoribosylpyrophosphate synthetase, glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase (three key enzymes in PPP) respectively. In fermentation experiments, strain CYT15-gnd-prs-zwf produced 735 mg cytidine/l using glucose as substrate, which was approx. 128 % higher than the cytidine production by the parental strain (CYT15). Co-expression of zwf, gnd, and prs decreased growth (3.2 %) slightly and increased glucose uptake (72 %). This is the first study to report increased cytidine production by increasing metabolic flux through the PPP in E. coli.


Assuntos
Citidina/biossíntese , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Fermentação , Expressão Gênica , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Fosfogluconato Desidrogenase/genética , Fosfogluconato Desidrogenase/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo
8.
EMBO J ; 27(16): 2194-203, 2008 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18668122

RESUMO

The wobble base of Escherichia coli elongator tRNA(Met) is modified to N(4)-acetylcytidine (ac(4)C), which is thought to ensure the precise recognition of the AUG codon by preventing misreading of near-cognate AUA codon. By employing genome-wide screen of uncharacterized genes in Escherichia coli ('ribonucleome analysis'), we found the ypfI gene, which we named tmcA (tRNA(Met) cytidine acetyltransferase), to be responsible for ac(4)C formation. TmcA is an enzyme that contains a Walker-type ATPase domain in its N-terminal region and an N-acetyltransferase domain in its C-terminal region. Recombinant TmcA specifically acetylated the wobble base of E. coli elongator tRNA(Met) by utilizing acetyl-coenzyme A (CoA) and ATP (or GTP). ATP/GTP hydrolysis by TmcA is stimulated in the presence of acetyl-CoA and tRNA(Met). A mutation study revealed that E. coli TmcA strictly discriminates elongator tRNA(Met) from the structurally similar tRNA(Ile) by mainly recognizing the C27-G43 pair in the anticodon stem. Our findings reveal an elaborate mechanism embedded in tRNA(Met) and tRNA(Ile) for the accurate decoding of AUA/AUG codons on the basis of the recognition of wobble bases by the respective RNA-modifying enzymes.


Assuntos
Acetiltransferases/metabolismo , Trifosfato de Adenosina/metabolismo , Anticódon/metabolismo , Citidina/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , RNA de Transferência de Metionina/metabolismo , Acetiltransferases/química , Sequência de Aminoácidos , Sequência de Bases , Citidina/biossíntese , Citidina/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Genes Bacterianos , Guanosina Trifosfato/metabolismo , Hidrólise , Cinética , Espectrometria de Massas , Dados de Sequência Molecular , Mutação/genética , Conformação de Ácido Nucleico , RNA de Transferência de Metionina/química , RNA de Transferência de Metionina/genética , Proteínas Recombinantes , Ribossomos/metabolismo , Alinhamento de Sequência
9.
Biosci Biotechnol Biochem ; 59(5): 915-6, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7787306

RESUMO

Bacillus subtilis No. 344 is a cytidine-producing mutant strain derived from wild type strain No. 122. When 3-deazauracil-resistant mutants were derived from strain No. 344, some of the mutants had higher productivities of cytidine. Among them, strain No. 428 accumulated 14.2 mg/ml cytidine in the culture. Cytidine 5'-triphosphate (CTP) synthetase from strain No. 428 changed to be free from feedback inhibition by CTP, compared with the enzyme from strain No. 344.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Carbono-Nitrogênio Ligases , Citidina/biossíntese , Piridonas/farmacologia , Uracila/análogos & derivados , Divisão Celular/efeitos dos fármacos , Citidina/farmacologia , Resistência Microbiana a Medicamentos/genética , Ligases/antagonistas & inibidores , Ligases/biossíntese , Ligases/metabolismo , Mutação , Piridonas/metabolismo , Pirimidinas/antagonistas & inibidores , Pirimidinas/farmacologia , Uracila/metabolismo , Uracila/farmacologia
10.
Can J Microbiol ; 39(6): 616-22, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7689417

RESUMO

The incorporation of 5-fluorouracil (FUra) into RNA of Mycobacterium avium complex strain LM1 was evaluated. Cells were labeled with either [14C]FUra or [3H]uracil and the ribonucleosides were analyzed by high-performance liquid chromatography. The identification of the ribonucleosides was facilitated by the use of an isocratic system that provided unambiguous identification of the RNA pyrimidine components. Uracil was incorporated into RNA as uridine, but an equal amount was converted to cytidine. [14C]FUra was incorporated directly into RNA as 5-fluorouridine and there was no evidence of its conversion to other pyrimidines. The ratio of 5-fluorouridine:uridine was 2.8-fold greater for cells grown in 100 micrograms FUra/mL than for cells grown in 20 micrograms FUra/mL. Analysis of the RNA nucleotides was performed and deoxyribonucleotides were present; DNA contamination was estimated to range from about 2 to 8% of the RNA preparations.


Assuntos
Fluoruracila/metabolismo , Complexo Mycobacterium avium/metabolismo , RNA Bacteriano/biossíntese , Biotransformação , Citidina/biossíntese , Resistência Microbiana a Medicamentos , Fluoruracila/farmacologia , Complexo Mycobacterium avium/efeitos dos fármacos , Uracila/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo
11.
Mol Cell Biochem ; 75(1): 15-21, 1987 May.
Artigo em Inglês | MEDLINE | ID: mdl-3306344

RESUMO

Aminoacyl tRNA synthetases, by means of a back reaction, are able to synthesize certain 5', 5"'-P1, P4-bisnucleoside tetraphosphates of biological importance, such as Ap4A. Here it is shown that HisRS and TrpRS (Bacillus stearothermophilus) and AlaRS (E. coli) also synthesize the hybrid compounds Ap4G, Ap4C, and Ap4U. GlnRS (E. coli) is unable to synthesize any of the above compounds. AlaRS synthesizes Ap4U very poorly, and Ap4C and Ap4G almost as effectively as Ap4A. HisRS and TrpRS synthesize Ap4G, Ap4U and Ap3U quite effectively, and Ap4C very poorly. The fact that hybrid bisnucleoside tetraphosphates can be made by the same enzymes, and at rates comparable to Ap4A, suggests that these compounds may also occur in vivo.


Assuntos
Nucleotídeos de Adenina/biossíntese , Aminoacil-tRNA Sintetases/metabolismo , Fosfatos de Dinucleosídeos , Oligorribonucleotídeos/biossíntese , Citidina/análogos & derivados , Citidina/biossíntese , Escherichia coli/enzimologia , Geobacillus stearothermophilus/enzimologia , Guanosina/análogos & derivados , Guanosina/biossíntese , Uridina/análogos & derivados , Uridina/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA