Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.965
Filtrar
1.
Chem Biol Interact ; 400: 111160, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39047805

RESUMO

Liver injury is a well-known adverse effect of the anti-tuberculosis drug isoniazid (INH); however, animal models that accurately replicate this effect as seen in humans have not been constructed, and the mechanism of its pathogenesis remains unclear. Recently, an immune-mediated mechanism have been proposed based on clinical studies, suggesting the involvement of cytochrome P450-mediated formation of reactive metabolites and covalent adducts in severe cases. In the present study, we investigated the role of CYP2E1 in this mechanism. Liver microsomes from humans, rats, and mice were preincubated with INH and NADPH; thereafter, residual CYP2E1 activity was measured. The inhibition of CYP2E1 by INH was potentiated by preincubation, indicating time-dependent inhibition. There were no major species-based differences in inhibition among humans, rats, and mice. Further to our findings on the inhibition kinetics, resistance of the inhibition to glutathione and catalase indicated that the reactive metabolites of INH covalently bonded to CYP2E1 in a suicidal manner. A similar time-dependent inhibition was also observed for the known metabolites acetylhydrazine and hydrazine; however, the conditions that inhibited the hydrolysis or activated the acetylation of INH did not affect inhibition by INH, suggesting that the reactive metabolites contributing to the inhibition were generated via alternative pathways. This indicates that CYP2E1 alone generates reactive INH metabolites and that haptenized CYP2E1 may be involved in immune-mediated liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Inibidores do Citocromo P-450 CYP2E1 , Citocromo P-450 CYP2E1 , Isoniazida , Microssomos Hepáticos , Isoniazida/metabolismo , Animais , Citocromo P-450 CYP2E1/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , Ratos , Camundongos , Masculino , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Antituberculosos/farmacologia , Antituberculosos/metabolismo , Ratos Sprague-Dawley , Catalase/metabolismo , Glutationa/metabolismo , Feminino
2.
Chem Biol Interact ; 400: 111157, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059604

RESUMO

Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid ß-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.


Assuntos
Citocromo P-450 CYP2E1 , Diabetes Mellitus Tipo 2 , Inflamação , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Transdução de Sinais , Fator de Transcrição YY1 , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição YY1/metabolismo , Camundongos Endogâmicos C57BL , Saponinas/farmacologia , Saponinas/uso terapêutico
3.
Org Biomol Chem ; 22(32): 6561-6574, 2024 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-39082794

RESUMO

Vanillin, a key flavor compound found in vanilla beans, is widely used in the food and pharmaceutical industries for its aromatic properties and potential therapeutic benefits. This study presents a comprehensive quantum chemical analysis to elucidate the interaction mechanisms of vanillin with CYP450 enzymes, with a focus on mechanism-based inactivation. Three potential inactivation pathways were evaluated: aldehyde deformylation, methoxy dealkylation, and acetal formation. Aldehyde deformylation was identified as the most energy-efficient, involving the removal of the aldehyde group from vanillin and leading to the formation of benzyne intermediates that could react with the iron porphyrin moiety of CYP450, potentially resulting in enzyme inactivation. Further investigation into the interactions of vanillin with CYP2E1 and CYP1A2 was conducted using molecular docking and molecular dynamics (MD) simulation. The docking analyses supported the findings from DFT studies, wherein vanillin revealed high binding affinities with the studied isozymes. Moreover, vanillin occupied the main binding site in both isozymes, as evidenced by the inclusion of the heme moiety in their binding mechanisms. Employing a 100 ns molecular dynamics simulation, we scrutinized the interaction dynamics between vanillin and the two isozymes of CYP450. The assessment of various MD parameters along with interaction energies revealed that vanillin exhibited stable trajectories and substantial energy stabilization during its interaction with both CYP450 isozymes. These insights can guide future research and ensure the safe application of vanillin, especially in scenarios where it may interact with CYP450 enzymes.


Assuntos
Benzaldeídos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Benzaldeídos/metabolismo , Benzaldeídos/química , Inocuidade dos Alimentos , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/química , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/química , Citocromo P-450 CYP1A2/metabolismo , Citocromo P-450 CYP1A2/química , Redes e Vias Metabólicas , Teoria da Densidade Funcional
4.
Mol Med ; 30(1): 79, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38844847

RESUMO

BACKGROUND: Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS: The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS: CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS: CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.


Assuntos
Autofagia , Carcinoma Hepatocelular , Proliferação de Células , Ácido Cólico , Citocromo P-450 CYP2E1 , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/induzido quimicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/induzido quimicamente , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Masculino , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Ratos , Proliferação de Células/efeitos dos fármacos , Camundongos , Ratos Sprague-Dawley , Transdução de Sinais , Proteômica/métodos , Modelos Animais de Doenças , Camundongos Nus
5.
Toxicology ; 506: 153872, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38924947

RESUMO

N,N-Dimethylformamide (DMF) is a well-documented occupational hazardous material, which can induce occupational liver injury. The current study was designed to investigate whether ethanol consumption can affect DMF-induced hepatotoxicity and the potential underlying mechanisms involved. We found that a single dose of ethanol (1.25, 2.5, or 5 g/kg bw by gavage) significantly repressed the increase in serum alanine transaminase (ALT) and aspartate transaminase (AST) activities and alleviated the liver histopathological changes in mice challenged with 3 g/kg DMF. In contrast, long-term moderate drinking (2.5 g/kg bw) significantly aggravated the repeated DMF (0.7 g/kg bw) exposure-induced increase in the serum ALT and AST activities. Mechanistically, acute ethanol consumption suppressed DMF-induced activation of the NLR family pyrin domain-containing protein 3 (NLRP3) inflammasome, while long-term moderate ethanol consumption promoted hepatocyte apoptosis in the mouse liver. Notably, cytochrome P4502E1 (CYP2E1) protein level and activity in mouse livers were not significantly affected by ethanol per se in the two models. These results confirm that regular drinking can increase the risk of DMF-induced hepatotoxicity, and suggest that DMF-handling workers should avoid consuming ethanol to reduce the risk of DMF-indued liver injury.


Assuntos
Consumo de Bebidas Alcoólicas , Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP2E1 , Dimetilformamida , Etanol , Fígado , Animais , Dimetilformamida/toxicidade , Etanol/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Camundongos , Masculino , Citocromo P-450 CYP2E1/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Apoptose/efeitos dos fármacos , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Relação Dose-Resposta a Droga , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
Eur J Pharm Sci ; 200: 106829, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38866111

RESUMO

Drug-induced liver injury (DILI) is prevalent in the treatment of chronic kidney disease (CKD). Advanced oxidation protein products (AOPPs) are markers of CKD progression and participate in the occurrence and development of liver diseases. However, the mechanisms underlying the regulation of DILI in CKD have not been established. Herein, we demonstrate the involvement of Cytochrome p450 2E1 (CYP2E1) in DILI induced by AOPPs is exacerbated by exposure to acetaminophen (APAP). We used a adenine-induced CKD model, a model of DILI induced by APAP, and the AOPPs model was generated by intraperitoneal injection. The decline in renal function was associated with a significantly increased concentration of Scr, BUN and AOPPs, and renal tissue fibrosis. The ALT, AST, and AOPPs levels and liver tissue necrosis increased significantly in CKD model group compared with the sodium carboxymethyl cellulose (CMCNa) group. In the AOPPs model, compared to the PBS controls, ALT, AST, and AOPP levels, and liver tissue necrosis increased significantly. In HepG2 or L0-2 cell lines, cell survival was significantly reduced in the AOPP + APAP treatment and CYP2E1 protein expression was increased. FPS-ZM1 or NAC attenuated the hepatocyte toxicity induced by AOPP + APAP and suppression of CYP2E1 expression. AOPPs exacerbated APAP-induced DILI through CYP2E1 signaling pathways. Protein uremic toxins, such as AOPPs, can modify drug toxicity in patients with CKD. This study provides new a rationale to reduce the generation of DILIs in clinical treatment in patients with CKD. AOPPs targeting may present a novel approach to reduce the occurrence of DILI.


Assuntos
Acetaminofen , Produtos da Oxidação Avançada de Proteínas , Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP2E1 , Acetaminofen/efeitos adversos , Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Humanos , Masculino , Produtos da Oxidação Avançada de Proteínas/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Insuficiência Renal Crônica/induzido quimicamente , Insuficiência Renal Crônica/metabolismo , Camundongos Endogâmicos C57BL , Células Hep G2 , Camundongos , Linhagem Celular
7.
Mol Cells ; 47(7): 100074, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38901530

RESUMO

Although binge alcohol-induced gut leakage has been studied extensively in the context of reactive oxygen species-mediated signaling, it was recently revealed that post-transcriptional regulation plays an essential role as well. Ethanol (EtOH)-inducible cytochrome P450-2E1 (CYP2E1), a key enzyme in EtOH metabolism, promotes alcohol-induced hepatic steatosis and inflammatory liver disease, at least in part by mediating changes in intestinal permeability. For instance, gut leakage and elevated intestinal permeability to endotoxins have been shown to be regulated by enhancing CYP2E1 mRNA and CYP2E1 protein levels. Although it is understood that EtOH promotes CYP2E1 induction and activation, the mechanisms that regulate CYP2E1 expression in the context of intestinal damage remain poorly defined. Specific miRNAs, including miR-132, miR-212, miR-378, and miR-552, have been shown to repress the expression of CYP2E1, suggesting that these miRNAs contribute to EtOH-induced intestinal injury. Here, we have shown that CYP2E1 expression is regulated post-transcriptionally through miRNA-mediated degradation, as follows: (1) the RNA-binding protein AU-binding factor 1 (AUF1) binds mature miRNAs, including CYP2E1-targeting miRNAs, and this binding modulates the degradation of corresponding target mRNAs upon EtOH treatment; (2) the serine/threonine kinase mammalian Ste20-like kinase 1 (MST1) mediates oxidative stress-induced phosphorylation of AUF1. Those findings suggest that reactive oxygen species-mediated signaling modulates AUF1/miRNA interaction through MST1-mediated phosphorylation. Thus, our study demonstrates the critical functions of AUF1 phosphorylation by MST1 in the decay of miRNAs targeting CYP2E1, the stabilization of CYP2E1 mRNA in the presence of EtOH, and the relationship of this pathway to subsequent intestinal injury.


Assuntos
Citocromo P-450 CYP2E1 , Etanol , MicroRNAs , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , MicroRNAs/metabolismo , MicroRNAs/genética , Etanol/toxicidade , Etanol/efeitos adversos , Humanos , Animais , Ribonucleoproteína Nuclear Heterogênea D0/metabolismo , Intestinos/patologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia
8.
J Food Sci ; 89(7): 4535-4550, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38809252

RESUMO

Polysaccharides from natural sources can regulate the composition of intestinal flora through the "gut-liver axis" pathway, potentially ameliorating alcoholic liver injury. Aspalathus linearis, also known as rooibos, is one such natural product that has shown promise in this regard. This study looked at the structural properties of A. linearis polysaccharide (ALP) and how well it would work to treat acute alcoholic liver impairment. This study looks at the composition of monosaccharides, functional groups, and molecular weight (Mw) of a newly discovered water-soluble polysaccharide, named ALP. The polysaccharide is composed of pyranose rings, amide groups, and sulfate groups linked by ß-glycosidic linkage. It has a relative Mw of 4.30 × 103 kDa and is composed of glucose, rhamnose, and some other monosaccharides. The study found that treating mice with the model of acute alcoholic liver disease with ALP could alleviate pathological symptoms, inhibit the release of inflammatory cytokines, and suppress indicators of oxidative stress. Experiments have shown that different doses of ALP can activate the P4502E1/Keap1-Nrf2-HO-1 signaling pathway. The regulation of inflammatory factors and downstream antioxidant enzymes occurs as a result. Based on these data, it is likely that ALP protects the liver via the "gut-liver axis" pathway by reducing oxidative stress-related damage, inflammation, and alcohol-related alterations to the gut microbiome. The results indicate that ALP mitigates injury caused by oxidative stress, inflammatory responses, and changes in the gut microbiota induced by alcohol through the "gut-liver axis" pathway, which provides protection to the liver. This provides preliminary evidence for the development of related drugs. PRACTICAL APPLICATION: Researchers extracted a polysaccharide from fresh leaves of Auricularia auricula. The polysaccharide was purified and determined to have a predominantly homogeneous molecular weight. An acute alcoholic liver damage mouse model was established, and it was concluded that the polysaccharide could ameliorate liver injury in mice through the "gut-liver axis" pathway. This novel polysaccharide can be used as an additive to develop functional foods with beneficial effects, which can positively impact the daily maintenance of consumers.


Assuntos
Hepatopatias Alcoólicas , Estresse Oxidativo , Polissacarídeos , Animais , Polissacarídeos/farmacologia , Polissacarídeos/química , Camundongos , Hepatopatias Alcoólicas/tratamento farmacológico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antioxidantes/farmacologia , Peso Molecular , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Citocinas/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Citocromo P-450 CYP2E1/metabolismo
9.
Food Funct ; 15(10): 5315-5328, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38605685

RESUMO

In this study, walnut protein was hydrolyzed, separated by ultrafiltration, purified by RP-HPLC, identified by LC-MS/MS, and screened by molecular docking to finally obtain three novel antioxidant peptides HGEPGQQQR (1189.584 Da), VAPFPEVFGK (1089.586 Da) and HNVADPQR (949.473 Da). These three peptides exhibited excellent cellular antioxidant activity (CAA) with EC50 values of 0.0120 mg mL-1, 0.0068 mg mL-1, and 0.0069 mg mL-1, respectively, which were superior to that of the positive control GSH (EC50: 0.0122 mg mL-1). In the ethanol injury model, three antioxidant peptides enhanced the survival of cells treated with ethanol from 47.36% to 62.69%, 57.06% and 71.64%, respectively. Molecular docking results showed that the three antioxidant peptides could effectively bind to Keap1, CYP2E1 and TLR4 proteins. These results suggested that walnut-derived antioxidant peptides could be potential antioxidants and hepatoprotective agents for application in functional foods.


Assuntos
Antioxidantes , Juglans , Simulação de Acoplamento Molecular , Peptídeos , Hidrolisados de Proteína , Juglans/química , Antioxidantes/farmacologia , Antioxidantes/química , Peptídeos/farmacologia , Peptídeos/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Proteínas de Plantas/farmacologia , Proteínas de Plantas/química , Etanol , Receptor 4 Toll-Like/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Nozes/química , Espectrometria de Massas em Tandem
10.
Nutrients ; 16(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38674865

RESUMO

Alcoholic Fatty Liver Disease (AFLD) is characterized by the accumulation of lipids in liver cells owing to the metabolism of ethanol. This process leads to a decrease in the NAD+/NADH ratio and the generation of reactive oxygen species. A systematic review and meta-analysis were conducted to investigate the role of oxidative stress in AFLD. A total of 201 eligible manuscripts were included, which revealed that animals with AFLD exhibited elevated expression of CYP2E1, decreased enzymatic activity of antioxidant enzymes, and reduced levels of the transcription factor Nrf2, which plays a pivotal role in the synthesis of antioxidant enzymes. Furthermore, animals with AFLD exhibited increased levels of lipid peroxidation markers and carbonylated proteins, collectively contributing to a weakened antioxidant defense and increased oxidative damage. The liver damage in AFLD was supported by significantly higher activity of alanine and aspartate aminotransferase enzymes. Moreover, animals with AFLD had increased levels of triacylglycerol in the serum and liver, likely due to reduced fatty acid metabolism caused by decreased PPAR-α expression, which is responsible for fatty acid oxidation, and increased expression of SREBP-1c, which is involved in fatty acid synthesis. With regard to inflammation, animals with AFLD exhibited elevated levels of pro-inflammatory cytokines, including TNF-a, IL-1ß, and IL-6. The heightened oxidative stress, along with inflammation, led to an upregulation of cell death markers, such as caspase-3, and an increased Bax/Bcl-2 ratio. Overall, the findings of the review and meta-analysis indicate that ethanol metabolism reduces important markers of antioxidant defense while increasing inflammatory and apoptotic markers, thereby contributing to the development of AFLD.


Assuntos
Fígado Gorduroso Alcoólico , Estresse Oxidativo , Animais , Humanos , Antioxidantes/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fígado Gorduroso Alcoólico/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Int Immunopharmacol ; 132: 112003, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38603858

RESUMO

Allergic rhinitis (AR) is a common allergic disease. Cytochrome P450, family 2, subfamily e, polypeptide 1 (Cyp2e1) is a member of the cytochrome P450 family of enzymes, while its role in AR is still unveiled. In AR mice, T cell-specific overexpression of Cyp2e1 relieved the AR symptoms. Overexpressed-Cyp2e1 restrained the infiltration of eosinophils and mast cells in the nasal mucosa of mice, and the inflammatory cells in nasal lavage fluid (NALF). Cyp2e1 overexpressed mice exhibited decreased goblet cell hyperplasia and mucus secretion as well as decreased MUC5AC expression in nasal mucosa. The epithelial permeability and integrity of nasal mucosa were improved upon Cyp2e1 overexpression in AR mice, as evidenced by decreased fluorescein isothiocyanate-dextran 4 content in serum, increased expression of IL-25, IL-33, and TSLP in NALF, and increased expression of ZO-1 and occluding in nasal mucosa. Cyp2e1 inhibited Th2 immune response by decreasing the expression and secretion of IL-4, IL-5, and IL-13 as well as the expression of GATA-3 in NALF or nasal mucosa. We proved that Cyp2e1 inhibited the differentiation of naïve CD4+ T cells toward the Th2 subtype, which was regulated by MAFB by binding to Cyp2e1 promoter to activate its transcription. Overall, these results show the potential role of Cyp2e1 in alleviating AR symptoms by restraining CD4+ T cells to Th2 cell differentiation. Our findings provide further insight into the AR mechanism.


Assuntos
Diferenciação Celular , Citocromo P-450 CYP2E1 , Mucosa Nasal , Ovalbumina , Rinite Alérgica , Células Th2 , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Ativação Linfocitária , Camundongos Endogâmicos BALB C , Mucosa Nasal/imunologia , Mucosa Nasal/patologia , Ovalbumina/imunologia , Rinite Alérgica/imunologia , Células Th2/imunologia
12.
Redox Biol ; 71: 103107, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479224

RESUMO

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Assuntos
Citocromo P-450 CYP2E1 , Hepatopatias Alcoólicas , Animais , Humanos , Camundongos , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Agonismo Inverso de Drogas , Etanol/farmacologia , Hepatócitos/metabolismo , Fígado/metabolismo , Hepatopatias Alcoólicas/metabolismo , Estresse Oxidativo
13.
Sci Rep ; 14(1): 6772, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514705

RESUMO

Liver diseases, including NAFLD, are a growing worldwide health concern. Currently, there is a lack of suitable in vitro models that sustain basic primary human hepatocyte (PHH) morphology and functionality while supporting presentation of disease-associated phenotypic characteristics such as lipid accumulation and inflammasome activation. In TruVivo, an all-human triculture system (hTCS), basic metabolic functions were characterized in PHHs isolated from normal or diseased livers during two-weeks of culture. Decreases in albumin and urea levels and CYP3A4 activity were seen in diseased-origin PHHs compared to normal PHHs along with higher CYP2E1 expression. Positive expression of the macrophage markers CD68 and CD163 were seen in the diseased PHH preparations. Elevated levels of the pro-inflammatory cytokines IL-6 and MCP-1 and the fibrotic markers CK-18 and TGF-ß were also measured. Gene expression of FASN, PCK1, and G6PC in the diseased PHHs was decreased compared to the normal PHHs. Further characterization revealed differences in lipogenesis and accumulation of intracellular lipids in normal and diseased PHHs when cultured with oleic acid and high glucose. TruVivo represents a promising new platform to study lipogenic mechanisms in normal and diseased populations due to the preservation of phenotypic differences over a prolonged culture period.


Assuntos
Hepatócitos , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatócitos/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Albuminas/metabolismo
14.
Tunis Med ; 102(1): 19-25, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38545725

RESUMO

INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver failure, fibrosis, cirrhosis, and liver cancer, which can eventually lead to death. AIM: To investigate the effects of high-intensity interval training (HIIT) and iranian propolis extract on serum levels of transient receptor potential cation channel subfamily V member 4 (TRPV4) and cytochrome P450 2E1 (CYP2E1) proteins in patients with NAFLD. METHODS: Thirty-two patients with NAFLD (mean±standard deviation of age: 45.1±3.6 years; body mass index: 30.0±3.6 kg/m2) were assigned in a randomized control trial to one of the following groups: HIIT (n=8), propolis supplement (n=8), propolis + HIIT (n=8), and controls (n=8). The subjects participated in eight weeks of HIIT (one bout of 1-min intervals at 80-95% of the maximal heart-rate, interspersed by two min at 50-55% of the reserve heart-rate). The Propolis supplement was taken three times a day by the patients in the form of 50 mg tablet after the main meals. Body composition, liver injury test (eg; Alanine- and Aspartate- aminotransferase levels), liver ultrasound and serum levels of TRPV4 and CYP2E1 were measured before and after intervention. One-way analysis of variance was used to compare post-tests among the groups. RESULTS: HIIT significantly reduced serum levels of TRPV4 protein (p=0.001). The reduction in CYP2E1 was not significant in HIIT group (p=0.075). Propolis consumption had no significant effect on serum levels of CYP2E1 protein (p=0.059), and TRPV4 (p=0.072). There was a significant decrease in TRPV4 and CYP2E1 in the HIIT (p=0.001) and propolis supplement (p=0.032) groups. CONCLUSION: HIIT and propolis supplementation can be used to reduce TRPV4 and CYP2E1, which in turn reduces oxidative stress and inflammation in patients with NAFLD.


Assuntos
Treinamento Intervalado de Alta Intensidade , Hepatopatia Gordurosa não Alcoólica , Própole , Humanos , Adulto , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/terapia , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Própole/metabolismo , Própole/farmacologia , Irã (Geográfico) , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Fígado/patologia , Fibrose
15.
Curr Pharm Des ; 30(9): 676-682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38424425

RESUMO

BACKGROUND: Benzene as an environmental and industrial agent induces adverse effects that are mainly metabolism-dependent. OBJECTIVES: Effects of Quercetin (QCN) on Benzene (BNZ)-induced changes in the hepatic Cytochrome P450 2E1 expression and activity were investigated. METHODS: Thirty-six adult male mice were divided into 6 groups (n = 6) and nominated as control, BNZ (exposed to BNZ: 30 ppm), QCN (received QCN: 50 mg/kg, orally), and the fourth, fifth and sixth groups were exposed to 30 ppm BNZ and received 10, 50 and 100 mg/kg QCN respectively, for 28 days. The microsomal subcellular fraction was isolated from the liver samples and the activity of CYP 2E1 was measured based on the hydroxylation rate of 4-nitrophenol. The hepatic activity of myeloperoxidase also was assessed. Total antioxidant capacity and nitric oxide contents of the liver were determined. Expression changes of CYP 2E1 at the mRNA level were examined by qPCR technique. RESULTS: QCN lowered significantly (p < 0.05) the BNZ-increased hepatic nitric oxide levels and restored the BNZ-reduced antioxidant capacity. The BNZ-elevated activity of myeloperoxidase was declined in QCN-received mice. QCN downregulated the expression and activity of hepatic CYP 2E1 in BNZ-exposed animals. CONCLUSION: Our results suggest that QCN could be a novel hepatoprotective compound for BNZ-induced hepatotoxicities, which is attributed to its capability in the down-regulation of CYP 2E1 expression and activity.


Assuntos
Benzeno , Citocromo P-450 CYP2E1 , Fígado , Quercetina , Animais , Masculino , Quercetina/farmacologia , Camundongos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Fígado/efeitos dos fármacos , Fígado/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga
16.
Chem Biol Drug Des ; 103(1): e14421, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230771

RESUMO

Dihydromyricetin (DHM) is a bioactive flavonoid extracted from Hovenia dulcis, which has various activities. In the present study, the molecular mechanism of dihydromyricetin (DHM) in relieving liver cirrhosis was investigated through network pharmacology and experimental verification. The cell model was induced by TGF-ß1 activating the human hepatic stellate cell line (HSC; LX-2). The protein levels of α-SMA, collagen I, and collagen III and pathway-related proteins within LX-2 cells were detected using Western blot. EdU staining was conducted to detect cell proliferation. Immunofluorescence staining was performed to detect the expression levels of α-SMA and collagen I. Next, the drug targets of DHM were screened from the PubChem database. The differentially expressed genes in the liver cirrhosis dataset GSE14323 were identified. The expression of the identified drug targets in LX-2 cells was verified using qRT-PCR. The results showed that TGF-ß1 treatment notably increased LX-2 cell viability, promoted cell proliferation, and elevated α-SMA, collagen I, and collagen III protein contents. DHM treatment could partially eliminate TGF-ß1 effects, as evidenced by the inhibited cell viability and proliferation and reduced α-SMA, collagen I, and collagen III contents. After network pharmacology analysis, nine differentially expressed target genes (MMP2, PDGFRB, PARP1, BCL2L2, ABCB1, TYR, CYP2E1, SQSTM1, and IL6) in liver cirrhosis were identified. According to qRT-PCR verification, DHM could inhibit the expression of MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, and IL6, and enhance ABCB1 expression levels within LX-2 cells. Moreover, DHM inhibited mTOR and MAPK signaling pathways in TGF-ß1-induced HSCs. In conclusion, DHM could inhibit HSC activation, which may be achieved via acting on MMP2, PDGFRB, PARP1, CYP2E1, SQSTM1, IL6, and ABCB1 genes and their downstream signaling pathways, including mTOR and MAPK signaling pathway.


Assuntos
Flavonóis , Metaloproteinase 2 da Matriz , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/farmacologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Interleucina-6/metabolismo , Farmacologia em Rede , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/uso terapêutico , Proteína Sequestossoma-1/metabolismo , Cirrose Hepática/tratamento farmacológico , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo I/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo
17.
Biofactors ; 50(3): 572-591, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38183321

RESUMO

Although obesity and subsequent liver injury are increasingly prevalent in women, female mouse models have generally shown resistance to high-fat diet (HFD)-induced obesity. We evaluated control and HFD-fed male and female FVB/N mice, a strain well-suited to transgenic analyses, for phenotypic, histological, and molecular markers related to control of glucose, lipids, and inflammation in serum, liver, and perigonadal white adipose tissues. Unlike many mouse models, HFD-fed FVB/N females gained more perigonadal and mesenteric fat mass and overall body weight than their male counterparts, with increased hepatic expression of lipogenic PPARγ target genes (Cd36, Fsp27, and Fsp27ß), oxidative stress genes and protein (Nqo1 and CYP2E1), inflammatory gene (Mip-2), and the pro-fibrotic gene Pai-1, along with increases in malondialdehyde and serum ALT levels. Further, inherent to females (independently of HFD), hepatic antioxidant heme oxygenase-1 (HMOX1, HO-1) protein levels were reduced compared to their male counterparts. In contrast, males may have been relatively protected from HFD-induced oxidative stress and liver injury by elevated mRNA and protein levels of hepatic antioxidants BHMT and Gpx2, increased fatty acid oxidation genes in liver and adipocytes (Pparδ), despite disorganized and inflamed adipocytes. Thus, female FVB/N mice offer a valuable preclinical, genetically malleable model that recapitulates many of the features of diet-induced obesity and liver damage observed in human females.


Assuntos
Dieta Hiperlipídica , Heme Oxigenase-1 , Inflamação , Fígado , Obesidade , Estresse Oxidativo , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Camundongos , Masculino , Fígado/metabolismo , Fígado/patologia , Inflamação/metabolismo , Inflamação/patologia , Heme Oxigenase-1/metabolismo , Heme Oxigenase-1/genética , PPAR gama/metabolismo , PPAR gama/genética , NAD(P)H Desidrogenase (Quinona)/metabolismo , NAD(P)H Desidrogenase (Quinona)/genética , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Membrana , Proteínas
18.
J Pharmacol Exp Ther ; 388(1): 209-217, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-37918853

RESUMO

Acetaminophen (AAP) is metabolized by a variety of pathways such as sulfation, glucuronidation, and fatty acid amide hydrolase-mediated conversion to the active analgesic metabolite AM404. CYP2E1-mediated metabolism to the hepatotoxic reactive metabolite NAPQI (N-acetyl-p-benzoquinone imine) is a minor metabolic pathway that has not been linked to AAP therapeutic benefits yet clearly leads to AAP liver toxicity. N-acetylcysteine (NAC) (an antioxidant) and fomepizole (a CYP2E1 inhibitor) are clinically used for the treatment of AAP toxicity. Mice treated with AAP in combination with fomepizole (plus or minus NAC) were assessed for liver toxicity by histology and serum chemistry. The anticancer activity of AAP with NAC and fomepizole rescue was assessed in vitro and in vivo. Fomepizole with or without NAC completely prevented AAP-induced liver toxicity. In vivo, high-dose AAP with NAC/fomepizole rescue had profound antitumor activity against commonly used 4T1 breast tumor and lewis lung carcinoma lung tumor models, and no liver toxicity was detected. The antitumor efficacy was reduced in immune-compromised NOD-scid IL2Rgammanull mice, suggesting an immune-mediated mechanism of action. In conclusion, using fomepizole-based rescue, we were able to treat mice with 100-fold higher than standard dosing of AAP (650 mg/kg) without any detected liver toxicity and substantial antitumor activity. SIGNIFICANCE STATEMENT: High-dose acetaminophen can be given concurrently with CYP2E1 inhibition to allow for safe dose escalation to levels needed for anticancer activity without detected evidence of toxicity.


Assuntos
Acetaminofen , Citocromo P-450 CYP2E1 , Camundongos , Animais , Acetaminofen/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Fomepizol , Camundongos Endogâmicos NOD , Fígado/metabolismo , Acetilcisteína/farmacologia
19.
Toxicol In Vitro ; 95: 105739, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38042355

RESUMO

PURPOSE: The inhibitory effect of Apatinib on cytochrome P450 (CYP450) enzymes has been studied. However, it is unknown whether the inhibition is related to the major metabolites, M1-1, M1-2 and M1-6. METHODS: A 5-in-1 cocktail system composed of CYP2B6/Cyp2b1, CYP2C9/Cyp2c11, CYP2E1/Cyp2e1, CYP2D6/Cyp2d1 and CYP3A/Cyp3a2 was used in this study. Firstly, the effects of APA and its main metabolites on the activities of HLMs, RLMs and recombinant isoforms were examined. The reaction mixture included HLMs, RLMs or recombinant isoforms (CYP3A4.1, CYP2D6.1, CYP2D6.10 or CYP2C9.1), analyte (APA, M1-1, M1-2 or M1-6), probe substrates. The reactions were pre-incubated for 5 min at 37 °C, followed by the addition of NAPDH to initiate the reactions, which continued for 40 min. Secondly, IC50 experiments were conducted to determine if the inhibitions were reversible. The reaction mixture of the "+ NADPH Group" included HLMs or RLMs, 0 to 100 of µM M1-1 or M1-2, probe substrates. The reactions were pre-incubated for 5 min at 37 °C, and then NAPDH was added to initiate reactions, which proceeded for 40 min. The reaction mixture of the "- NADPH Group" included HLMs or RLMs, probe substrates, NAPDH. The reactions were pre-incubated for 30 min at 37 °C, and then 0 to 100 µM of M1-1 or M1-2 was added to initiate the reactions, which proceeded for 40 min. Finally, the reversible inhibition of M1-1 and M1-2 on isozymes was determined. The reaction mixture included HLMs or RLMs, 0 to 10 µM of M1-1 or M1-2, probe substrates with concentrations ranging from 0.25Km to 2Km. RESULTS: Under the influence of M1-6, the activity of CYP2B6, 2C9, 2E1 and 3A4/5 was increased to 193.92%, 210.82%, 235.67% and 380.12% respectively; the activity of CYP2D6 was reduced to 92.61%. The inhibitory effects of M1-1 on CYP3A4/5 in HLMs and on Cyp2d1 in RLMs, as well as the effect of M1-2 on CYP3A in HLMs, were determined to be noncompetitive inhibition, with the Ki values equal to 1.340 µM, 1.151 µM and 1.829 µM, respectively. The inhibitory effect of M1-1 on CYP2B6 and CYP2D6 in HLMs, as well as the effect of M1-2 on CYP2C9 and CYP2D6 in HLMs, were determined to be competitive inhibition, with the Ki values equal to 12.280 µM, 2.046 µM, 0.560 µM and 4.377 µM, respectively. The inhibitory effects of M1-1 on CYP2C9 in HLMs and M1-2 on Cyp2d1 in RLMs were determined to be mixed-type, with the Ki values equal to 0.998 µM and 0.884 µM. The parameters could not be obtained due to the atypical kinetics of CYP2E1 in HLMs under the impact of M1-2. CONCLUSIONS: M1-1 and M1-2 exhibited inhibition for several CYP450 isozymes, especially CYP2B6, 2C9, 2D6 and 3A4/5. This observation may uncover potential drug-drug interactions and provide valuable insights for the clinical application of APA.


Assuntos
Citocromo P-450 CYP3A , Microssomos Hepáticos , Piridinas , Humanos , Ratos , Animais , Microssomos Hepáticos/metabolismo , Citocromo P-450 CYP3A/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/farmacologia , Citocromo P-450 CYP2E1/metabolismo , Isoenzimas/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP2B6/metabolismo , NADP/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo
20.
Cell Host Microbe ; 32(1): 48-62.e9, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38056458

RESUMO

Acetaminophen overuse is a common cause of acute liver failure (ALF). During ALF, toxins are metabolized by enzymes such as CYP2E1 and transformed into reactive species, leading to oxidative damage and liver failure. Here, we found that oral magnesium (Mg) alleviated acetaminophen-induced ALF through metabolic changes in gut microbiota that inhibit CYP2E1. The gut microbiota from Mg-supplemented humans prevented acetaminophen-induced ALF in mice. Mg exposure modulated Bifidobacterium metabolism and enriched indole-3-carboxylic acid (I3C) levels. Formate C-acetyltransferase (pflB) was identified as a key Bifidobacterium enzyme involved in I3C generation. Accordingly, a Bifidobacterium pflB knockout showed diminished I3C generation and reduced the beneficial effects of Mg. Conversely, treatment with I3C or an engineered bacteria overexpressing Bifidobacterium pflB protected against ALF. Mechanistically, I3C bound and inactivated CYP2E1, thus suppressing formation of harmful reactive intermediates and diminishing hepatocyte oxidative damage. These findings highlight how interactions between Mg and gut microbiota may help combat ALF.


Assuntos
Acetaminofen , Falência Hepática Aguda , Humanos , Camundongos , Animais , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Magnésio/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/farmacologia , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA